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	is work concerns designingmultiregional supervisory fuzzy PID (Proportional-Integral-Derivative) control for pH reactors.	e
proposed work focuses, mainly, on two themes.	e 
rst one is to propose a multiregional supervisory fuzzy-based cascade control
structure. It would enable modifying dynamics and enhance system’s stability. 	e fuzzy system (master loop) has been chosen
as a tuner for PID controller (slave loop). It takes into consideration parameters uncertainties and reference tracking. 	e second
theme concerns designing a hybrid neural network-based pH estimator. 	e proposed estimator would overcome the industrial
drawbacks, that is, cost and size, found with conventional methods for pH measurement. 	e 
nal end-user-interface (EUI) front
panel and the results that evaluate the performance of the supervisory fuzzy PID-based control system and hybrid NN-based
estimator have been presented using the compatibility found betweenLabView andMatLab.	ey lead to conclude that the proposed
algorithms are appropriate to systems nonlinearities encountered with pH reactors.

1. Introduction

In order to overcome the nonlinearity issue found with
most real plants, a wide variety of linear control systems
have been developed [1]. PID controllers and conventional
algorithms are the most popular control methods used in
industry [1–3]. Nevertheless, they are proper for a speci
c
operation range with a linearized plant model. Whenever
perturbations lead the process to work out of its operating
point, manual adjustment of PID controller parameters is
required. Di�erent approaches have been developed to deal
with such issue, like predictive model based and neural
networks [1]. In [4–7], the utilization of fuzzy logic as online
PID tuner has been proposed. Fuzzy control systems are able
to supervise the controller performance in the steady state
and transition state. Despite this, such algorithms may have
poor dynamic performance at certain operating points. To
enlarge the working points that are covered by the controlled
plant, a multiregional supervisor control is being considered
in this work, as will be explained on the coming sections [7].

Our primary motivation is to build end-user-interface
(EUI) using the compatibility found between LabView and
MatLab. 	e designed EUI would provide a exible testbed
formodeling and implementation of advanced control strate-
gies without the expense or danger of working with real-time
processes.

In this paper, there are two main contributions:
(i) 	e 
rst one is the development of a multiregional

supervisory fuzzy PID (MSF-PID) system to improve the
accuracy and modify the dynamics of the PID-controlled
pH process. 	e proposed algorithm has been designed with
cascade structure.

	e proposed fuzzy-based control works in subdivided
regions. 	ese regions are derived from the preknowledge
experience about input-output pattern of the corresponding
process. It is concerned with adjusting the gains of PID
control with respect to parameter uncertainties and environ-
mental conditions.

(ii)	e second contribution concerns proposing an alter-
native and nonconventional estimation method of process

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2015, Article ID 396879, 9 pages
http://dx.doi.org/10.1155/2015/396879



2 Journal of Control Science and Engineering

Fuzzi�cation
Inference 

engine Defuzzi�cation

Rule base

ProcessPID controller

Fuzzy PID gain scheduling

y(t)w(t) e(t) u(t)
+ −

Figure 1: Structure of supervisory fuzzy PID.
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Figure 2: Structure of the proposed neural networks ((a) MLP and (b) RBF).

output. Using the compatibility features found between mul-
tilayer perceptrons (MLP) and radial basis function (RBF)
neural networks, a hybrid NN-based (HNN) estimator is
developed. 	is intelligence-based estimator would replace
the real hardware so that it ensures a compact size and a
reduced cost when comparing with the conventional meth-
ods of measurement. It will also compensate the errors we
might encounter with conventionalmethods ofmeasurement
[8, 9].

2. Preliminaries

2.1. Supervisory Fuzzy Controller. Supervisory fuzzy con-
troller is a hierarchical one with the supervisor at the highest
level, as shown in Figure 1. 	e fuzzy supervisor can use any
available data from the control system to characterize the
system’s current behavior so that it knows how to change the
controller and ultimately achieve the desired speci
cations.
In addition, the supervisor can be used to integrate other
information into the control decision-making process.

Figure 1 shows the supervisory fuzzy PID where �(�) is
the control action and �(�) is the process output.

	e adjustment of PID parameters is carried out by some
candidate rules as follows:

(i) If steady-state error is large then increase the propor-
tional gain.

(ii) If the response is oscillatory then increase the deriva-
tive gain.

(iii) If the response is sluggish then increase the propor-
tional gain.

(iv) If the steady-state error is too big then adjust the
integral gain.

(v) If the overshoot is too big then decrease the propor-
tional gain.

In some applications, controller gains are quanti
ed accord-
ing to di�erent types of responses a priori identi
ed from
experiments on the real process [7].

2.2. Hybrid Neural Network. 	e hybrid structure of neural
networks (HNNs) consists of MLP and RBF. Figure 2 shows
the structures of RBF andMLP.	e main di�erence between
MLP and RBF is that, unlike the MLP, there is only a hidden
layer in RBF network which contains nonlinear nodes called
RBF units that measure the distance between an input data
vector and the center of their RBF [8].

	e MLP and RBF networks are trained using a super-
vised training rule which attempts to minimize the error
between the network and the target output patterns. If target
outputs are not required for training, the learning rule is
unsupervised and the network extracts its own features from
the training set.

For choosing the optimal and adequate structure, certain
number of neuronal architectures would be studied. Di�erent
initialization of synaptic parameters has been done for each
architecture to ensure that the training of the NN converges
towards the least error criterion. For each structure, themean
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square error of the training and validation databases could be
calculated.	en, the optimal structure is the structure which
has the least square error in the validation base. 	e training
had been done using Levenberg-Marquardt algorithm [8].
	e training is carried out on a 
eld of study called “	eld
of training.” We create three databases belonging to the 
eld
of training: training, validation, and testing database, as in
Figure 3.

3. pH Reactor: Modeling,
Controlling, and Estimation

Figure 4 demonstrates the pH reactor considered in this
work. It is one of the most demanded processes in di�erent
industrial sectors such as food and diary, medicine, and
biomedical industry [10, 11].

3.1. Model of pH Reactor. 	e logarithmic relation between
the base streams as manipulated variable and the pH value as
a master process variable has been studied, as will be seen in
Section 3.2. 	is relation is subdivided into three operating
zones (two linear ranges and one nonlinear range). It aims,
mainly, to enlarge operating range of controlling pH and
modify its close-loop response.

In our case, the considered titration process has a
strong acid (HCL) with a constant ow value [2mL/sec],
where its concentration is equal to [0.95mol/L]. 	e
manipulated variable will be the ow of strong base
(NaOH), with a concentration [1.9mol/L]. At this level,
pH would be calculated using the following equation
[1, 7]:

pH = log10 [[
[
− (	
���/ (
� + 
�) − 
���/ (
� + 
�)) + √(	
���/ (
� + 
�) − 
���/ (
� + 
�))2 − 4 (10−14) (−1)

2 (10−14)
]]
]
, (1)

where ��, �� are the concentration values of acid and base,
respectively, in the outlet stream, 
�, 
� are the volumetric
ow rates of acid and base, respectively, � is the volume, and
	 is a constant that depends on the strength of acid. In our
case, 	 = 1 is considered for strong acid-strong base system
[7, 10].

3.2. MSF-PID Control of pH Reactor. In this subsection, a
modi
ed cascade structure of MSF-PID control system is

proposed to meet the industrial control demands due to its
nonlinearities which interfere with gain adjustment of the
process.

Figure 5 shows the block diagram of the pH-based fuzzy
supervisory control system. As it can be seen from the
block diagram, the fuzzy system takes three inputs, auxiliary
variable (pH∗), error in pHvalue (e), and change in error (de),
and generates three outputs: proportional gain ��, integral
gain��, and derivative gain��.U is the control action;
� is
the manipulated variable and represents the ow of base.
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	e proposed control system is working on three subdi-
vided titration regions.	ese three regions have been chosen
with respect to the value of base ow rate
� that manipulates
the pH value inside the reactor, Figure 6.

Since the variables and their state are linguistic values,
they can only be interpreted qualitatively and inexactly.
	erefore, a technique is needed to describe these vague
values. Fuzzy set is one of the perfect tools to process the
linguistic information.

Regarding structure of proposed fuzzy, there are three
inputs to fuzzy inference: auxiliary input pH∗ (region 1: low;
region 2: medium; and region 3: high), error e and derivative
of error de, and three outputs which are��,��, and��. 	e
PID controller has two inputs (control error and derivative of
error).

Figures 7(a) and 7(b) show the membership functions of
all the inputs and outputs. 	ey are composed of di�erent
shapes (triangular and Gaussian) and sizes to accomplish
all linear and nonlinear features found with such process
dynamics (Figure 6) and also to ensure smooth operation
around set point (modi
ed dynamics) and a minimum
steady-state error (enhanced stability).

	e widths of the fuzzy sets used for controllers are not
the same and they have been determined by trial and error
experience.	ewidth of the fuzzy sets for�� has been chosen[0.2 0.7], for �� is [0.001 0.01] and for �� is [0.1 0.15]. And
for inputs, the range of set point as an auxiliary input pH∗ is[0 14], the range for the error has been chosen [−1 1], and for
error rate is [−10 10]. 	e auxiliary input is used to precisely
localize at which region pH varies.

	e designed fuzzy tuner would upgrade the values of��, ��, and �� upon to the fuzzy inputs (�, �� as measured
inputs and the set point as AV). 	e structure of the classical
controller is supposed to be �� + �. Two tables would be
supplied (Tables 1(a) and 1(b)), as an example, to show the
fuzzy rules with respect to two measured inputs (� and ��)
and a 
xed set point (AV =medium), since the medium state
of the third input means that the process runs in region 2
(nonlinear region) as seen in Figure 6. 	e AV is used to
specify where pH is located (linear or nonlinear regions).

Table 1(a) shows the fuzzy rules which are used to deter-
mine the fuzzy outputs (KP andKI) with respect tomeasured
inputs; these rules would ensure the enhanced stability with
minimum residual error at the 
nal state.

Table 1(b) shows the fuzzy rules used to determine KD.
In Table 1(b), the rules have been designed in a way where
the best dynamic features (smooth rising time and least over-
and undershooting) could be assured with the presence of
derivative control action.

Table 1 presents only the rules with respect to measured
inputs (� and ��). It is also showing the inuence of measured
inputs on PID control gains of the proposed structure (�� +�). But the set point (AV) is also necessary to specify the
region of operation (linear or nonlinear, Figure 6).

3.3. HNN-Based pH Estimator. One of the main objectives
of this paper is the design and application of a numerical
pH estimator integrated into titration process as an industrial
replacement of real hardware electrodes to measure pH. 	e
proposed estimator is designed with LabView and MatLab.
First, the MLP and RBF are used separately to design pH
estimator. 	en, a hybrid NN structure is developed to
accomplish the best features found in bothMLP andRBF.	e
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Figure 7: Membership functions for (a) �, ��, ��, ��, and ��; (b) AV with normalised discourse.

Table 1: Fuzzy rules atmedium auxiliary variable (AV isM) as a case
study.

(a)

Error

Error rate

NL NM NS ZO PS PM PL

NL ZO NS NM NL NM NS ZO

NM PS ZO NS NM NS ZO PS

NS PM PS ZO NS ZO PS PM

ZO PL PM PS ZO PS PM PL

PS PM PS ZO NS ZO PS PM

PM PS ZO NS NM NS ZO PS

PL ZO NS NM NL NM NS ZO

(b)

Error

Error rate

NL NM NS ZO PS PM PL

NL ZO PS PM PL PM PS ZO

NM NS ZO PS PM PS ZO NS

NS NM NS ZO PS ZO NS NM

ZO NL NM NS ZO NS NM NL

PS NM NS ZO PS ZO NS NM

PM NS ZO PS PM PS ZO NS

PL ZO PS PM PL PM PS ZO

split-samplemethod is implemented to select the optimalNN
structure.

A conventional pHmeasurement loop ismade up of three
components: the pH sensor, which includes a measuring
electrode, a reference electrode, and a temperature sensor; a
preampli
er; and an analyzer or transmitter. 	e measuring
electrode, which is sensitive to the hydrogen ion, develops
a potential (voltage) directly related to the hydrogen ion
concentration of the solution [12, 13].

Many troubles of conventional pH measurement could
be faced in practice, for example, electrical interference,
relay hunting, in-line calibration, current transmission 4–
20mA, pH measurement in liquids with hydrouoric acid,
prevention of chemical wastage, and manual temperature
compensation [13].

To overcome the drawbacks which might be found
with conventional method for measuring pH, technical and
commercial ones, an HNN-based pH estimator has been
proposed.	e HNN estimator aims to achieve high accuracy
and hardness and treat the nonlinearity of titration curve.

	e main structural di�erence between MLP neural
network and RBF one is that, in MLP, the main function is a
tansig in 
rst layer but in RBF the main function is Gaussian
in latest layer; this makes RBF-NN better than MLP-NN in
nonlinear stages of titration process.

	e testing database is of di�erent values than the
precedent ones (training and validation database). 	e error
between the real and observed pH values is de
ned for each
parameter by the relative error (RE) (pH) as illustrated in
Figure 8.

Figure 8 shows the computed relative error (RE) at both
nets. It seems that the RE produced by MLP-NN is 1.82%
which is larger than that of RBFNN (0.133%). 	at is why the
MLPNN is recommended to be used with linear regions in
the titration process and the RBFNN with nonlinear region,
as will be seen later.

Referring to the multiple regions established on titration
curve (Figure 6), it can be noted that the RBF network would
deal tightly with region 2 (fast variation) whenQb varies from
0.8 lt/min to 1.2 lt/min, and the MLP-NN would ensure the
rabidity when dealing with the linear regions (1 and 3).

Figure 9 shows the performance of the proposed hybrid
net, where it can be seen that the allowance of the sum-
squared error (SSE) has been reached (10−14) with 11 epochs.
So both the accuracy and the speed enquiries have been
achieved.

With this estimator, the industrial costs could be reduced
when replacing the real hardware with numerical hybrid
structure connected to the base stream (ow transmitter),
and the size could be also reduced. So, the work could match
the commercial bene
ts, when realized.

4. Simulation with LabView/MatLab

4.1. Design Steps. 	e process has one manipulated variable
which is the owof base
�. Inside the process, a scalar circuit
has been designed that has two values (0 or 1) while Qb is
limited between 0 and 2.

	e design process is divided into three steps.
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First step is determining the valve position from 0 to 1;
then, the position of valve returned to the input of the process
and multiplied by the ow again to give a new ow value and
a new valve position. 	is step will be repeated periodically
during the life time of system.

Second step is determining the ions of hydrogen H+ by
proposing an inverse model of the process. 	e result from
this process is returned partially as a feedback to insure the
continuity of the system.


ird step is designing the mixer block diagram; as
mentioned previously, the inputs of mixer are (diameter,
length, ow, and initial height), while it has two outputs
which are ow out and level.

4.2. EUI. Using the compatibility found between LabView
and MatLab (M-
les) as programming languages, the HNN-
based pH estimator has been designed, Figure 10.

	e 
nal EUI has been created (Figure 11) to facilitate
users’ studying and analyzing of pH reactor and titration
process at di�erent control strategies.

5. Results

	e comparative results of PID controller and supervisory
fuzzy PID controller within the three regions of the titration
curve and towards the set point tracking are presented in
Figures 12, 13, and 14. Figure 12 shows the response of PID-
controlled pH reactor. Because of the decrement in the static
gain of the process, the dynamic response becomes slower for
operating point superior to 9.8 (70%).

In Figure 13, the overshoots and undershoots were
smaller than 5%. It appearsmore satisfactory than that shown
in Figure 12.

	e auxiliary input, pH∗, has been used as an additional
fuzzy input to generate new results that modi
es the overall
performance of the control system. Figure 14 shows the per-
formance of multiregional supervisory fuzzy PID controller
with set point tracking (pH∗: 4, 8, 12) at three operating
regions in titration process for weak acid and strong acid.

Figures 12, 13, and 14 clearly show a superior performance
of the multiregional fuzzy PID-based cascade controller over
the pH reactor with minimal resulting errors.

6. Evaluation of Results

	e performance of the proposed multiregional supervisory
fuzzy-based controller has been evaluated and compared
with conventional PID-based algorithm. 	e evaluation was
performed using the integral of absolute error (IAE) and
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integral of the absolute value of the error-weighted time
(ITAE), as given in Tables 2 and 3.

From Tables 2 and 3, it could be clearly noticed that the
multiregional supervisory fuzzy PID is better in performance
than PID at all reference points.

7. Conclusions and Future Work

7.1. Conclusions

(i) 	e nonlinear behavior exhibited by the pH pro-
cess was tested using multiregional supervisory
fuzzy PID-based cascade control. It is proved to be
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smoother and more robust than classical PID ones
that su�er from problems of parameter tuning.
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Figure 14: Performance of multiregional fuzzy PID controller in the three regions of titration curve for weak acid (a, c) and also for strong
acid (b, d).

Table 2: Performance metrics for IAE.

pH∗ Set point in percentage PID Multiregional fuzzy PID

7–8.4 50–60% 524.37 172.60

8.4–9.8 60–70% 333.54 124.32

9.8–11.2 70–80% 343.48 124.14

11.2–12.6 80–90% 342.08 163.82

12.6–7 90–50% 1881.85 857.95

7–5.6 50–40% 277.91 111.44

5.6–4.2 40–30% 293.88 118.08

4.2–2.8 30–20% 313.16 124.43

2.8–1.4 20–10% 355.36 137.14

1.4–7 10–50% 1755.76 749.34

(ii) Two kinds of neural inverse models (MLP and RBF)
are developed to simultaneously estimate the pH
value. Two input parameters (base ow and tem-
perature variation) are considered to train, test, and
validate the proposed HNN structure. 	e obtained
results ensure the higher accuracy and rapidity of
the hybrid structure. 	e optimal structure of the
proposed HNN estimator has been achieved for a set
of readings containing 200 samples.

Table 3: Performance metrics for ITAE.

pH∗ Set point in percentage PID
Multiregional
fuzzy PID

7–8.4 50–60% 19627.06 10922.24

8.4–9.8 60–70% 19001.66 9622.48

9.8–11.2 70–80% 20021.90 10162.72

11.2–12.6 80–90% 2459.45 18886.27

12.6–7 90–50% 95529.10 59454.59

7–5.6 50–40% 12770.29 12271.11

5.6–4.2 40–30% 14849.38 13640.24

4.2–2.8 30–20% 17674.65 12579.83

2.8–1.4 20–10% 25622.83 12073.15

1.4–7 10–50% 100773.71 43639.44

7.2. Suggestions for Future Work

(i) A rational controller could be added to manage the
percentage in variation of base stream with respect to
acid stream (e.g., weak or strong).	us, the dynamics
shown in Figure 14 can be further modi
ed.
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(ii) Other nonlinear control strategies could be included
into the module and chosen by the end-user to verify
the performance of the plant and how it responds to
di�erent algorithms.

(iii) 	e proposed numerical and hybrid NN-based esti-
mator could be realized using digital signal processor
(DSP).
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