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Abstract—We investigate the design of network codes for
multiple-user multiple-relay (MUMR) wireless networks with
slow fading (quasi-static) channels. In these networks, M users
have independent information to be transmitted to a common
base station (BS) with the help of N relays, where M ≥ 2 and
N ≥ 1 are arbitrary integers. We investigate such networks in
terms of diversity order to measure asymptotic performance. For
networks with orthogonal channels, we show that network codes
based on maximum distance separable (MDS) codes can achieve
the maximum diversity order of N+1. We further show that the
MDS coding construction of network codes is also necessary to
obtain full diversity for linear finite field network coding (FFNC).
Then, we compare the performance of the FFNC approach with
superposition coding (SC) at the relays. The results show that the
FFNC based on MDS codes has better performance than SC in
both the high rate and the high SNR regime. Further, we discuss
networks without direct source-to-BS channels for N ≥ M . We
show that the proposed FFNC can obtain the diversity order
N−M+1, which is equivalent to achieving the Singleton bound
for network error-correction codes. Finally, we study the network
with nonorthogonal channels and show our codes can still achieve
a diversity order of N+1, which cannot be achieved by a scheme
based on SC.

Index Terms—Network coding, relay, finite field, MDS codes,
diversity order.

I. INTRODUCTION

W
IRELESS relay channels and networks have recently

attracted substantial research efforts with the goal

of improving performance in terms of energy efficiency,

throughput or coverage [1]–[3]. In relay networks, one or

more intermediate nodes are employed to help the sources to

transmit the information. Various transmission protocols with

different complexity and performance have been proposed for

these networks, e.g., amplify-and-forward and decode-and-

forward [1]–[3].
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Fig. 1. Two-user one-relay network with binary network coding. User 1 and
user 2 have source messages I1 and I2, respectively.

By allowing information processing at the intermediate

nodes, network coding [4], [5] has been originally pro-

posed for networks where the links consist of noiseless bit

pipes. Here, network coding is able to achieve the min-cut

for multicast transmission [6]. Later, physical layer network

coding has been proposed for multiple-source multiple-hop

networks [7]–[16] to improve the transmission performance.

The results show that wireless networks, in particular wireless

relay networks, exhibit a better performance in terms of

energy-efficiency or end-to-end error probability by employing

physical-layer network coding. One example of using network

coding for relay networks is given by the multiple access

relay channel (MARC) [7], [8], shown in Fig. 1. The re-

lay combines the received information from two users, for

example by component-wise addition in GF(2), if decoding

is successful. At the sink, joint decoding can be used to

decode codewords received directly from the user and from the

relay by, e.g., maximum-likelihood decoding [11] or iterative

decoding among the codewords of different channels [7].

In [15], an LDPC-based coding design was investigated

for two-user one-relay networks which achieves full diver-

sity. In [14], a joint design of network coding and media

access control (MAC) was considered for wireless ad hoc

networks and characterized in terms of delay, interference

and throughput. Efficient conflict-free scheduling policies are

proposed to maximize the throughput or to minimize the node

costs (e.g., energy consumption) with network coding. In this
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paper, however, we will not consider the scheduling problem.

Instead, we will primarily study the design of network codes

characterized in terms of physical layer parameters such as

diversity, fading, or outage probabilities.

Although the application of network coding to relay net-

works seems to be natural and beneficial, most of the previous

schemes (e.g., [7], [9]–[11]) only address two-user one-relay

networks. Design principles for using network coding in

multiple-user multiple-relay (MUMR) networks are mostly

unexplored. In [13], physical-layer network coding was stud-

ied for multiple-user single-relay networks, where the exact

bit error rate (BER) was derived. However, the scheme in

[13] employed superposition coding which, as we will show

in Section III-C is not optimal for networks with multiple

relays. More importantly, a significant amount of previous

work [7], [9]–[11] considered binary network coding schemes

which represented a special case of general finite field network

coding. However, we will show in the following that binary

network coding is generally not optimal for multiple-relay

wireless networks in terms of transmission efficiency e.g.,

outage probability, frame error rate, and energy efficiency. In

[17], a coding scheme was proposed for multiple-user and one-

central-processor (as the encoder) wired networks. However,

the scenario of multiple relay nodes, particularly for wireless

channels, has not been studied in [17]. In [18], optimal coding

schemes have been investigated for symmetrical multilevel

diversity coding for independent or correlated sources without

considering the impact of the channel errors. In [16], analog

network coding was investigated for Gaussian channels where

it is shown that such coding can approach the cut-set bound

within a constant gap, if the received energy level grows

without bound. However, the impact of channel fading was not

considered in [16]. In [12] non-binary linear network coding

was considered by exploiting temporal diversity of fast fading

channels for cooperative communications.

In the present paper, we investigate the design of ef-

ficient network codes for wireless networks with arbitrary

M, (M ≥ 2) users and N, (N ≥ 1)1 relays. The motivation

is that in practical wireless networks, e.g., LTE and beyond

[19] cellular or ad hoc wireless networks, multiple separate

relays are beneficial to increase the system performance. These

relays may be able to receive the signal of any user due to

the broadcasting nature of the wireless medium. It is also

reasonable to model wireless access networks as multiple-

user multiple-relay networks. A study of efficient network

codes for such networks is interesting. With increasing data

rates, slow fading (quasi-static) channels are one of the most

important channel models [19], [20]. A useful question is how

to increase performance for relay networks with such channels.

Furthermore, it is valuable to compare network codes with a

multiple access scheme based on nonorthogonal channels and

signal domain superposition coding. It is also valuable to find

the optimal relaying and coding strategies for different access

protocols with different channel costs.

The main contributions of the paper are as follows. We

propose a non-binary network code construction based on

1We mainly investigate networks with N ≥ 2, but our design approach
and the presented analysis is also applicable for N = 1 as a special case.
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Fig. 2. Wireless network with M users and N relays.

maximum distance separable (MDS) codes to achieve full di-

versity for arbitrary M,N , which generally cannot be achieved

for N > 1 by binary network codes. Furthermore, we show

that the proposed MDS construction is actually a necessary

condition to achieve full-diversity for finite field network

codes (FFNC). As an alternative to FFNC we also consider

superposition coding (SC) and show that for high rates FFNC

is able to outperform SC. Then, we consider networks without

direct source-BS channels and show that the proposed FFNC

approach obtains a diversity order of N−M+1 which achieves

the Singleton bound for network error-correction codes [21],

[22]. Finally, we consider networks with nonorthogonal chan-

nels and successive interference cancellation (SIC) decoding.

We show that for such networks, the proposed network codes

can achieve full-diversity which cannot be achieved by the

SC-based scheme. The organization of the paper is as follows.

In Section II, we give the system description of the network

model and the corresponding network code. We provide a per-

formance analysis of our system in Section III. Section III-C

compares the performance of FFNC and SC. In Section IV we

extend our results to the case where a direct channel between

the users and the BS is absent. Finally, in Section V we discuss

networks with nonorthogonal channels.

II. SYSTEM DESCRIPTION

A. Network Model

As shown in Fig. 2, we consider wireless networks with an

arbitrary number of users and relays, i.e., M ≥ 2, N ≥ 1. We

assume that for each user there is a direct channel to the BS

and there are in addition N paths via shared relays. We assume

that all users transmit information messages with the same

rates R on each channel. If the source nodes communicate to

the BS, all relay nodes will also receive the corresponding

codewords due to the broadcast property of the wireless

medium. Then, the relay nodes try to decode, and if the

decoding is successful, they can forward the information to

the BS with suitable processing, e.g., by applying network

coding. In Fig. 2, the output network codewords are denoted as

Ci for relay i. A detailed calculation of Ci will be discussed

later. Further, similar to [2], [23], we assume narrow-band

transmission suffering the effects of path-loss, shadowing,
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frequency nonselective fading, and additive white Gaussian

noise (AWGN). We also assume independent quasi-static

fading in all channels and measure the performance by the

outage probability to analyze the effects of spatial diversity.

Fading coefficients are independent, identically distributed

(i.i.d.) random variables for different channels but constant for

all symbols of one or more codewords on the same channel

[2], [20]. Thus, there is no temporary diversity to be exploited.

For slow fading channels a received codeword (baseband) is

given as

Yi,j = ai,jXi,j + ni,j , (1)

where Xi,j and Yi,j are the transmitted and received channel

codewords, respectively. Here ni,j is an additive white Gaus-

sian noise sample with double-sided power spectral density

N0/2, and ai,j denotes the channel gain due to frequency

nonselective multipath fading. The indices i denote the trans-

mitting nodes, namely the users and the relays, whereas the

j’s denote the receiving nodes, namely the BS and relays.

The ai,js have zero-mean and are i.i.d. random variables.

We assume that |ai,j | is Rayleigh distributed and has unit

variance. For the sake of a tractable analysis we assume that

all channels have the same average SNR. An extension to the

unequal case is straightforward and generally leads to different

outage probabilities for each link. We further assume that

for all links channel state information (CSI) is available at

the corresponding receivers (BS or relays), whereas CSI is

not exploited at the transmitters. We first consider networks

with orthogonal channels, assuming each node transmits in a

different time slot (the analysis is similar if they are instead

using different frequency bands). There are in total M + N
time slots used by all users and relays. For the nonorthogonal

channel cases discussed in Section V, two time slots and half-

duplex relays are employed.

We also define SNR = Es

N0
, where Es denotes the transmis-

sion energy per symbol. To measure the performance in the

medium-to-high signal-to-noise ratio (SNR) regime for quasi-

static fading channels the diversity order is calculated by [20]

D � lim
SNR→∞

− logPe

log SNR
, (2)

where Pe is the outage probability. We can see from Fig. 2

that the corresponding codewords for each user are transmitted

to the BS through N + 1 independent fading paths: one

direct path and N paths via the shared relay nodes. Thus,

the maximum diversity for each user corresponds to N + 1.

To concentrate our analysis on diversity order, we assume

that a perfect channel code is employed on the physical

layer and that network coding is implemented on top of

channel coding. This means that a relay node first forms a

network codeword, and then regards the network codeword as

a sequence of information symbols and produces a channel

codeword which is transmitted to the BS. An outage event

occurs on the channel when the transmission rate is higher

than the instantaneous mutual information between channel

input and output. Here the instantaneous mutual information

is evaluated as I = 1
2(M+N) log(1 + |ai,j |2SNR), where the

factor 1
(M+N) is due to the fact that the total transmission time

is shared equally between the M +N transmitting nodes, and

the factor 1/2 is because we only consider real-valued signals.

Thus, an outage event occurs when the fading coefficients

are smaller than a certain threshold, i.e., |ai,j |2 < Z, where

Z = 22(M+N)R−1
SNR

for Rayleigh fading channels. Then we can

evaluate the outage probability of an individual channel as [2],

[20]

Pe = Pr{|ai,j|2 < Z} = 1− e−Z . (3)

As SNR → ∞, Pe ≈ 22(M+N)R−1
SNR

= CISNR−1, where CI =
22(M+N)R − 1 is constant with SNR.

B. Network Coding Scheme

To facilitate analysis, we use a transfer matrix [5] to de-

scribe the network codes (linear finite field codes) for our net-

works. The transfer matrix K is given as follows. From the left

to the right, we provide the global encoding kernels (GEKs)

for direct transmission, corresponding to users 1, 2, · · · ,M ,

and then the ones for the codewords associated with the relays

1, 2, · · · , N . Here, a GEK denotes the linear relation between

an outgoing network codeword and source information, i.e.,

at relay j, Cj = I Gj , where Cj denotes the outgoing

codeword at relay j, and Gj = [γ1,j , γ2,j , · · · , γM,j ]
T is

the GEK of relay j, and I = [I1, I2, · · · , IM ] represent the

source messages originating at user 1, user 2, · · · , user M ,

respectively. Thus,

K = (U,G1, G2, · · · , GM )

=

⎛

⎜

⎜

⎝

1 0 ·· 0 γ1,1 γ1,2 .. γ1,N
0 1 ·· 0 γ2,1 γ2,2 .. γ2,N

·· · · ·
0 0 ·· 1 γM,1 γM,2 .. γM,N

⎞

⎟

⎟

⎠

, (4)

where U is the M × M identity matrix. We note that γi,j
is normally in a finite field (Galois field) GF(|A|), where |A|
is the alphabet size. Then, if |A| = 2m, it is convenient to

convert m bits into a coding symbol.

To achieve a maximum diversity order of N + 1 for all

users in the network, we now propose a network coding

scheme based on maximum distance separable (MDS) codes

as follows.

Definition 1 (Maximum-Diversity Network Codes):

MDNCs are defined having the property that K is the

generator matrix of a systematic MDS coding matrix in

row echelon form. Clearly, each nonsystematic column of K
represents the network coding coefficients at a specific relay

node, which forms a parity-check symbol of an MDNC.

Further, if any source-relay (SR) channel is in outage the

corresponding relay will not send any codeword.

Here, the corresponding transfer matrix of an MDS code has

the property that a submatrix formed by any M out of M+N
columns of K is nonsingular [24]. Clearly, if one transmitting

block uses one time slot, totally M +N time slots are needed

for our scheme. Then, in general, every user has a delay of

M +N time slots where we assume negligible coding delay.

If no network coding is used, each user equally has N
M

time

slots. The first transmitter U1 has a delay of 1 + N
M

, and the

second transmitter U2 has a delay of 2(1 + N
M
) and so on.

Thus, in general, network coding increases the delay compared

to the scheme without coding. In what follows we will show
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that MDNCs achieve full-diversity for arbitrary M ≥ 2 and

N ≥ 1.

III. PERFORMANCE ANALYSIS

A. Diversity Order

We now analyze the performance of the MDNCs, and

present the main result in the following proposition.

Proposition 1: Consider an M -user N -relay network with

linear finite field network codes. The full diversity order

N + 1 is achieved if and only if K is an MDS coding matrix

(MDNCs).

Proof: The proof is given in Appendix A.

MDNCs can be regarded as a networked version of MDS

codes [21], [22]. In practice, Reed-Solomon (RS) codes are the

most widely used variant of MDS codes, where we can easily

find constructions which are suitable for any given network

topology, i.e., any choice of M and N . The construction of

MDNCs is thus identical to the one for RS codes with block

length M + N and input symbol length M 2. Note that the

alphabet size impacts the complexity and delay of the codes.

In particular, MDNCs have a block length of M + N , i.e.,

M systematic blocks and N parity check blocks which lead

to a required alphabet size of |A| ≥ M + N − 1 (Chapter

11, [25]). For the example in Fig. 1, the binary network code

is sufficient (|A| >= 2). However, for a two-user two-relay

network a minimum alphabet size of three is needed.

One specific example for network codes which cannot

achieve full-diversity is given as follows. Consider the binary

network coding scheme (namely, γi,j = 1, i = 1, · · · ,M ; j =
1, · · · , N in K) [7], [9]–[11], which can achieve diversity

order D = 2 if N = 1. Yet, for N > 1, binary network

codes cannot achieve the diversity order N + 1. The analysis

is as follows.

We assume that each of N ≥ 2 relays XORs all source

messages if it can decode all of them (otherwise, the relay

stays silent). With probability PSRP = (1−Pe)
MN , all relays

can decode all source messages and transmit the network code-

word Cb = I1⊕I2⊕· · ·⊕IM . Clearly, if any one of the direct

source-BS channels are in outage, then the BS can decode all

source messages with the other M−1 source messages and Cb.

Yet, if two source-BS channels are in outage with probability

PSB,2 =
(

M
2

)

P 2
e (1− Pe)

M−2, then the BS cannot decode all

messages and an outage event occurs. The outage probability

is lower bounded by Po,bnc ≥ PSRPPSB,2 =
(

M
2

)

P 2
e in high

SNR, where the lower bound is obtained for the assumption

of perfect source-relay channels. Then, the diversity order is

upper-bounded by D = 2 which is smaller than N +1. Thus,

the binary network coding scheme cannot achieve the full-

diversity N + 1 for N > 1.

Remark 1: For N = 1 the binary network codes are MDS

codes, as, for example, constructed based on single parity

check (SPC) codes. In the single relay case, the network

codewords are formed as the binary XOR of the incoming

packets from the M sources, namely, C = I1 ⊕ I2 ⊕ · · · IM .

Clearly, if only one channel is in outage in the whole network,

the BS can still recover all M sources. Thus, binary network

2There are many references on the topic, see, e.g., [24] and [25, Chapter
5] for the construction of RS codes with systematic generator matrices.
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Fig. 3. Outage probability and frame error rate simulations for the two-user
two-relay network with both binary and nonbinary network coding. BPSK is
used on all channels in the network. The rate of each user is chosen as 1/2
bits/second/Hz.

codes are sufficient to achieve a maximum diversity order

of two. MDNCs include this scenario as a special case. For

N > 1, the binary codes cannot be MDS if the binary symbols

γi,j are treated as scalars in the code. However, if binary

vectors are used as coding symbols, e.g., as in array codes

[26], there exist binary MDS codes with N > 1. The array

codes are actually the image of RS codes where the finite field

symbols are interpreted as binary vectors. In such scenario γi,j
is a binary vector with a certain length. There are requirements

on N and the structure γi,j , and the codes are fundamentally

binary images of nonbinary MDS codes. Following the same

analysis as in the proof of Proposition 1, a diversity order of

N + 1 can be achieved.

Remark 2: From Proposition 1, it is clear that the diversity

order stays the same with an increasing number of users M ,

but the delay of M+N time slots increases with M . Compared

to a scheme in which relays only network encode subsets of all

sources, our scheme, in which each relay possibly can encode

all sources, exhibits a higher diversity order. Clearly, if a relay

only encodes a subset of all source messages it cannot help the

remaining sources. Thus, the diversity order for these sources

decreases. For example, if in the two-user two-relay network

each relay transmits only one source message, we observe

that the diversity order is two since the resulting network

can be seen as two one-source one-relay networks operated

in parallel.

Remark 3: Our analysis also includes the special scenario

when M = 1 where K is a row vector. Then any γ1,j �=
0, j = 1, · · · , N , can meet the requirement of MDS codes.

Clearly, an outage even occurs only when all N +1 paths are

in outage, which leads to a full diversity order of N + 1.

Above we have considered only finite field network codes.

In following sections, we will discuss the achieved diversity

order of a network coding scheme based on superposition

coding.
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B. Numerical Results

As an illustration we present a specific example with two

users, two relays, and with orthogonal channels among users

and relays. In Fig. 3 we compare binary network coding with

MDNCs in terms of simulation results for frame error rates

(FER) and outage probability versus the SNR, respectively.

For MDNCs, we use [γ1,1, γ2,1]
T = [1, 1]T and [γ2,1, γ2,2]

T =
[1, 2]T as the GEKs of relay 1 and relay 2, respectively.

Here we assume the coding coefficients are in the finite field

GF(4), which is constructed based on the minimal polynomial

p(X) = X2 +X + 1. Hence, the four elements are the poly-

nomials 0, 1, X and X+1. For simplicity, we also use integer

notation for the field elements, i.e., 0, 1, 2 and 3, respectively.

It is easy to see that the transfer matrix has an MDS-type

construction. As transmission format, we use binary phase

shift keying (BPSK) modulation. Both outage probabilities and

FERs are obtained through simulations. For the FER results we

use regular (3, 6) Gallager low-density parity-check (LDPC)

codes and a block length of 400 code bits. From Fig. 3

we observe gaps between the outage probabilities and the

FER results. One of the reasons is that the employed channel

codes have not been optimized for the considered networks.

However, as we can see, the diversity orders are predicted

correctly by the analytical results of outage probabilities. From

the results, we can clearly see the advantage of MDNCs.

Above, we have assumed that a relay encodes and forwards

source messages only if all messages are successfully decoded

at the relay. If we relax this constraint and let the relay encode

and transmit whatever it decodes, the BS may receive more

mutual information, and the error probability will decrease.

We call this protocol opportunistic relaying. However, the

diversity order will not change with opportunistic relaying.

A dominant outage event leading to a diversity order of

N + 1 happens when all relays are able to decode all source

messages (perfect source-relay channels). The analysis is as

follows. The probability of perfect source-relay channels is

PSRP = (1−Pe)
MN . Clearly, we have limSNR→∞ PSRP = 1.

Among N + M blocks received by the BS, the probability

that all N blocks from the relay are in outage is given as

PN
e . Then, no network codewords are received by the BS.

Obviously, if in addition one of M direct source-BS channels

is in outage, which occurs with probability Pe, the system is

in outage. In this case the resulting diversity order is N+1. As

we can see, the outage probability and therefore the diversity

order for perfect source-relay channels is the same with or

without opportunistic relaying. Thus, opportunistic relaying

cannot increase the diversity order, but it can improve the

outage probability and therefore the coding gain.

Similarly, for binary network codes a diversity order N +1
cannot be achieved. The reason is that in the above analysis the

error event for which binary network codes loose the diversity

order of N +1 is given when all relays are able to decode all

messages with probability PSRP . Then, opportunistic relaying

does not affect the analysis and the diversity gain, although

an increase in coding gain may be observed. One example

is shown in Fig. 4 for the two-user two-relay network. We

can see that compared to the schemes without opportunistic

relaying, this strategy can improve the outage probabilities
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Fig. 4. Outage probability comparison for two-user two-relay networks with
and without opportunistic relaying. The rate of each user is chosen as 1/3
bits/second/Hz.

but provides the same diversity order for both binary and

nonbinary network codes.

In our analysis, we have assumed that the relay nodes do

not overhear the transmissions of all other relays. However, if

we relax this assumption the diversity order does not change.

More formally, consider an error event such that all SR

channels and all relay-relay channels are not in outage. The

probability for this to happen is PSR = (1−Pe)
MN+N(N−1).

Then, if both all relays to the BS channels and one of the

source-BS channels is in outage, the overall system is in

outage as one user cannot be decoded. The probability for

this to happen is PRB = CPN+1
e , where C is a constant

depending on SNR. Thus, the overall probability (denoted by

Po,ov) is evaluated by Po,ov = PSRPRB which leads to a

diversity order of N + 1. Note that we have assumed slow

fading channels and that no temporal diversity can be exploited

for a channel.

C. Comparison to Superposition Coding

In addition to FFNC, superposition coding (SC) at the relays

is another way to share a relay among the users. Since SC

is employed at the relays it can be seen as real-domain or

analog network coding [16], [27], [28]. Thus, it is valuable to

investigate the performance of SC for multi-user multi-relay

networks.

We first provide an SC strategy at the relays, where we

consider a selective decode-and-forward scheme [2]. That

is, if the relay can decode a received channel codeword,

it decodes the information message. Otherwise, the relay

drops the codeword. An SC scheme based on an amplify-

and-forward approach will be discussed in Section V. After

receiving signals from M sources via M independent channels

the i-th relay, i = 1, 2, . . . , N , tries to decode. If it can

decode Zri ≤ M messages, then the relay re-encodes these

Zri messages separately by using the same channel codewords

as the sources. Also, the relay equally divides the transmission

energy among these Zri codewords and transmits the sum of

them. At the BS a minimum mean-squared error receiver with
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successive interference cancellation (MMSE-SIC) is employed

to decode the received signals. As shown in [20, Chapter

8], such a receiver is optimal in the sense of providing a

sufficient statistic based on the channel outputs. Specifically,

Xj denotes the channel codeword of user j, and X denotes a

set of the codewords from all sources, respectively. We assume

that Zri channel codewords are re-encoded by the i-th relay

as X1,ri , X2,ri, · · · , XZri
,ri ∈ X . Hence, the transmitted

codeword of relay i is given as Xri,0 = 1√
Zri

(X1,ri+X2,ri+

· · · + XZri
,ri), where the factor 1√

Zri

is used to normalize

transmission energy3. We assume that K relays (denoted as

r1, r2, · · · , rK) are able to decode the codeword Xj . The BS

now receives K+1 codewords, including Xj which is obtained

directly from the source. Thus, for user j, the received vector

is given as

Y j = ajXj + nj , (5)

where aj is the vector of channel gains, defined as

aj =

[

aj,0,
1

√

Zr1

ar1,0, · · · ,
1

√

ZrK

arK ,0

]T

, (6)

and where nj denotes noise including the interference from

other superimposed codewords. Here arℓ,0, ℓ = 1, . . . ,K , is

the channel gain from relay rℓ to the BS (see (1)), and Zrℓ

represents the number of decoded codewords at the relay rℓ.
We note that the noise samples in nj are correlated since at

the BS the codewords of other users of the same relay are

considered as interference. If, without loss of generality, we

assume that Xj = X1,rm for m = 1, . . . ,K , then

nj =

[

nj,0, nr1,0 +
ar1,0
√

Zr1

(X2,r1 + · · ·+XZr1 ,r1
), . . . ,

nrK ,0 +
arK ,0
√

ZrK

(X2,rK + · · ·+XZrK
,rK )

]

, (7)

where nri,0, (i = 1, · · · ,K) is the noise variable for the

channel between relay ri and the BS, and Xm,ri ,m > 1
denotes the transmitted signals at relay ri. Note that the ele-

ments ari,0 of aj in (5) have zero mean and unit variance and

are independent random variables for different i. The MMSE

receiver first whitens the colored noise before subsequent

matched filtering [20]. Then, the mutual information (MI) of

user j at the BS can be obtained as

Ij =
1

2(M +N)
log

2

(

1+|aj,0|
2
SNR+

1

Zr1
|ar1,0|

2Es

N0 +
Zr1−1

Zr1
|ar1,0|

2Es

+ · · ·+

1

ZrK
|arK ,0|

2Es

N0 +
ZrK

−1

ZrK
|arK ,0|2Es

)

. (8)

That is, Ij represents the MI between the (Gaussian) codeword

Xj of user j and the received signal at the BS after filtering,

treating the remaining interference resulting from codewords

Xk, k �= j, as being part of the noise. The first decoding

round starts for the user with the strongest MI, Ij , then the

3For clarity, we here use 0 in Xri,0 to denote that the receiving node is
the BS.

corresponding decoded codeword of that user is subtracted.

Then, the second decoding round considers the user with the

strongest MI among all remaining users, and so on, until the

decoding fails in a certain stage, if the effective MI received

by the BS for a user is smaller than its rate, or if all users are

decoded successfully.
Clearly, in (8) the impact of the signals from the relays

on the performance of the SC scheme is determined by the

following SNR term, which denotes the received signal energy

for the k-th path to the BS:

SNRSC,k =

1

Zrk

|ark,0|
2Es

N0 +
Zrk

−1

Zrk

|ark,0|
2Es

=

1

Zrk

|ark,0|
2

1

SNR
+

Zrk
−1

Zrk

|ark,0|
2

, (9)

where k = 1, . . . ,K . If Zrk > 1, we obtain

limSNR→∞ SNRSC,k = 1
Zrk

−1 (for k = 1, . . . ,K), which can-

not increase with SNR. From (8) and (9), it is extremely diffi-

cult to derive the exact diversity order of the SC-based scheme

since the fading coefficients appear in both the numerator

and the denominator of the SNR term, and the SIC decoding

process makes analysis even more involved. However, when

the SNR goes to infinity and SNRSC,k approaches a constant,

we obtain limSNR→∞ Ij = 1
2(M+N) log2(|aj,0|2SNR), which

leads to a diversity order close to D = 1. Thus, in the high

SNR regime SC nearly loses the multipath diversity.

Note that the SC decoder uses opportunistic decoding [20],

i.e., first decodes the strongest user, then second strongest and

so on. From (9) we can see that multipath diversity from the

relays can only be obtained when the relays are able to help

only one user, i.e., Zrk = 1. This means that the source-

relay channels of all other M − 1 users are in outage, but the

probability of this event is negligible. For general scenarios,

the users with strong signals can have higher opportunistic

decoding gains, but they mostly have no multipath diversity for

above reason (Zrk > 1). Since the users with weaker signals

do not experience any opportunistic decoding gain, the benefit

from opportunistic decoding is insignificant for this class of

users.
As shown above, the outage probability for the FFNC-based

scheme with MDNCs is given as (14) with a diversity order

of N + 1. Hence, in the high SNR regime, employing FFNC

at the relays still provides multipath diversity and thus yields

better performance than the SC-based relaying strategy.
In Fig. 5, we compare the outage probability for both the

FFNC- and SC-based schemes for a three-user two-relay net-

work. The outage probabilities for both schemes are evaluated

based on simulations, where we assume Gaussian channels

and model the fading coefficients as Rayleigh distributed. An

outage event occurs if the rate R is higher than the mutual

information in any stage of the MMSE-SIC decoder for any

user. From Fig. 5 we can see that FFNC has better performance

in the region of high SNR, while SC outperforms FFNC at low

SNRs. Also, as already shown above, the simulations verify

that SC cannot achieve full diversity, which in this example

corresponds to a diversity order of D = 3. More generally,

we have the following proposition.

Proposition 2: For sufficiently high SNR, MUMR schemes

based on MDNCs have a larger outage capacity than SC-based

schemes.
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Fig. 5. Comparison of outage probabilities for FFNC- and SC-based schemes
for three-user two-relay networks. The rate of each user is chosen as 2/3
bits/second/Hz.

0 0.5 1 1.5 2 2.5 3
10

15

20

25

30

35

Rate: bits/second/Hz

S
N

R
 f
o
r 

o
u
ta

g
e
 p

ro
b
. 
1
0−

5

 

 

FFNC

SC

Fig. 6. Comparison of SNR versus achievable rates for FFNC and SC-based
schemes for a fixed outage probability of 10

−5 and the two-user two-relay
network.

Proof: The mutual information between the codeword Xj

of user j and the received signal at the base station for SC-

based schemes is given as in (8). Clearly, limSNR→∞ Ij =
1

2(M+N) log2(|aj,0|2SNR). Thus, the outage probability for

SC schemes can be obtained as Pe,SC = 22(M+N)R

SNR
in high

SNR. On the other hand, the outage probability for MDNC-

based schemes is Pe,MDNC = Ce,MDNCSNR−(N+1) for high

SNR, where Ce,MDNC is constant with SNR.

Let ǫ denote a given outage probability. By the defi-

nition in [20, Chapter 5], the ǫ-outage capacity (in high

SNR) for SC-based schemes is evaluated as CSC,ǫ =
1

2(M+N) log ((1 − ǫ)SNR), and the one for FFNC based

schemes is CFFNC,ǫ = 1
2(M+N) log((1 − ǫ)

1
(N+1) SNR).

Clearly, since 0 < 1 − ǫ < 1, for given the SNR and ǫ,
CFFNC,ǫ > CSC,ǫ.

In Fig. 6, we compare the achievable rates for the two-user

two-relay network for both FFNC- and SC-based strategies

and a fixed outage probability of 10−5. We can see that in the

high rate/throughput regime FFNC is significantly better than

SC. However, for lower rates SC slightly outperforms FFNC.

Further, compared to the SC-based scheme, the FFNC scheme

avoids the use of complexity-increasing whitening matched

filters. These filters are required due to the colored noise

resulting from the superposition (see [20, Chapter 8]).

IV. NETWORKS WITHOUT DIRECT SOURCE-BS

CHANNELS

Up to now we have assumed that all channels have the

same average SNR. However, in certain situations the channels

between the users and the BS correspond to much longer

distances leading to considerably lower received SNRs. Hence,

we can practically disregard any direct channels between the

users and the BS. In this section, we consider the design of

network codes, assuming the absence of a direct source-BS

channel. Specifically, we can construct the network codes in

such a way that each output symbol from a relay represents

an output symbol of a nonsystematic MDS code. We consider

two different scenarios. First, we assume that each relay is

only allowed to transmit one coded block of data, for example

to avoid congestion at the BS, which may receive data also

from other networks besides the one under consideration. In

the second scenario we relax the restriction on the number of

coded blocks to be transmitted for each relay.

A. Each Relay Only Transmits One Coded Block

For such scenario, we assume N ≥ M . Note that this is

only for the case of networks without direct channels, since

no information can be decoded if N < M and each relay

transmits only one coded block. For a single-user network

without direct source-BS channels it is clear that the full

diversity order is N . However, it is not directly clear what

the full diversity order is in the multi-user scenario. Although

the codewords for each user are transmitted through N paths

we cannot use N as the full diversity order since these N
channels are shared among different users. This is addressed

in the following proposition.

Proposition 3: The maximum diversity order for M -user

N -relay wireless networks employing MDNCs based on MDS

codes is given as N −M +1 if direct source-BS channels are

absent.

Proof: We first consider the scenario for perfect SR

channels. In high SNR the probability of no overall out-

age event is given as PSR,NoO = (1 − Pe)
MN . Clearly,

limSNR→∞ PSR,NoO = 1. Then, each of N network code-

words from the relays is encoded based on M source mes-

sages. Clearly, to recover M source messages the BS should

successfully decode at least M codewords from the relays.

Since our network codes are MDS, any M out of N network

codewords can be used to recover the M source messages.

Outage occurs only when N −M +1 or more relay-BS chan-

nels are in outage. The probability for this event is Po,NoD =
PN−M+1
e (1−Pe)

M−1 +PN−M+2
e (1−Pe)

M−2 + · · ·+PN
e .

By (2), the diversity order is N −M + 1.

If there are SR channels in outage, we can still achieve a

diversity order of Dmax = N − M + 1, where the proof is

similar to the one of Proposition 1. For instance, consider that

Z out of NM SR channels are in outage and that these Z
channels connect to K ≤ Z relays. These K relays do not

send any codeword and keep silent. By a similar analysis as
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Fig. 7. Outage probabilities for SC and MDNCs for a two-user three-
relay network without direct source-BS channels. The source rates are 0.8
bits/second/Hz for both users.

in Proposition 1 we can show that an outage event occurs only

when M or more out of these N −K symbols are in outage.

Thus, the outage probability is

Po,NoD = PZ
e PN−K−M+1

e (1− Pe)
MN−Z+M−1 +

+ PZ
e PN−K−M+2

e (1− Pe)
MN−Z+M−2 +

· · · +PZ
e PN−K

e (1− Pe)
MN−Z . (10)

Clearly, we have limSNR→∞
logPo,NoD

logPe
= N − M + 1. In

summary, the diversity order is N −M + 1.

Remark 4: In Section III we showed that opportunistic

relaying cannot increase the diversity order for the networks

with direct source-BS channels. The conclusion also holds for

networks without direct source-BS channels. From the proof of

Proposition 3 we can see that for the event of perfect source-

relay channels N relays transmit network codewords in N
relay-BS channels whether or not they perform opportunistic

relaying. Then, an outage event occurs if N − M + 1 or

more relay-BS channels are in outage since fewer than M
codewords are received in this case. Thus, networks with

opportunistic relaying still have a diversity order of N−M+1
if direct source-BS channels are absent, but they again can

increase the coding gain.

As a specific example, we employ MDNCs based on

nonsystematic RS codes. In Fig. 7 the outage probabilities

of MDNCs for a two-user three-relay network (without direct

source-BS channels) are shown and compared to an SC-based

strategy. We can observe that a diversity order of D = 2 is

achieved for MDNCs. From the figure, we also find that for the

two-user three-relay network MDNCs have better performance

than an SC-based strategy in the high SNR regime which

seems to suffer from an error floor in this regime. This can

also be seen from the fact that (8) approaches a constant

with increasing SNR. For a more general case, we have the

following proposition.

Proposition 4: Consider MUMR relaying networks without

direct source-BS channels. For sufficiently high SNR, the

schemes based on FFNCs have a larger outage capacity than

the schemes based on SC.

Proof: The proof is similar to that of Proposition 2. For

the schemes based on SC, clearly, the mutual information

between the (Gaussian) codeword Xj of user j and the

received signal at the BS (K signals from K relays) is

ISC,NoD =
1

2(M +N)
log

2

(

1 +

1

Zr1
|ar1,0|

2Es

N0 +
Zr1−1

Zr1
|ar1,0|

2Es

+

. . . +

1

ZrK
|arK ,0|

2Es

N0 +
ZrK

−1

ZrK

|arK ,0|2Es

)

= log
2
(CS)

for sufficiently high SNR. Here CS is constant with SNR. In

this case, the outage capacity is close to zero for SC-based

schemes. On the other hand, a scheme based on FFNC can

always have a diversity order of N − M + 1 as stated in

Proposition 3. In high SNR, following a similar approach as

in the proof of Proposition 2, we can show that the outage

capacity is CFFNC,ǫ = 1
2(M+N) log((1 − ǫ)−(N−M+1)SNR)

which is larger than for SC-based schemes.

Since we can regard an outage in the channel as a single

erasure, MDNCs can also be seen as network error correction

codes [21], [22]. In particular, it has been shown in [21], [22]

that the network Singleton bound for t-error correction codes

in a single-source acyclic network is

log |A| ≤ (N − 2t) log q, (11)

where |A| is the source alphabet size with the basis q, and N
is the min-cut. Similar results are also presented in [29] for

coherent and noncoherent multi-source networks. For channel

erasures one can easily obtain the Singleton bound of an E-

erasure correction network code as E ≤ (N − logq |A|). For

MDNCs we can state the following proposition.

Proposition 5: MDNCs achieve equality in the Singleton

bound for M -user N -relay networks without direct source-

BS channels and E erasures, i.e, E = N −M .

Proof: Since we assume all sources have the same rates,

the M source nodes with the alphabet size |A| can be easily

reduced to a network with one super source and alphabet size

|A|M . This super source is connected to M sources via M
error-free channels, and each channel transmits an independent

source message with the alphabet size |A|. Since all sources

have the same rates, we can easily assume |A| = q to simplify

the analysis. For the single super source network, the min-cut

between the super source and the BS is N , i.e., equivalent to

the number of channels between the relays and the BS. Hence,

the network Singleton bound for M -user N -relay networks is

given as E ≤ N−M , i.e., all erasures or channel outages with

E < N −M + 1 can be corrected. By comparing this result

with Proposition 3, we can see that the proposed MDNCs

achieve equality in the network Singleton bound.

Remark 5: Although Proposition 5 is obtained for networks

without direct source-BS channels, a similar result also holds

for networks with direct source-BS channels. Clearly, for such

networks the BS receives M + N network coded blocks.

Then, the Singleton bound is E ≤ N . As MDNCs achieve

the diversity order N + 1, they also achieve equality in the

Singleton bound by a similar argument as in Proposition 5.

Remark 6: By comparing Propositions 1 and 3 we observe

that the diversity orders are different in terms of N and M
for the networks with or without direct source-BS channels.

We can unify both scenarios by assuming in total L different
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paths from all M users to the BS. Clearly, we have L =
N for networks without direct source-BS channels and L =
N +M for the ones with direct source-BS channels. Then, in

average, each user has L/M different paths to the BS. Thus,

the diversity order is

D = L−M + 1, (12)

irrespective whether there are direct source-BS channels or

not. In this sense, MDNCs achieve the Singleton bound for

both scenarios.

B. Each Relay Transmits Multiple Blocks

Up to now, we have assumed that each relay only transmits

one block. If we relax this assumption and let a relay node

transmit multiple blocks, the analysis will be different. We

assume that each relay transmits M∗ coded blocks. Then N
relays transmit NM∗ coded blocks in total. We use a single

joint MDNCs based on MDS codes over all NM∗ coded

blocks. Then, any M out of these NM∗ coded blocks can

be used to rebuild the M sources. Clearly, if M∗ < M ,

the diversity order N cannot be achieved, since an outage of

N −1 relay-BS channels may lead to an overall outage event.

In general, we can easily calculate that the diversity order is

N−⌈ M
M∗ ⌉+1, where ⌈ M

M∗ ⌉ denotes the smallest integer larger

or equal to M
M∗ . For M∗ = M , the BS may be able to decode

all sources even if only one relay-BS channel is not in outage,

since the BS can obtain M coded blocks. Thus, a diversity

order of N is achieved. For the scenario with M∗ > M , the

analysis is similar to the one for M∗ = M .
Clearly, fixing the number of transmitting blocks for each

relay may lead to a loss of transmission resources, since

for slow fading channels multiple transmitted blocks of the

same channel will all be in outage. To efficiently use the

available resources, the relay with a high transmit SNR should

transmit more blocks, and the one with a low transmit SNR

should transmit fewer blocks, respectively. Thus, the number

of transmitting blocks for each relay may be determined dy-

namically by the instantaneous channel gains. This will require

a feedback mechanism to provide channel state information to

the sources.

V. NONORTHOGONAL CHANNELS

For the above analysis we have assumed a network with

orthogonal channels, thus eliminating inter-user interference

but limiting the achievable rates [20], since each transmitter

uses their own time slot. To efficiently exploit channel re-

sources, it is valuable to consider transmission schemes with

nonorthogonal channels, in particular, multiple access chan-

nels (MACs). In the following, we will investigate efficient

network coding schemes and their performance for multi-user

multi-relay networks with nonorthogonal channels and half-

duplex relays.

The transmission scheme for the network with nonorthog-

onal channels uses two time slots. In the first slot, all M
users concurrently transmit their own information. Then, the

received signal at node j (relay or BS) is

Yj =
∑

i

ai,jXi,j + nj . (13)

On receiving Yj , node j tries to decode all source messages

using a SIC decoder. If it can decode all source messages

and if it is a relay, the node computes a network codeword

specified by the MDNC, otherwise, it stays silent. If node j is

the BS, it successfully decodes as many source messages as

possible. These messages will be used to decode all available

source messages jointly with the network codewords received

in the second time slot. In this time slot, those relays, which

are able to decode all source messages, concurrently transmit

their network codewords to the BS. The BS first tries to

decode these network codewords with a SIC decoder. Then,

by combining the decoded messages in the first time slot and

the received network codewords in the second time slot, the

BS will try to decode the source messages. In the following,

for networks with nonorthogonal channels we will first discuss

the performance of MDNCs, and then compare with SC-based

schemes.
Proposition 6: Consider an M -user N -relay network with

nonorthogonal channels and half-duplex relays, MDNCs

achieve a maximal diversity order of N+1 with SIC decoding

at both the BS and the relays.
Proof: The proof is given in Appendix B.

Similar to the analysis the system with orthogonal chan-

nels in Section IV, we now compare the performance of

schemes based on FFNC and superposition coding in this

nonorthogonal channel setup. For nonorthogonal channels, all

transmitted signals arrive at a receiving node simultaneously.

These superposed signals naturally perform network coding

in the real (or complex) domain. Thus, it is often termed

as analog network coding [16]. Let Xj denote the network

codeword output at relay j, then Xj = βjYj , where Yj is

the received signal (13) at the first time slot, and the factor

βj =
√

Es∑
i |ai,j |2Es+N0

is employed to normalize the transmit

energy at relay j. For the purpose of comparison, we now

present a diversity order analysis for SC-based schemes.
Proposition 7: Consider an M -user N -relay network with

nonorthogonal channels, direct source-BS channels, and half-

duplex relays. SC-based schemes cannot achieve the full

diversity order of N + 1.
Proof: The proof is given in Appendix C.

By combining Proposition 6 and Proposition 7 we can see

that for sufficiently high SNR the scheme based on FFNC

outperforms the ones based on SC for nonorthogonal channels

and half-duplex relays. In Fig. 8, we compare the outage

probabilities of a two-user two-relay network. The numerical

results are evaluated from simulations, where we assume

Gaussian channels with Rayleigh distributed channel gains.

We can see that for nonorthogonal channels FFNC exhibits

a lower outage probability in the high SNR region, but the

scheme based on SC has better performance in the low SNR

regime. This observation is similar to the case with orthogonal

channels.
For the case without direct source-BS channels, we have

similar results as stated in the following proposition.
Proposition 8: Consider an M -user N -relay network, N ≥

M , with nonorthogonal channels and half-duplex relays. In

such a network MDNCs achieve a diversity order of N−M+1
with SIC decoding at both the BS and the relays if direct

source-BS channels are absent.
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Fig. 8. Outage probabilities for the two-user two-relay network with
nonorthogonal channels. The source rates are 0.25 bits/second/Hz.

Proof: The proposition can be proved by combining the

proofs of Propositions 3 and 6.

Furthermore, for the SC-based scheme we can show that

the diversity order N−M+1 cannot be achieved if the direct

source-BS channels are absent. Since this proof is similar to

the one of Proposition 7 we skip the detailed analysis.

VI. CONCLUSION

We have investigated the design of efficient network coding

strategies for MUMR wireless networks with slow fading

channels. For FFNC-based schemes we propose maximum

diversity network codes based on MDS codes to achieve

a full diversity order of N + 1. We also show that the

MDS codes are necessary and sufficient to achieve full-

diversity for linear FFNCs. As an alternative, we have also

addressed superposition coding at the relay and compared

its performance with FFNC-based schemes where the results

show that in the high SNR regime FFNC has significantly

better performance in terms of outage capacity. Then, we have

considered networks without direct source-BS channels and

show that a diversity order of N −M +1 can be achieved by

using the proposed FFNC-based strategies. This construction

also achieves equality in the network Singleton bound for

the presented class of MUMR networks. Finally, we study

networks with nonorthogonal channels and half-duplex relays.

We show that FFNCs based on an MDS code construction

can also achieve a full diversity order of N + 1, which is not

achievable for an SC-based scheme.

APPENDIX A

PROOF OF PROPOSITION 1

We first prove that Proposition 1 is sufficient. Clearly, if the

SR channels are error-free each user can achieve a diversity

order of N + 1. This is because by using MDS codes we

have the property that from any M out of N + M received

codewords M source messages can be recovered. Hence, an

outage event for any of the users occurs only if N + 1
or more codewords are in outage. Since the channels are

independent, and each channel outage occurs with probability

Pe = CISNR−1, the diversity order N + 1 is achieved for

perfect SR channels.

Now we assume that Z out of MN SR channels are in

outage and none of the remaining channels, but that these

Z channels connect to K relays, K ≤ Z . These K relays

do not send any codeword and stay silent. The probability

of the event is PSR,ZOut = PZ
e (1 − Pe)

MN−Z . Then

limSNR→∞
logPSR,ZOut

log Pe
= Z. Further, there are X = N −K

relays which receive all M source messages, where 0 ≤ X ≤
N . In combination with M direct transmission codewords, any

M of these M +X codewords are able to recover M source

messages. Hence, an outage event occurs only when X + 1
or more codewords are in outage, which has a probability of

Po,XR = PX+1
e (1 − Pe)

M−1 + PX+2
e (1 − Pe)

M−2 + · · · +
PX+M
e and limSNR→∞

logPo,XR

logPe
= N −K + 1. Combining

this result with PSR,ZOut, an outage event for any of the M
users occurs with probability (see (14) at the top of the next

page) in high SNR. Since Z ≥ K , it follows Po,T2 ≤ PN+1
e .

Hence, by (2), the diversity order is N+1 for any of the users.

The necessary part of the proof can be shown as follows.

Assume a submatrix Ks of M columns has a rank smaller

than M . With probability PSRP = (1 − Pe)
MN all source-

relay channels are perfect and all relays transmit a network

codeword. Then the BS totally receives M + N codewords

specified by K through M +N channels. Consider the event

in which information can be perfectly conveyed over those

M channels associated with the transfer matrix Ks, but the

remaining N channels are in outage. This event happens with

probability PMs = PN
e (1 − Pe)

M . Since the transfer matrix

Ks is not full-rank, some source messages cannot be decoded,

which leads to an error event. The overall probability for

this error event is Po,Ms = PMsPSRP = PN
e in high SNR.

Clearly, the diversity order is upper-bounded by N , and full

diversity cannot be achieved.

APPENDIX B

PROOF OF PROPOSITION 6

After the first time slot, the BS tries to decode all source

messages directly received from the users. We assume that

K ≤ M source messages cannot be decoded; the remaining

M − K messages can be perfectly decoded. We denote the

set of users which can be decoded as D, and the set of users

which cannot be decoded as B = DC , respectively. Then, for

MAC fading channels with a SIC decoder, we have [30]

C
(

∑

i∈S SNR|ai,0|2
1 +

∑

j∈B SNR|aj,0|2
)

> |S|R, ∀S ⊆ D,

C
(

∑

i∈T SNR|ai,0|2
1 +

∑

j∈T C∩B SNR|aj,0|2
)

< |T |R, ∀T ⊆ B, (15)

where C(x) = 1
2 log(1+x), ai,0(aj,0) is the fading coefficient

of the channel from user i (user j) to the BS. Then the

probability that exactly K users can be decoded is

PMAC,K =

(

M

K

)

Pr

{

C

(

∑

i∈S
SNR|ai,0|

2

1 +
∑

j∈B
SNR|aj,0|2

)

> |S|R,

C

(

∑

i∈T
SNR|ai,0|

2

1 +
∑

j∈T C∩B
SNR|aj,0|2

)
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Po,T2 = PSR,ZOutPo,XR = PZ
e PN−K+1

e (1 − Pe)
MN−Z+M−1 +

+ PZ
e PN−K+2

e (1− Pe)
MN−Z+M−2 + · · ·+ PZ

e PN−K+M
e (1− Pe)

MN−Z = PN+1+Z−K
e (14)

< |T |R,∀S ⊆ D, ∀T ⊆ B

}

≤

(

M

K

)

Pr

{

C

(

∑

i∈T
SNR|ai,0|

2

1 +
∑

j∈T C∩B
SNR|aj,0|2

)

< |T |R,∀S ⊆ D, ∀T = B

}

= Pr

{

1

2
log(1 +

∑

i,i∈B

|ai,0|
2
SNR) < KR)

}

. (16)

Since |B| = K , Pr{ 1
2 log(1 +

∑

i,i∈B |ai,0|2SNR) <

KR)} = (22KR−1)K

K!SNRK in high SNR (Chapter 5, [20]).

Hence PMAC,K ≤ CMAC,K · SNR−K , where CMAC,K =
(22KR−1)K

K! is independent of the SNR. By our transmission

protocol, the probability that a relay is silent is given as

PR,S = Pr{one or more messages cannot be decoded} =
CR,SSNR−1 in high SNR, where CR,S is also independent

of the SNR. The result follows since the probability that

exactly one message cannot be decoded will dominate for

medium-to-high SNRs. Let us further assume that Z ≤ N
relays are unable to decode all source messages. Since all

channels are independent the probability for this event is

PR,Z = CR,ZSNR−Z . The other N − Z relays will trans-

mit N − Z network codewords specified by the MDNCs

in the second time slot. Similar to the first time slot, the

probability of L ≤ N − Z network codewords being unable

to be decoded at the BS is PMAC,L ≤ CMAC,LSNR−L.

Clearly, with MDNC, an outage event occurs if the number

of totally decoded source messages or network codewords

are smaller than M . That is, M − K + N − Z − L ≤
M − 1, and thus N + 1 ≤ K + Z + L. The overall outage

probability is thus PO,MAC = PMAC,KPR,ZPMAC,L ≤
CO,MACSNR−(K+Z+L) ≤ CO,MACSNR−(N+1), where

CO,MAC is constant with SNR. Thus, the diversity order of

M -user N -relay networks with MDNC and nonorthogonal

channels is given as N + 1.

APPENDIX C

PROOF OF PROPOSITION 7

In the first time slot, the BS receives Y1 =
∑

i ai,0Xi+n1,0

directly from all users, where Xi is the (Gaussian) codeword

of user i, ai,0 is the channel gain from user i to the BS,

and n1,0 is the noise at the BS. With an MMSE-SIC

decoder, the receiver treats the signal of one user (say

user i) as the intended codeword and all other signals

as interference. Then the signal-to-interference-noise ratio

(SINR) of user i is SINRi,1 =
|ai,0|

2Es∑
j,j �=i

|aj,0|2Es+N0
, and the

MI between Xi and Y1 in the first time slot is IMSC,i(1) =
1
4 log2(1 + SINRi,1). In the second time slot, the BS receives

Y2 =
∑

i

∑N
z=1 ai,zβzaz,0Xi+

∑N
z=1 nzβzaz,0+n2,0, where

ai,z and az,0 are the channel gains from user i to the relay

z, and from that relay to the BS, respectively. Also, nz

and n2,0 are the noise variables at relay z and the BS. We

assume that the BS decoder knows {ai,z} and {az,0}. The

BS treats the signals other than Xi as interference, when

trying to decode Xi. Then Y2 = Xi

∑N
z=1 ai,zβzaz,0 +

∑

j,j �=i

∑N

z=1 aj,zβzaz,0Xi +
∑

z nzβzaz,0 + n2,0. Thus,

the SINR of user i at the second time slot is SINRi,2 =
∑N

z=1 |ai,z |2β2
z |az,0|2Es

/

(
∑N

z=1

∑M

j=1,j �=i |aj,z |2β2
z |az,0|2Es+

N0 + N0

∑N

z=1 |βz |2|az,0|2) and the corresponding MI

between Xi and Y2 is IMSC,i(2) = 1
4 log2(1 + SINRi,2).

The accumulated MI over the two time slots is

IMSC,i ≤ IMSC,i(1) + IMSC,i(2). Note that without

loss of generality, we assume that user i has the largest MI,

IMSC,i, for the first round of decoding.
It is difficult to analyze the achievable diversity order based

on IMSC,i. In order to make the analysis tractable, let us

assume error-free source-relay channels in the network. We

further assume that every relay transmits all user information

with equal energy. By these modifications, we can show

that the MI for such a network is larger than IMSC,i. The

accumulated MI for the assumed network in two time slots is

given as

IASC ≤ 1

4
log2

(

1 +
|ai,0|2Es

∑

j,j �=i |aj,0|2Es +N0

)

+
1

4
log2

(

1 +
1
M

∑N
z=1 |az,0|2Es

M−1
M

∑N

z=1 |az,0|2Es +N0

)

.(17)

Here the left term corresponds to the first

time slot, and the right to the second. We

note that limSNR→∞

1
M

∑N
z=1 |az,0|

2Es

M−1
M

∑
N
z=1 |az,0|2Es+N0

=

limSNR→∞

1
M

∑
N
z=1 |az,0|

2

M−1
M

∑
N
z=1 |az,0|2+

1
SNR

= 1
M−1 . Consequently,

at high SNR

IASC ≤ 1

4
log2

(

1 +
1

M − 1
+

|ai,0|2Es
∑

j,j �=i |aj,0|2Es +N0

+
1

M − 1

|ai,0|2Es
∑

j,j �=i |aj,0|2Es +N0

)

<
1

4
log2

(

1 +
1

M − 1
+ |ai,0|2SNR

M

M − 1

)

.(18)

An outage event occurs if R > 1
4 log2(1 + 1

M−1 +

|ai,0|2SNR M
M−1 ). Thus, since |ai,0| is Rayleigh distributed,

for high SNR the outage probability is lower bounded by

24R − 1− 1
M−1

SNR

M − 1

M
.

It is hence easy to see that we cannot get a full diversity order

of N +1 by SC-based coding in this networking scenario.
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