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Abstract— Real-life cyber physical systems, such as automotive
vehicles, building automation systems, and groups of unmanned
vehicles are monitored and controlled by networked control
systems (NCS). The overall system dynamics emerges from the
interaction among physical dynamics, computational dynamics,
and communication networks. Network uncertainties such as
time-varying delay and packet loss cause significant challenges.
This paper proposes a passive control architecture for designing
NCS that are insensitive to network uncertainties. We describe
the architecture for a system consisting of a robotic manipulator
controlled by a digital controller over a wireless network and
show that the system is stable even in the presence of time-
varying delays. Experimental results demonstrate the advantages
of the passivity-based architecture with respect to stability and
performance and show that the system is insensitive to network
uncertainties.

Index Terms— Automation, cyber-physical system, discrete
time systems, industrial control, Lyapunov methods, networked
control systems, nonlinear control systems, passivity-based
control, robot control, stability analysis, telerobotics,
time-varying systems.

I. INTRODUCTION

THE heterogeneous composition of computing, sensing,

actuation, and communication components has enabled

a modern grand vision for real-world cyber physical systems

(CPS). Real-world CPS, such as automotive vehicles, building

automation systems, and groups of unmanned air vehicles, are

monitored and controlled by networked control systems (NCS)

and the overall system dynamics emerges from the interac-

tion among physical dynamics, computational dynamics, and

communication networks. This paper is inspired by the rapidly

increasing use of NCS architectures in constructing real-world

CPS that integrate computational and physical devices using
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wireless networks, such as medical device networks, groups

of unmanned vehicles, and transportation networks. NCS

research has recently become a very active area, investigating

problems at the intersection of control systems, networking,

and computer science [1].

CPS are inherently heterogeneous not only in terms of

their components but also in terms of design requirements.

Besides functional properties, CPS are subject to a wide

range of physical requirements, such as dynamics, power,

physical size, and fault tolerance in addition to system-level

requirements, such as safety and security. Heterogeneity does

not go well with current methods of compositional design.

The most important principle used in achieving multiobjective

compositionality is the separation of concerns. Separation of

concerns works if the design views are orthogonal, i.e., design

decisions in one view does not influence design decisions

in other views. Unfortunately, achieving compositionality for

multiple physical and functional properties simultaneously is a

very hard problem because of the lack of orthogonality among

the design views.

Fig. 1 represents a simplified model-based design flow of a

CPS composed of a physical plant and a NCS. In a conven-

tional design flow, the controller dynamics is synthesized with

the purpose of optimizing performance. The selected design

platform (abstractions and tools used for control design in the

design flow) is frequently provided by a modeling language

and a simulation tool, such as MATLAB/Simulink [2]. The

controller specification is passed to the implementation design

layer through a “specification/implementation interface.” The

implementation in itself has a rich design flow that is expressed

in two layers: system-level design and implementation plat-

form design. The software architecture and its mapping on

the (distributed) implementation platform are generated in

the system-level design layer. The results—expressed again

in the form of architecture and system models—are passed

on through the next specification and implementation inter-

face to generate code as well as the hardware and network

design. This simplified flow reflects the fundamental strategy

in platform-based design [3]. The design progresses along

precisely defined abstraction layers. The design flow usually

includes top-down and bottom-up elements and iterations (not

shown in the figure).

Effectiveness of the platform-based design largely depends

on how much the design concerns (captured in the abstraction

layers) are orthogonal, i.e., how much the design decisions

in the different layers are independent. Heterogeneity causes

1063-6536/$31.00 © 2012 IEEE



650 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 3, MAY 2013

Fig. 1. Simplified CPS design flow.

major difficulties in this regard. The controller dynamics is

typically designed without considering implementation side

effects (e.g., numeric accuracy of computational components,

timing accuracy caused by shared resource and schedulers,

time varying delays caused by network effects, etc.) Timing

characteristics of the implementation emerge at the confluence

of design decisions in software componentization, system

architecture, coding, and HW/network design choices. Com-

positionality in one layer depends on a web of assumptions

to be satisfied by other layers. For example, compositionality

on the controller design layer depends on assumptions that the

effects of quantization and finite wordlength can be neglected

and the discrete-time (DT) model is accurate. Since these

assumptions are not satisfied by the implementation layer, the

overall design needs to be verified after implementation—even

worst—changes in any layer may require reverification of the

full system.

An increasingly accepted way to address these problems is

to enrich abstractions in each layer with implementation con-

cepts. An excellent example for this approach is TrueTime [4]

that extends MATLAB/Simulink with implementation-related

modeling concepts (networks, clocks, schedulers) and supports

simulation of networked and embedded control systems. While

this is a major step in improving understanding of the imple-

mentation effects, it does not achieve orthogonality across

the design concerns. A controller designer can now factor

in implementation effects (e.g., network delays), but still, if

the implementation changes, the controller may need to be

redesigned.

Decoupling the design layers is a very hard problem and

typically introduces significant restrictions and/or overdesign.

For example, the timed triggered architecture orthogonalizes

timing, fault tolerance, and functionality, but it comes at the

cost of strict synchrony and static structure [5]. An approach

for decoupling between the control design and implementa-

tion layers has been proposed recently in [6]. The approach

allows the design of state-feedback controllers that minimize a

quadratic performance bound for a given level of timing jitter

using linear matrix inequality methods.

Our aim is to address fundamental problems caused by

networks effects, such as time-varying delay, jitter, limited

bandwidth, and packet loss in NCS. To deal with these imple-

mentation uncertainties, we propose a model-based design

flow on top of passivity, a very significant concept from

systems theory [7]. The inherent safety that passive systems

provide is fundamental in building systems that are insensitive

to implementation uncertainties. Passive systems have been

exploited for the design of diverse systems such as smart exer-

cise machines [8], teleoperators [9]–[14], digital filters [15],

NCS [16]–[18], and complex nonlinear thermal- and chemical-

based processes [19]–[21].

Our approach advocates a concrete and important transfor-

mation of model-based methods that can improve orthogo-

nality across the design layers and facilitate compositional

component-based design. By using multirate data sample-and-

hold elements and imposing passivity constraints on com-

ponent dynamics, the stability of the NCS is guaranteed in

the presence of time delays and packet loss. This separation

of concerns empowers the model-based design process to be

applied for NCS. Information about the network effects needs

not to be considered at the controller design layer because

the theoretical guarantees for stability are independent of the

networking implementation uncertainties.

The primary contributions of this paper are as follows:
1) we present a passive control architecture for a system

consisting of a robotic manipulator controlled by a

digital controller over a wireless network;

2) we provide analytical results that prove that our archi-

tecture ensures stability of the NCS in the presence of

time-varying delays assuming that the communication

protocols do not process duplicate transmissions;

3) we implement the passive control architecture on an

experimental NCS consisting of two computer nodes that

realize the robotic manipulator and the digital controller,

respectively, and communicate over an ad hoc 802.l lb

wireless network subject to additional traffic induced by

disturbance nodes;

4) we present experimental results that demonstrate the

stable operation of the system in the presence of severe

time-varying delays caused by network traffic generated

by the disturbance nodes or by excessive computational

load competing with the controller.

The work presented in this paper demonstrates that passivity

can be exploited to account for the effects of network uncer-

tainties, thus improving orthogonality across the controller

design and implementation design layers and empowering

model-driven development. Part of this paper has been pre-

sented in [22]. The main extensions are: 1) experimental

implementation and evaluation of the passivity-based archi-

tecture using a NCS; 2) detailed design of the digital passive

controller; and 3) theoretical analysis that includes the proofs

of passivity and stability for the proposed architecture. It

should be noted that passive structures offer additional advan-

tages for robustness to finite length representations and satu-

ration [15], but this paper focuses on network effects which

is one of the most significant concerns in the development

of CPS.
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The rest of this paper is organized as follows. An

overview of related work is presented in Section II followed

by a summary of notation used and passivity definitions

in Section III. Section IV presents the passive control

architecture focusing on the technical details required for

implementation. Analysis of our proposed NCS is provided

in Section V. Section VI describes the implementation and

presents detailed experimental results. Finally, Section VII

presents the main directions of our future work.

II. RELATED WORK

Our overall approach to designing NCS that can tolerate

time-varying delay and data loss is constructive in nature

and relies on passivity-based networked control fundamen-

tals [16]. Constructive approaches typically rely on a system

or controller to be restricted to a given sector in order for

the overall system trajectories to remain stable [23]–[25].

When passive systems are connected in either a parallel or

negative feedback arrangement, the resulting system remains

passive [23], [24]. In addition, the observable state variable

trajectories for a passive system are Lyapunov-stable [25].

When time delays are introduced into a feedback arrangement

involving two passive systems, the overall passive system

structure is lost and its corresponding state trajectories may

become unstable. As a result, those in the telemanipulation

community who wanted to preserve stability for arbitrary fixed

time-delays proposed using wave variables [26], [27]. Wave

variables were originally introduced by Fettweis in order to

circumvent the problem of delay-free loops and guarantee that

the implementation of wave digital filters is both stable and

realizable [15]. The wave variables that resulted from a bilin-

ear scattering transformation allowed for a stable minimum-

phase continuous-time (CT) system to be mapped to a stable

minimum-phase DT system. Stability is guaranteed because

the wave variables allowed for the primitive DT components

derived from their passive CT counterparts to remain passive

while allowing for the overlying CT networking structure to

remain unaltered so as to preserve stability. The use of wave

variables for networked control has continued to advance.

In particular, [18] provides constructive conditions for CT

plants and controllers that are interconnected with wave vari-

ables derived from a generalized scattering transform in order

to maintain Lm
2 -stability when subject to fixed time delays. It is

further asserted that the results presented in [18] apply for the

case in which the wave variables transmitted between the two

CT systems are first compressed and converted to a DT wave

variable, then transmitted over a network, received, and finally

decompressed back to a CT wave variable. Additional details

on compression/decompression techniques for wave variables

are described in [14], [17], and [28]. Both [10], [17], [29] have

shown that the DT wave variables can tolerate both arbitrary

fixed delays and data loss in network control architectures.

Finally, it has been shown that network control architectures

consisting of DT wave variables can be subject to time-varying

delays as long as duplicate data packets are not processed at

the receiver [10], [16], [17].

The precise definitions chosen for passivity shall be pre-

sented from the input–output perspective similar to the

definition for positive systems given in [23]. Systems that will

satisfy this input–output passivity definition include positive

real and dissipative dynamical systems [30]. When a dissipa-

tive dynamical system can be described by a Hamiltonian (the

sum of kinetic and potential energy, H = T + V), a passive

mapping typically exists in which the Hamiltonian serves as

storage function (β) [30]. This will be clearly illustrated in

our discussion of the passive structure of robotic systems

in relating the joint velocities to their corresponding motor

torques. However, there are some limitations with the study of

passive systems. For example, systems that consist of cascades

of passive systems (such as two integrators in series) are not

necessarily passive systems.

The conditions for stability in our networked digital control

system require the digital controller and CT plant to be strictly

output-passive. As a result, this limits us to initially controlling

the velocity output of a robot in order to indirectly control

its corresponding position. Such indirect control frameworks

can be subject to position drift and require an additional

drift-compensation algorithm such as those described in [31].

However, using the notion of a passivity index [19], we demon-

strate how to design low-complexity analog filters to place in

parallel with an asymptotically stable minimum-phase linear-

time invariant stable system in order to render the combined

system strictly output passive. Such an architecture allows

us to achieve steady-state position control in our proposed

framework. Finally, we have recently shown that our proposed

framework is applicable to the control of a larger class of

Lyapunov-stable systems that possess the same number of

inputs and outputs and are interior conic or equivalently inside

the sector [a,∞] in which |a| < ∞ [32]. Certain classes

of stable non-minimum-phase systems are inside the sector

[a,∞] in which a < 0 and can be controlled in our proposed

framework.

III. PRELIMINARIES

This section presents the passivity and stability definitions

as well as the notation used in this paper. We use the following

notation for CT systems:

〈G(u), u〉NTs

△=
∫ NTs

0

G(u(t))Tu(t)dt (CT inner product)

〈G(u), G(u)〉NTs

△= ‖(G(u))NTs ‖2
2

in which ‖(G(u))NTs ‖2
2 is the truncated squared CT 2-norm

of the function G(u). Similarly, we use the following notation

for DT systems:

〈G(u), u〉N
△=

N−1
∑

i=0

G(u[i ])Tu[i ] (DT inner product)

〈G(u), G(u)〉N
△= ‖(G(u))N ‖2

2

in which ‖(G(u))N ‖2
2 is the truncated DT squared 2-norm of

the function G(u). Note that, in order to distinguish CT from

DT systems, the integral is taken to the limit NTs where Ts is

a real nonnegative number, while the summation is taken to

N − 1 in which N ∈ {1, 2, . . . , }.
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We also denote Lm
2e

(U) as the extended Lm
2 space for the

function u(t) ∈ U in which U ⊂ R
m is the set of all possible

functions which satisfies

‖(u)NTs ‖2
2 < ∞ for a given NTs ≥ 0.

In the limit as NTs → ∞, then u ∈ Lm
2 (U) is any function

that satisfies
∫ ∞

0
uT(t)u(t)dt < ∞, or more compactly, ‖u‖2

2 < ∞.

For the DT case, we denote lm
2e

(U) as the extended lm
2 space

for the function u[i ] ∈ U in which U ⊂ R
m is the set of all

possible functions which satisfies

‖(u)N ‖2
2 < ∞ for a given N .

In the limit as N → ∞, then u ∈ lm
2 (U) is any function that

satisfies

∞
∑

i=0

uT[i ]u[i ]dt < ∞, or more compactly, ‖u‖2
2 < ∞.

Note also that Lm
2 (U) ⊂ Lm

2e(U) for the CT case and lm
2 (U) ⊂

lm
2e(U) for the DT case.

Let: 1) Xm
2 (U) (Xm

2e
(U)) denote the Lm

2 (U) and Lm
2e

(U)

spaces for the CT case, and lm
2 (U) and lm

2e
(U) spaces for the

DT case, respectively; and 2) T denote NTs in which NTs ≥ 0

for the CT case and N such that N ∈ {1, 2, . . . , } for the DT

case. The corresponding definitions of passivity for the CT and

DT case can be described as follows.

Definition 1 ([7], [33], [34]): Let G : Xm
2e

(U) → Xm
2e

(U)

then for all u ∈ X
m
2e

(U) and all T : I.

1) G is passive if there exists a constant β such that (1)

holds

〈G(u), u〉T ≥ −β. (1)

2) G is strictly output passive if there exists some constants

β and ǫ > 0 such that (2) holds

〈G(u), u〉T ≥ ǫ‖(G(u))T ‖2
2 − β. (2)

3) G is strictly input passive if there exists some constants

β and v > 0 such that (3) holds

〈G(u), u〉T ≥ v‖(u)T ‖2
2 − β. (3)

Definition 2 ([33]Definition 1.2.3 [34]): Let G:Xm
2e

(U)→
X

m
2e

(U) is said to be Lm
2 -stable (lm

2 -stable) if

u ∈ X
m
2 (U) �⇒ y = G(u) ∈ X

m
2 (U)

and G is said to have finite-Lm
2 -gain (finite-lm

2 -gain) if ∃γq >

0, βq s.t. for all T

u ∈ X
m
2e(U) �⇒ ‖(y)T ‖2 ≤ γq‖(u)T ‖2 + βq .

Any G : Xm
2e

(U) → Xm
2e

(U) which has finite-Lm
2 -gain (finite-

lm
2 -gain) is Lm

2 -stable (lm
2 -stable).

The following theorem for CT systems is used in the proof

of our main result (Theorem V-A) in which it is shown that

the network control system architecture depicted in Fig. 2 is

strictly output passive for any passive robot (plant).

Theorem 1 [33, Th. 2.2.14]: Let G : Lm
2e

(U) → Lm
2e

(U) be

strictly output passive. Then G has finite Lm
2 -gain.1

For an asymptotically stable LTI system G:Lm
2e

(U) →
Lm

2e
(U) whose transfer function is denoted G(s), a

frequency-dependent measure known as the passivity index

vF (G(s), ω) = −(1/2) [G( jω) + G(− jω)] is defined such

that G(s)+vF (G(s), ω) is positive real (equivalently passive)

[19].2 If the passivity index is negative for all ω ∈ R, then

G(s) is strictly input passive such that (G(s) + v) is positive

real in which v = ω ∈ RsupvF (G(s), ω). In addition, if

G(s) is both asymptotically stable and strictly input passive,

then it is strictly output passive [30, Prop. 5.2-x].

IV. PASSIVE CONTROL ARCHITECTURE

This section presents the proposed architecture depicted

in Fig. 2. The NCS consists of a robotic system controlled

by a DT controller through a wireless network. The robotic

system is denoted by Grobot:τ (t) �→ �̇(t), where τ (t) is the

input torque vector, and � and �̇ are the joint angles and

angular velocities, respectively. The robotic system contains

components for gravity compensation denoted by g(�) and

negative velocity feedback denoted by ǫ I . The robotic system

is controlled by a multiple-input multiple-output (MIMO)

digital controller that receives as input the velocity error ė[i ]
and computes the torque vector τuc[i ]. The controller also

employs the inner product equivalent sampler (IPES, Ts)

and zero-order-hold (ZOH, Ts ) blocks (as a pair we denote

them as IPESH) required by our analysis, which relate the

DT variables
(

�̇sr [i ], τuc[i ]
)

to the respective CT variables
(

�̇sr (t), τuc(t)
)

. The communication between the robotic sys-

tem and the controller is realized using wave variables. The

bilinear transformation used to relate the torque and angular

velocity vectors to the wave variables is denoted by b. In order

to transmit the information from the robotic system, the CT

wave variable u p(t) is converted to a DT wave variable u p[i ]
using a wave variable sampler denoted by (WS,Ts). Similarly,

to transmit information from the digital controller, the DT

wave variable vucd[i ] is converted to a CT wave variable

vucd(t) using a wave variable hold denoted (WH,Ts). Finally,

the figure depicts a wireless network link with DT varying

nonnegative integer delays denoted by z−p(i) and z−c(i) such

that u pd [i ] = u p[i − p(i)] and vucd [i ] = vuc[i − c(i)]. In

the remaining parts of this section, we define in detail all the

components used in the architecture of Fig. 2 and explain the

design decisions necessary to ensure passivity.

A. Robotic System

Our control strategy takes advantage of the passive structure

of a robotic system [37]. The robot dynamics, denoted by

Grobot(τ (t)) in Fig. 2, is described by

τ = M(�)�̈ + C(�, �̇)�̇ + g(�). (4)

1We only require the CT result, however, the analogous DT result is
presented in [35, Th. 2].

2For the multi-input multi-output (MIMO) case, vF (G(s),ω) =
−1/2λmin[G( jω) + GT(− jω)] in which λmin[M] denotes the minimum
eigenvalue of the matrix M. We only require the CT definition, however,
the analogous DT definition is presented in [36].
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Fig. 2. Proposed wireless digital control architecture.

The state variables � denote the robot joint angles, τ is the

input torque vector, M(�) is the mass matrix, C(�, �̇) is

the matrix of centrifugal and Coriolis effects, and g(�) is the

gravity vector. The inertia matrix M(�) = M(�)T > 0 and

the matrix C and Ṁ are related as follows:

−(Ṁ −2C) = (Ṁ −2C)T �⇒ xT(Ṁ −2C)x = 0, ∀x ∈ R
n.

(5)

The skew-symmetric constraint in (5) is necessary to prove

that the robot is passive.

Despite the complexity of robotic manipulators, simple

control laws can be used in a number of cases. A funda-

mental consequence of the passivity property is that a simple

independent joint CT proportional-derivative (PD) control can

achieve global asymptotic stability for set-point tracking in the

absence of gravity [38]. Our architecture uses a DT equivalent

implementation of a PD controller that communicates with

the robotic system via a wireless network. To compensate

for gravity, we select as the control command τ̄u = τ −
g(�). Then by choosing the supply rate s(τ̄u(t), �̇(t)) =
�̇T(t)τ̄u(t) and the corresponding storage function V (�̇(t)) =
(1/2)�̇T(t)M(�(t))�̇(t), the robot can be shown to be a

lossless passive system in which all supplied energy is stored

as kinetic energy and the following relationship is satis-

fied:
∫ NTs

0 �̇(t)T τ̄u(t)dt =
(

V (�̇(NTs )) − V (�̇(0))
)

[30].3

Because V (0) = 0, all feasible input trajectories τ̄u(t) in

which �̇(0) = �̇(NTs ) = 0 result in the lossless expression
∫ NTs

0 �̇(t)T τ̄u(t)dt = 0. We shall use
∫ NTs

0 �̇(t)T τ̄u(t)dt ≥
−V (�̇(0)) as our passivity expression for our robot in which

V (�̇(0)) represents all the available storage energy that can

be extracted from the robot at time t = 0.

For simplicity of discussion, we assume there is no friction

at the robot’s joints. We then render the robot strictly output

passive by including negative velocity feedback [16] such that

the control command τu shall be of the following final form:

τu = τ̄u + ǫ�̇ = τ − g(�) + ǫ�̇, ǫ ≥ 0. Direct substitution

3A lossless passive system satisfies Definition 1-1 and possesses a lossless
property such that (1) holds with equality in which β = 0 for the set of all
feasible input functions u in which G(u(0)) = G(u(N Ts)) = 0.

of τ̄u = τu − ǫ�̇ in the aforementioned passivity expres-

sion results in the strictly output passive expression (7) for

G:τu �→ �̇ when ǫ > 0
∫ NTs

0

[

�̇(t)Tτu(t) − ǫ�̇T(t)�̇(t)
]

dt ≥ V (�̇(NTs ))

−V (�̇(0)) (6)
∫ NTs

0
�̇(t)Tτu(t)dt ≥ ǫ

∫ NTs

0
�̇T(t)�̇(t)dt − V (�̇(0)). (7)

If a linear friction model is assumed such that ǫfriction is

a positive real value and τ = τno friction − ǫfriction�̇(t), then

by including negative velocity feedback as described above

it is sufficient to render the robotic system strictly output

passive with respect to the idealized input τno friction and

output �̇(t). If nonlinear stiction type friction is considerable

at the robot joints, it is desirable to address its effects that

can lead to jerky motion. The proposed architecture is still

applicable, for example, by considering the LuGre Model [39],

[40]. The LuGre Model can be studied in a passivity-based

framework. Necessary and sufficient conditions for passivity of

the LuGre model are presented in [41]. Friction identification

and compensation algorithms based on the LuGre Model have

been successfully implemented to control robotic systems [42]

in order to achieve improved performance and they could be

incorporated in our framework.

In conclusion, the velocity-damped robot is an strictly

output passive system which is Lm
2 -stable. The robot’s strictly

output passive property allows us to interconnect an strictly

output passive controller over a wireless network using wave

variables such that the overall system remains strictly output

passive and Lm
2 -stable. The strictly output passive property is

used in Theorem V-A to show that the NCS depicted in Fig. 2

is Lm
2 stable.

B. Wave Variables

The information communicated between the robotic system

and the controller is subject to delays as shown in Fig. 2. Wave

variables allow us to transmit data between the passive system
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and the passive controller while preserving passivity even in

the presence of time-varying delays. Since we have proposed

a mixed-signal architecture with CT and DT components, we

recall the CT and DT wave variable definitions.

Definition 3 ([27]): The CT wave variables vucd(t),

u p(t) ∈ R
m depicted in Fig. 2 are related to the corresponding

torque and velocity vectors τucd(t), �̇(t) ∈ R
m as follows:

1

2

(

uT
p(t)u p(t) − vT

ucd(t)vucd(t)
)

= �̇T(t)τucd(t). (8)

The wave variable vucd(t) and velocity measurement �̇(t)

determine the corresponding wave variable u p(t) and delayed

control torque τucd(t), which result from the following

equation:
[

u p(t)

τucd(t)

]

=
[

−I
√

2bI

−
√

2bI bI

] [

vucd(t)

�̇(t)

]

in which I ∈ R
m×m denotes the identity matrix and 0 < b <

∞ is a real number.

Definition 4 ([43]): The DT input and output wave vari-

ables upd[i ], vuc[i ] ∈ R
m depicted in Fig. 2 are related

to the corresponding discrete torque and velocity vectors

τuc[i ], �̇d [i ] ∈ R
m as follows:

1

2

(

uT
pd[i ]upd[i ] − vT

uc[i ]vuc[i ]
)

= τuc[i ]T�̇d [i ]. (9)

The wave variable upd[i ] and control torque τuc[i ] determine

the corresponding wave variable vuc[i ] and delayed velocity

�̇d [i ], which result from the following equation:
[

vuc[i ]
�̇d [i ]

]

=

⎡

⎣

I −
√

2
b

I
√

2
b

I − 1
b

I

⎤

⎦

[

upd[i ]
τuc[i ]

]

. (10)

The received wave variables upd[i ], vucd[i ] are delayed ver-

sions of the transmitted wave variables u p[i ], vuc[i ] such that

upd[i ] = u p[i − p(i)] and vucd[i ] = vuc[i − c(i)] in which

p(i), c(i) ∈ {0, 1, . . . , N} are the respective delays at time i .

The CT wave variable transformation is denoted by the block

with the symbol b immediately to the right of the robotic

system. The DT wave variable transformation is denoted by

the block with the symbol 1/b immediately to the left of the

controller system.

C. Mapping DT to CT Controller Variables

The inner product equivalent sampler (IPES) and ZOH

blocks are introduced in order to relate the CT robot’s inputs

and outputs to the DT controller’s inputs and outputs. Specif-

ically, the IPES at the input of the digital controller and ZOH

at the output can be used to ensure that the overall system

Gnet : [�̇T
sr (t), τ

T
d (t)]T �→ [τT

uc(t), �̇
T(t)]T is (strictly output)

passive. We refer to both IPES and ZOH devices as IPESH.

We present a noncausal version of the IPESH which is based

on the causal version of the IPESH presented in [16], [43,

Definition 4] and earlier work in [12] and [44].

Definition 5: The IPESH consists of an IPES and ZOH

element. The IPES is defined as follows:

x(t) =
∫ t

0
�̇sr (τ )dτ

�̇sr [i ] = x((i + 1)Ts) − x(i Ts). (11)

The ZOH is defined as follows:

τuc(t) = τuc[i ] ∀t ∈ [i Ts, (i + 1)Ts). (12)

�̇sr(t) denotes an appropriately scaled velocity profile for the

robot to follow such that �̇sr (t) = −ks�̇r (t), in which �̇r (t)

is the desired velocity trajectory to track and ks is a positive

real value which is determined to account for the scaling

effects that result from the use of the wave variable sampler

described in Section IV-B.

Lemma 1: The IPESH has the following properties.

1) The CT variables
(

�̇sr(t), τuc(t)
)

and the DT variables
(

�̇sr [i ], τuc[i ]
)

have equivalent inner products such that

〈τuc, �̇sr 〉N = 〈τuc, �̇sr 〉NTs holds ∀N ≥ 1.

2) The CT variable τuc(t) and the DT variable τuc[i ]
have proportional 2-norms such that ‖(τuc)NTs ‖2

2 =
Ts‖(τuc)N ‖2

2.

Proof:

1) 〈τuc, �̇sr 〉N =
N−1
∑

i=0

τT
uc[i ]�̇sr[i ]

=
N−1
∑

i=0

m
∑

j=1

τuc j [i ]�̇sr j [i ]

=
m

∑

j=1

N−1
∑

i=0

τuc j
[i ]

∫ (i+1)Ts

iTs

�̇sr j (τ )dτ

=
m

∑

j=1

N−1
∑

i=0

∫ (i+1)Ts

iTs

τuc j
(τ )�̇sr j (τ )dτ

=
m

∑

j=1

∫ NTs

0

τuc j
(τ )�̇sr j (τ )dτ

=
∫ NTs

0

τT
uc(τ )�̇sr(τ )dτ

〈τuc, �̇sr 〉N = 〈τuc, �̇sr 〉NTs holds ∀N ≥ 1. (13)

2) ‖(τuc)NTs ‖2
2 =

∫ NTs

0

τT
uc(t)τuc(t)dt

=
m

∑

j=1

∫ NTs

0

τuc j
(t)τuc j

(t)dt

=
m

∑

j=1

N−1
∑

i=0

∫ (i+1)Ts

iTs

τuc j
[i ]τuc j

[i ]dt

= Ts

m
∑

j=1

N−1
∑

i=0

τuc j [i ]τuc j [i ]

= Ts

N−1
∑

i=0

τT
uc[i ]τuc[i ]

‖(τuc)NTs ‖2
2 = Ts‖(τuc)N ‖2

2. (14)

Note that the ordering of the IPESH is reversed from typical

applications [12], [16], [43], [44] in which the IPES is located

at the output of a CT system and the ZOH is located at

the input to the CT system. In [43, Appendix E], we show

that such traditional IPESH arrangements are indeed causal
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and can be used to synthesize passive DT single-input single-

output (SISO) LTI filters. The causal IPESH can be realized

through the use of state-space observers for LTI systems

[35], [45]. The difficulty in applying the IPESH in the causal

framework is that it is not clear how to systematically apply

it to CT nonlinear plants. Therefore, implementations that

attempt to apply the IPESH to a CT plant are only approximate

realizations [12], [44] in which some nonpassive behavior

remains. The recent work of [46] shows promise of achieving

improved DT mappings that preserve passivity-like properties

for certain nonlinear CT systems, however, these results are

still sampling-rate-limited.

In our proposed framework, we simply use the noncausal

arrangement of the IPESH for analysis. The IPESH allows us

to relate our digital control reference �̇sr [i ] and digital control

output τuc[i ] back to the CT domain in order to show Lm
2 -

stability. By removing the need for a ZOH input to a nonlinear

CT plant and an IPES from the plant’s output, we eliminate

the need for a complex nonlinear observer. Our framework

can still precisely include a digital controller for the CT plant

which is interconnected to wave variables.

D. Wave Variable Sampler and Wave Variable Hold

The wave variable sampler and wave variable hold system

denoted by the pair WS,Ts and WH,Ts in Fig. 2 are use to

convert CT to DT wave variables and vice versa. In order to

ensure passivity of the overall control architecture, the sample-

and-hold devices must satisfy the following inequality:
∫ NTs

0

(

uT
p(t)u p(t)v

T
ucd(t)vucd(t)

)

dt

−
N−1
∑

i=0

(

uT
p[i ]u p[i ] − vT

ucd[i ]vucd[i ]
)

≥ 0. (15)

Equation (15) is used in the proof of our main result

(Theorem V-A). A sufficient condition to satisfy (15) is to

design the WS to satisfy the following inequality:
N−1
∑

i=0

uT
p[i ]u p[i ] ≤

∫ NTs

0

uT
p(t)u p(t)dt (16)

and for the WH to satisfy the following inequality:
∫ NTs

0

vT
ucd(t)vucd(t)dt ≤

N−1
∑

i=0

vT
ucd[i ]vucd[i ]. (17)

Sufficiency is proven by rearranging terms in (16) and (17)

such that (18) and (19) result

∫ NTs

0

uT
p(t)u p(t)dt−

N−1
∑

i=0

uT
p[i ]u p[i ]≥ 0 (18)

−
∫ NTs

0

vT
ucd(t)vucd(t)dt−

(

−
N−1
∑

i=0

vT
ucd[i ]vucd[i ]

)

≥ 0. (19)

Then, taking the sum of the respective left-hand and

right-hand sides of (18) and (19) results in (15).

In the following, we present two realizations of a WS and

one WH which satisfy (16) and (17), respectively. The first

realization of the WS is a nonlinear WS which is easy to

verify as satisfying (16) by direct substitution. However, we

also present a linear WS and corresponding linear PH because

they are easier to realize with analog electronics.

Denote each j th element of the column vectors u p(t), u p[i ]
as u p j (t), u p j [i ] in which j = {1, . . . , m} and assume that

u p j (t) = 0, if t < 0. The nonlinear WS is realized as follows:

u p j [i ] =
√

∫ iTs

(i−1)Ts

u2
p j

(t)dt sgn

(∫ iTs

(i−1)Ts

u p j (t)dt

)

. (20)

Lemma 2: The nonlinear WS defined by (20) satisfies the

wave variable sampling condition (16).

Proof: Direct substitution of (20) into the left-hand side

of (16) allows one to verify that (16) holds [47].

Denote each j th element of the column vectors

vucd(t), vucd[i ] as vucd j
(t), vucd j

[i ] in which j = {1, . . . , m}
and assume that vucd j [i ] = 0, if i < 0. The linear WH is

implemented as follows:

vucd j
(t) = 1√

Ts

vucd j
[i − 1], t ∈ [i Ts, (i + 1)Ts]. (21)

Lemma 3: The linear WH defined by (21) satisfies the wave

variable hold condition (17).

Proof: Direct substitution of (21) into the left-hand side

of (17) allows one to verify that (17) holds [47].

Deriving a Linear WS From Data Reduction Methods Used

in Telemanipulation Systems: It was easily shown how a

nonlinear WS can satisfy (16) by direct substitution of terms.

However, we shall present a less complex linear WS that

satisfies (16). The linear WS does not require a nonlinear

square root operation, which will simplify the analog circuit

required for implementation. Our linear WS is inspired by

the telemanipulation literature. The sufficient conditions given

by (16) and (17) in order to implement a WS and WH

for our architecture are similar to those required to send

CT wave variables over a digital network between two CT

robotic systems in a telemanipulation network. For example,

in [17, Th. 3.1] the sufficient Conditions 1 and 2 required

to achieve an asymptotically stable telemanipulation system

required the slaves-received wave variable ûs(t) to be bounded

by the original wave variable transmitted from the master

um(t) s.t.
∫ t

0 ûT
s (s)ûs(s)ds ≤

∫ t

0 uT
m(s)um(s)ds (Condition 1)

and, conversely, the masters-received wave variable v̂m(t) is

to be bounded by the original wave variable transmitted from

the slave vs(t) such that
∫ t

0 v̂T
m(s)v̂m(s)ds ≤

∫ t

0 vT
s (s)vs(s)ds

(Condition 2). In order to satisfy these two conditions, [17]

proposed to use an identity function generator and a time-

varying gain signal reconstructor.

The recent work of [14] describes elaborate compres-

sion/decompression techniques known as energy-supervised

data reconstruction in order to satisfy Conditions 1 and 2.

Finally, the work of [28] describes passive encoder/decoder

algorithms that satisfy Conditions 1 and 2. Although Con-

ditions 1 and 2 are too general for our framework, these

algorithms can typically be modified with a scaling term in

order to satisfy (16) and (17) or the weaker condition (15). For

example, in [28] the authors propose a passive interpolative
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downsampler to generate a DT wave variable um[i ] from its

DT counterpart um(t) as follows:

um[i ] = 1

Ts

∫ iTs

(i−1)Ts

um(t)dt .

They then transmit um [i ] over a network to the slave and

extrapolate it such that ûs(t) = um[i − p(i)], t ∈ [i Ts, (i +
1)Ts). For simplicity of discussion, if we assume that p(i) = 0

and um is a scalar, then we have

∫ NTs

0

û2
s (t)dt = 1

Ts

N−1
∑

i=1

(∫ iTs

(i−1)Ts

um(t)dt

)2

≤ Ts

Ts

N−1
∑

i=1

∫ iTs

(i−1)Ts

u2
m(t)dt (Schwarz inequality)

≤
N−1
∑

i=0

∫ (i+1)Ts

iTs

u2
m(t)dt

≤
∫ NTs

0

u2
m(t)dt (Condition 1).

The passive interpolative downsampler must be rescaled in

order to satisfy (16), therefore we propose a linear WS.

A linear WS is realized as follows:

u p j [i ] = 1√
Ts

∫ iTs

(i−1)Ts

u p j (t)dt ∀ j ∈ {1, . . . , m}. (22)

Lemma 4: The linear WS defined by (22) satisfies the wave

variable sampler condition (16).

Proof: Substituting (22) into the left-hand side of (16)

results in

N−1
∑

i=0

uT
p[i ]u p[i ] =

m
∑

j=1

N−1
∑

i=0

u2
p j

[i ]

=
m

∑

j=1

N−1
∑

i=1

(

1√
Ts

∫ iTs

(i−1)Ts

u p j (t)dt

)2

≤ Ts

Ts

m
∑

j=1

N−1
∑

i=1

∫ iTs

(i−1)Ts

u2
p j

(t)dt

≤
∫ NTs

0

uT
p(t)u p(t)dt .

Accounting for the Scaling Effects of WS and WH: The

consequence of using the proposed (non)linear WS and WH

interconnected to a digital controller is that �̇(t) �= �̇d [i ]
at steady state. Intuitively, this is due to the identical scaling

of u p[i ] because of either the nonlinear or linear WS chosen,

however, the relationships are also dependent on the properties

of both the controller and plant. We can derive these relation-

ships precisely in order to scale the controller set point for the

DT case when using a wave variable downsampler.

By assuming that the system reaches a steady-state oper-

ating point, we can compare CT and DT variables for the

SISO case. The steady-state relationships for the plant are

denoted by the scalar gain kp = (�̇(t)/τu(t)) in which

�̇(t) and τu(t) remain at a constant steady-state value for

some t ≥ Tsisteady−state in which isteady−state is a nonnegative

integer. Denote �̇(s) and τu(s) as the corresponding Laplace

transforms for �̇(t) and τu(t), respectively, with transfer

function G p(s) = (�̇(s)/τu(s)). Then, if the plant is linear,

kp = G p(0) ≤ (1/ǫ). kp ≤ (1/ǫ) because the Lm
2 -gain of our

strictly output passive system is (1/ǫ). For simplicity of dis-

cussion, we derive the Lm
2 -gain by assuming that V (�̇(0)) =

0. From (7), the following inequality holds: ǫ‖(�̇)NTs ‖2
2 ≤

〈�̇, τu〉NTs = |〈�̇, τu〉NTs | ≤ ‖(�̇)NTs ‖2‖(τ )NTs ‖2. Therefore,

‖(�̇)NTs ‖2 ≤ (1/ǫ)‖(τ )NTs ‖2 holds.4 The steady-state gain

for the controller is denoted by the scalar kc = (τuc[i ]/ė[i ]) in

which τuc[i ] and ė[i ] remain constant for i ≥ isteady−state. A

linear passive control law shall be considered such that Gpc :
ė1 → τuc can be denoted by the transfer function Gpc(z) =
(τuc(z)/ė1(z)) in which τuc(z) and ė1(z) are the respective z-

transforms of the DT signals τuc[i ] and ė1[i ] in which ė1[i ] =
ė[i ] − ǫcτuc[i ]. Therefore, kc = (Gpc(1)/1 + ǫcGpc(1)). The

passive controller will be designed to have infinite steady-state

gain such that Gpc(1) = ∞, which results in kc = (1/ǫc).

Lemma 5: Assume that the CT plant and controller subsys-

tems depicted in Fig. 2 are SISO and they are not subject to

additional data loss and the disturbance τd(t) and reference

�̇sr(t) = −ks�̇r (t) are held constant; then the following

steady-state relationship holds:

�̇(t) = ks
Ts√
Ts

kck p

1 + kck p

�̇r (t) + k p

1 + k pkc

τd(t).

Proof: If there is no data loss and the disturbance τd(t)

and reference �̇r (t) are held constant, then the following

steady-state relationships hold �̇(t) = kpτu(t) ≤ (1/ǫ)τu(t),

τuc[i ] = kcė[i ] = (1/ǫc)ė[i ], �̇sr [i ] = Ts�̇sr (t), �̇sr (t) =
−ks�̇r (t). Further, at steady state, we have

upd[i ] =
√

Tsu p(t) (23)

vucd(t) = 1√
Ts

vuc[i ] (24)

[

vuc[i ]
�̇d [i ]

]

=

⎡

⎣

1 −
√

2
b

√

2
b

− 1
b

⎤

⎦

[

upd[i ]
τuc[i ]

]

(25)

[

u p(t)

τucd(t)

]

=
[

−1
√

2b

−
√

2b b

] [

vucd(t)

�̇(t)

]

. (26)

Substituting (23) into (25), and (24) into (26) results in

[

vuc[i ]
�̇d [i ]

]

=

⎡

⎣

√
Ts −

√

2
b

√

2Ts

b
− 1

b

⎤

⎦

[

u p(t)

τuc[i ]

]

(27)

[

u p(t)

τucd(t)

]

=

⎡

⎣

−
√

1
Ts

√
2b

−
√

2b
Ts

b

⎤

⎦

[

vuc[i ]
�̇(t)

]

(28)

respectively, which can be written in the following form:
[

τucd(t)

�̇d [i ]

]

= C1

[

vuc[i ]
u p(t)

]

+ C2

[

τuc[i ]
�̇(t)

]

C1 =

⎡

⎣

−
√

2b
Ts

0

0

√

2Ts

b

⎤

⎦ , C2 =
[

0 b

− 1
b

0

]

(29)

4The proof in [33, Th. 2.2.14] shows how to account for nonzero V (�̇(0))
in (7).
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[

vuc[i ]
u p(t)

]

= C3

[

vuc[i ]
u p(t)

]

+ C4

[

τuc[i ]
�̇(t)

]

C3 =
[

0
√

Ts

−
√

1
Ts

0

]

, C4 =
[

−
√

2
b

0

0
√

2b

]

. (30)

Solving for the wave variables in terms of τuc[i ] and �̇(t) in

(30) results in
[

vuc[i ]
u p(t)

]

= (I − C3)
−1C4

[

τuc[i ]
�̇(t)

]

. (31)

Substituting (31) into (29) results in
[

τucd(t)

�̇d [i ]

]

= [C2 + C1(I − C3)
−1C4]

[

τuc[i ]
�̇(t)

]

. (32)

Solving for (32) results in
[

τucd(t)

�̇d [i ]

]

=
[√

1/Ts 0

0
√

Ts

] [

τuc[i ]
�̇(t)

]

. (33)

Using (33), it is straightforward to show that

�̇(t) = ks
Ts√
Ts

kck p

1 + kck p

�̇r (t) + k p

1 + k pkc

τd(t).

Therefore, in order for �̇(t) = �̇r (t) when τd (t) = 0 and

kpkc >> 1, ks = (1 + kck p/kck p

√
Ts) ≈ (1/

√
Ts). Note that

our analysis reveals that the controller attenuates the steady-

state disturbances τd such that �̇ ≈ (1/kc)τd when k pkc >> 1

and �̇r = 0, independent of Ts . Further, it should be noted that

this result takes in to account the scaling effects of the IPES.

For the case in which the IPES is not used and �̇sr [i ] = �̇sr (t)

for t ∈ [i Ts, (i + 1)Ts), then ks =
√

Ts .

E. Passive Digital Controller

Here we present a passive digital control law. We derive this

control law by first presenting a CT passive control law that

allows for two symmetric positive definite gain matrices. We

then apply a causal IPESH transformation to this CT control

law to derive a passive DT control law. We conclude our

presentation with a minimal realization for the digital control

law that accounts for the use of wave variables.

A passive CT PD controller is given by

ė1(t) = (�̇d(t) + �̇sr (t) − ǫcτuc(t))

τuc(t) = K pe1(t) + Kd(�̇d(t) + �̇sr (t) − ǫcτuc(t))

in which �̇d , �̇sr , τuc(t) ∈ R
m and K p and Kd are

real symmetric positive definite matrices. Denote the input

to the controller as u(t) = (�̇d(t) + �̇sr (t) − ǫcτuc(t)),

the integrated error e1(t) = x(t) and respective output as

y(t) = τuc(t) = yp(t) + yd(t) in which yp = K px(t)

and yd(t) = Kd u(t). Passivity is verified by showing that

the output consists of a parallel combination of two passive

subsystems with outputs yp(t) and yd(t) and shared input u(t).

Since yT
d u = uT K T

d u ≥ 0 holds for all u, then the integral of

yT
d u is nonnegative (〈yd , u〉NTs ≥ 0). Therefore the system

with output yd(t) is passive. Passivity of the second system

with input u(t) and output yp(t) is verified by selecting the

Lyapunov function V (x) = (1/2)xTK px > 0 in which its

derivative V̇ (x) = xT K T
p ẋ = yT

p u. Integrating V̇ (x) results in

the passive expression 〈yp, u〉NTs ≥ V (x(NTs)) − V (x(0)) ≥
−V (x(0)). Summing the two passivity expressions results in

〈yp, u〉NTs + 〈yd , u〉NTs = 〈y, u〉NTs ≥ −V (x(0)).

The “proportional” term K p and “derivative” term Kd are

with respect to the integrated velocity error term e1(t), and

therefore our proposed control architecture includes an integra-

tor, which results in an infinite steady-state gain. Although we

may refer to our structure in terms of scalar terms in order to

simplify the discussion, controllers can still exploit our matrix

formulation.

As discussed, our state-space realization of the controller

can be described by

ẋ(t) = Ax(t) + Bu(t) (34)

y(t) = Cx(t) + Du(t) (35)

in which A = 0, B = I, C = K p = K T
p > 0, D = Kd =

K T
d > 0} (all matrices are in R

m×m , therefore x(t), u(t), and

y(t) ∈ R
m).

A discrete passive controller can now be synthesized follow-

ing the steps presented in [35]. We first derive the resulting DT

equivalent passive controller Gpc:ė1[i ] �→ τuc[i ] by applying

a causal IPESH transformation to the state-space realization

(34)-(35) in which the ZOH is applied to the input such

that u(t) = u[i ] ∀t ∈ [i Ts, (i + 1)Ts) and scaled IPES is

located at the output of the CT passive controller such that

y[i ] = (1/Ts)
∫ (i+1)Ts

iTs
y(t)dt with sampling period Ts . The

resulting controller is of the following form:

x[i + 1] = 	ox[i ] + Ŵou[i ]
y[i ] = Cpx[i ] + Dpu[i ]
	o = eAoTs ,

Ao =
[

A 0

C 0

]

=
[

0 0

K p 0

]

=
[

I 0

Ts K p I

]

Ŵo =
∫ Ts

0

eAoηdηBo,

Bo =
[

B

D

]

=
[

I

Kd

]

=
[

Ts I 0

T 2
s

2 K p Ts I

]

[

I

Kd

]

=
[

Ts I
T 2

s

2 K p + Ts Kd

]

Cp = 1

Ts

Co(	o − I ) = 1

Ts

[

0 I
]

[

0 0

Ts K p 0

]

=
[

K p 0
]

Dp = 1

Ts

CoŴo = 1

Ts

[

0 I
]

[

Ts I
T 2

s

2
K p + Ts Kd

]

= Ts

2
K p+Kd .

(36)

As depicted in Fig. 2, the variables u[i ] = ė1[i ] = (�̇d [i ] +
�̇sr [i ]−ǫcτuc[i ]) and y[i ] = τuc[i ]. Note that in our derivation

we scaled Cp and Dp by (1/Ts) in order to closely match the

frequency response of the DT controller with that of the CT

controller it is derived from. It should be noted that this is not

a minimal realization for this controller. However, solving for

H (z) = Cp(z I − 	o)
−1Ŵo + Dp
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=
[

K p 0
]

[

(z − I )−1 0

Ts(z − I )−1 K p(z − I )−1 (z − I )−1

]

×
[

Ts I
T 2

s

2 K p + Ts Kd

]

+ Dp

= K p(z − I )−1Ts I + Dp

results in a minimal controller � = {	o, Ŵo, Cp, Dp} such

that: 	o = I ∈ R
m×m , Ŵo = Ts I ∈ R

m×m , Cp = K p ∈
R

m×m , and Dp = (Ts/2)K p + Kd ∈ R
m×m .

As depicted in Fig. 2, the following equality holds: ė[i ] =
�̇d [i ] + �̇sr [i ] = ė1[i ] + ǫcτuc[i ] ∈ R

m . Therefore, the

feedback controller mapping Gsp : ė[i ] �→ τuc[i ] depicted

in Fig. 2 is strictly output passive if ǫc > 0. Denoting

G = (I + ǫcDp), the strictly output passive controller has a

DT realization �sp = {	sp, Ŵsp, Csp, Dsp}, which is described

analogously to (36) in which

	sp = 	o − ǫcŴoG−1Cp = I − ǫcTs G−1 K p

Ŵsp = Ŵo(I − ǫcG−1Dp) = Ts(I − ǫcG−1Dp)

Csp = G−1Cp = G−1 K p

Dsp = G−1Dp = G−1Dp.

Finally, the effects of the wave variables (Section IV-B) need

to be considered, therefore, the final form of the digital control

law depicted in Fig. 2 with inputs (upd[i ], �̇sr [i ]) and outputs

(τuc[i ], vuc[i ]) is as follows:

x[i + 1] = 	fex[i ] + Ŵfe

(
√

2

b
upd[i ] + �̇sr [i ]

)

τuc[i ] = Cfex[i ] + Dfe

(
√

2

b
upd[i ] + �̇sr [i ]

)

vuc[i ] = upd[i ] −
√

2

b
τuc[i ]

in which G1 = I + (1/b)Dsp, Cfe = G−1
1 Csp, Dfe = G−1

1 Dsp,

	fe = 	sp − (1/b)ŴspCfe and Ŵfe = Ŵsp(I − (1/b)Dfe).

V. ANALYSIS OF THE NCS

This section first presents the main results that provide

sufficient conditions for our proposed networked control archi-

tecture to remain passive and stable. In addition, in order to

characterize the applicability of the approach, we explain how

minimum-phase LTI asymptotically stable systems that are not

passive can be rendered strictly output passive, and thereby

used in our proposed architecture.

A. Passivity Analysis

We prove that the NCS is Lm
2 -stable and discuss prac-

tical networked delay conditions and weak synchronization

requirements that satisfy the assumption of our framework.

Theorem 2: For the wireless control architecture depicted in

Fig. 2, which consists of the passive robot described by (4)

and (5) and the passive digital controller described by (36),

if the communication protocol ensures that both Condition 1)

i − p(i) �= j − p( j) and Condition 2) i − c(i) �= j − c( j) for

all j �= i in which j, i ∈ {0, 1, . . . , N − 1}, then

∫ NTs

0

�̇T(t)τucd(t)dt ≥
(N−1)
∑

i=0

τT
uc[i ]�̇d[i ] (37)

always holds. Therefore, if ǫc = ǫ = 0, then the system

depicted in Fig. 2 is passive. In addition, if ǫc > 0, and ǫ > 0,

then the system is both strictly output passive and Lm
2 stable.

Proof: The WS and WH satisfy (15), which can be

compactly written as

‖(u p)NTs ‖2
2 − ‖(vucd)NTs ‖2

2 ≥ ‖(u p)N ‖2
2 − ‖(vucd)N ‖2

2. (38)

Integrating both sides of (8) and substituting into (38) results

in

〈�̇, τucd〉NTs ≥ ‖(u p)N ‖2
2 − ‖(vucd)N ‖2

2.

Condition 1) ensures that ‖(upd)N ‖2
2 =

∑N−1
i=0 uT

p[i −
p(i)]u p[i − p(i)] ≤ ‖(u p)N ‖2

2; analogously Condition 2)

ensures that ‖(vucd)N ‖2
2 =

∑N−1
i=0 vT

uc[i − c(i)]vuc[i − c(i)] ≤
‖(vuc)N ‖2

2. Therefore

‖(u p)N ‖2
2−‖(vucd)N ‖2

2 ≥‖(upd)N ‖2
2−‖(vuc)N ‖2

2 ≥〈�̇d , τuc〉N

always holds. Therefore, we can satisfy (37), which can be

more compactly written as

〈�̇, τucd〉NTs ≥ 〈�̇d , τuc〉N . (39)

Recall that the gravity-compensated robot satisfies (7). Denote

V (�̇(0)) as βr for the robot and βc > 0 as an appropriate

controller-state-dependent Lyapunov function to account for

potentially nonzero initial state conditions [48]. Then the robot

satisfies

〈�̇, τu〉NTs ≥ ǫ‖(�̇)NTs ‖2
2 − βr (40)

and the controller satisfies

〈τuc, ė〉N ≥ ǫc‖(τuc)N ‖2
2 − βc. (41)

We recall that

τucd(t) = τd (t) − τu(t) (42)

�̇d [i ] = ė[i ] − �̇sr [i ]. (43)

Substituting (42) into the left-hand side of (39) and (43) into

the right-hand side of (39) results in

〈�̇, τd 〉NTs − 〈�̇, τu〉NTs ≥ 〈ė, τuc〉N − 〈�̇sr , τuc〉N

〈�̇, τd〉NTs + 〈�̇sr , τuc〉N ≥ 〈�̇, τu〉NTs + 〈ė, τuc〉N . (44)

Substituting (40) and (41) into (44) results in

〈�̇, τd 〉NTs + 〈�̇sr , τuc〉N ≥ ǫ‖(�̇)NTs ‖2
2

+ǫc‖(τuc)N ‖2
2−(βr + βc). (45)

Next, we recall the first two properties listed for the IPESH

in Section IV-C in which (13) is 〈τuc, �̇sr 〉N = 〈τuc, �̇sr 〉NTs

and (14) is Ts‖(τuc)N ‖2
2 = ‖(τuc)NTs ‖2

2. Substituting (13) and

(14) into (45) results in

〈y, u〉NTs ≥ ǫs‖(y)NTs ‖2
2 − βs (46)
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in which

y =
[

�̇T, τT
uc

]T
, u =

[

τT
d , �̇T

sr

]T

ǫs = min

{

ǫ,
ǫc

Ts

}

, βs = βr + βc.

Therefore, (46) satisfies Definition 1-1 for passivity when

(ǫc, ǫ) ≥ 0 and either ǫc = 0 or ǫ = 0 �⇒ ǫs = 0. Fur-

thermore, (46) satisfies Definition 1-2 when ǫc > 0 and ǫ >

0 �⇒ ǫs > 0 in order for the system to be strictly output

passive, therefore from Theorem III the strictly output passive

system is also Lm
2 -stable.

Our results apply for the more general case when the robotic

and controller subsystems are replaced with arbitrary passive

systems.

Corollary 1: For the network control architecture depicted

in Fig. 2 in which the robot (Grobot(τ (t))) is replaced by any

passive system satisfying Definition 1-1 (with gravity compen-

sation disabled g(�(t)) = 0) and the passive digital controller

(Gpc(ė1[i ])) satisfies Definition 1-1, if the communication

protocol ensures that both Condition 1) i − p(i) �= j − p( j)

and Condition 2) i − c(i) �= j − c( j) for all j �= i in which

j, i ∈ {0, 1, . . . , N − 1}, then

∫ NTs

0
�̇T(t)τucd(t)dt ≥

(N−1)
∑

i=0

τT
uc[i ]�̇d[i ] (47)

always holds. Therefore, if ǫc = ǫ = 0, then the system

depicted in Fig. 2 is passive. In addition, if ǫc > 0, and ǫ > 0,

then the system is both strictly output passive and Lm
2 stable.

Conditions 1) and 2) can be satisfied by communication

protocols that prevent processing of duplicate transmissions

of wave variables [10], [16], [17]. TCP is an appropriate

protocol because it provides an unduplicated ordered stream

of data unlike the user datagram protocol (UDP) protocol,

which can duplicate datagrams due to the effects of having

potentially multiple routes for the data to travel. Note that

Conditions 1) and 2) do not require the data to be ordered

or for all the data to arrive as is guaranteed by the TCP

protocol. Therefore, an engineer can use the UDP protocol

by augmenting the transmitted wave variables with an index

and use either a table or choose to drop older out of order

packets to enforce Conditions 1) and 2). For example, the

summer-interpolation algorithm presented in [17] is suitable

for transmitting wave variable data over UDP, as it ensures

dropping old out-of-order data.

Furthermore, the controller can essentially be run as an

asynchronous nonperiodic task in which it only needs to

compute and send a new control command as new data is

received from the plant [49]. An asynchronous nonperiodic

task as defined in [49] requires the global digital clocks of

the plant subsystem and the digital controller subsystem to

be synchronized, however, the controller does not need to be

executed in a synchronous manner as governed by a periodic

schedule; instead, its execution schedule is determined by the

arrival of sensor feedback data from the plant. The reason for

the relatively weak global clock synchronization assumption

becomes obvious when studying the proofs in [49] for stability

because removing the synchronization assumption in order to

relate input–output relationships between the controller and

plant subsystems would render the task of proving stability ad

absurdum. There are many methods to enforce a global clock

synchronization that should help reduce communication delays

and jitter in order to improve system performance [50]–[52].

B. Passifying Asymptotically Stable LTI Systems

Although our results focus on a robotic system, our architec-

ture is applicable to any systems that can be rendered strictly

output passive. In the following, we show how minimum-phase

LTI asymptotically stable systems that are not passive can be

rendered strictly output passive, and thereby characterizing

a large class of systems that can be used in the proposed

NCS architecture. A direct result of Corollary 1 is that stable

LTI passive systems with a corresponding square real-rational

transfer function matrix Grobot(s) can be rendered strictly

output passive when ǫ > 0, which results in an Lm
2 -stable

system. However, if Grobot(s) is already strictly output passive,

then the additional analog feedback loop can be eliminated by

setting ǫ = 0. We wish to consider the control of a minimum-

phase LTI asymptotically stable system that is not passive and

has the corresponding real-rational transfer function matrix

G(s). We show how to design a low-complexity asymptotically

stable analog filter H∗(s) such that Grobot(s) = G(s)+H∗(s) is

rendered strictly output passive, and that it can be incorporated

into our networked digital control framework in which ǫ = 0.

For simplicity of discussion, we shall consider the control

of a SISO LTI minimum-phase systems G(s). The passivity

index described in Section III can be used to design a low-

complexity asymptotically stable high-pass filter Hhp(s) such

that, if v f (Grobot(s), ω) < 0 (v f (Hhp(s), ω) < −v f (G(s), ω))

for all ω, then Grobot(s) is strictly output passive. Further-

more, if Hhp(s) is designed such that |Hhp( j0)| = 0 and

|Hhp( jω)|lim ω→∞ �= 0, then the output of G(s) can be directly

controlled by our digital controller at steady-state. A typical

high-pass filter that may satisfy these conditions is of the

form Hhp(s) = (vs/s + ωhp) in which v, ωhp > 0 and

can be easily diagonalized for the MIMO case. If, instead,

we choose to design an asymptotically stable band-pass filter

Hbp(s) in which both |Hbp( j0)| = |Hbp( jω)|lim ω→∞ = 0 and

the combined system v f (Grobot(s), ω) < 0 for all ω except

in the limit such that v f (Grobot(s), ω)lim ω→∞ = 0, then we

can only conclude that the combined system Grobot(s) =
(G(s)+ Hbp(s)) is passive and asymptotically stable; however,

a necessary and sufficient test to determine if Grobot(s) is

strictly output passive is to determine the feasibility of the

following linear-matrix inequality (LMI), which results from

the application of [48, Corollary 1].

Corollary 2: The real-rational transfer-function matrix

Grobot(s) with a corresponding minimal state-space realization

� : {A, B, C, D} s.t. ẋ = Ax + Bu, y = Cx + Du in which

x ∈ R
n , y, u ∈ R

m , A ∈ R
n×n , B ∈ R

n×m , C ∈ R
m×n ,

and D ∈ R
m×m is strictly output passive iff there exists a real

symmetric positive definite matrix P = PT > 0 and positive

real constant ǭ > 0 s.t. the following LMI is satisfied:
[

AT P + P A + ǭCTC P B − 1
2

CT + ǭCT D
(

P B − 1
2 CT + ǭCT D

)T
ǭDT D − 1

2

(

DT + D
)

]

≤ 0.
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Fig. 3. Passivity indexes for G(s), H (s) = Hbp(s), and Grobot(s) =
(H (s) + G(s)).

A typical band-pass filter that may render Grobot(s) to

be strictly output-passive is one of the form Hbp(s) =
kbp(ω

2
bps/s2 + 2ζbpωbps + ω2

bp) in which kbp, ωbp > 0 and

0 < ζbp ≤ 1. This band-pass filter will be used in the

digital control of a mass–spring damper system described in

the following subsection.

Example: Position Control of a Mass–Spring Damper:

For simplicity of discussion, we will focus on the SISO

LTI case and consider the position X (s) control of a cart

of mass m which can exert a force τu(s) while attached

to a wall by a spring with stiffness k and a damper

with dampening coefficient c in which (X (s)/τu(s)) =
G(s) = (ω2

n/k
(

s2 + 2ζωns + ω2
n

)

), ωn =
√

(k/m) and

ζ = (c/2
√

km). It is well known that the force-to-velocity

mapping of this mass–spring–damper system is passive, how-

ever, because of the stiffness of the spring, even our PD

controller with integral action will be unable to achieve

near-perfect tracking when trying to close the loop using

only velocity feedback. Therefore, in order to achieve near-

perfect tracking, we need to close the loop directly using

position feedback. As described in Section V-B, we shall

recover a strictly output mapping by augmenting the position

output with a band-pass-filtered command output such that

�̇(s) = X (s) + Hbp(s)τu(s) =
(

G(s) + Hbp(s)
)

τu(s) =
Grobot(s)τu(s). The band-pass filter will be of the form

Hbp(s) = kbp(ω
2
bps/s2 + 2ζbpωbps + ω2

bp).

We close the loop on �̇(s) with our digital PD controller in

order to get near-perfect tracking. For the case when m = 1 kg,

k = 10 N/m, and c = 1 (N-s)/m, we have that ζ = 0.16 and

ωn = 3.16 in order to make the system strictly output passive

so we choose kbp = (.41/k), ζbp = 0.5, and ωbp = 1.6ωn.

The resulting passivity indexes are plotted in Fig. 3 and the

respective Bode plots are depicted in Fig. 4, which indicate

that Grobot(s) is passive and asymptotically stable. Solving

the LMIs given in Corollary 2, we can verify that Grobot(s) is

strictly output passive in which ǭ = 0.1977.

Finally, we evaluate our control framework when b = 1,

Ts = 0.05 s, ǫc = 1.0e − 5, and ǫ = 0 as the output

x(t) tracks the desired reference xr (t) depicted in Fig. 5. We

compare our response x(t) to the response of a CT controller

implementation when Gc(s) = (k p + kds/s) and Hbp(s) = 0,
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Fig. 5. System response x(t) as it tracks xr (t) for the mass–spring–damper
system.

which is denoted xno−H (t). It is clear from Fig. 5 that a better

performing system can be achieved when adding Hbp(s) in

parallel in order to achieve a strictly output passive system.

Although not depicted, the system response for the ideal

CT controller implementation with Hbp(s) included is nearly

identical to our digital controller implementation except for the

Ts sample delay in the output of x(t). Therefore with little

loss in performance, the output of a class of asymptotically

stable minimum-phase systems can be augmented with low-

complexity analog filters H∗(s) in order to create a strictly

output passive system which can be integrated in to our pro-

posed digital control framework. Corollary 1 ensures that Lm
2 -

stability is then independent of the sampling rate Ts chosen.

VI. EXPERIMENTAL EVALUATION

This section presents the experimental results for an NCS

consisting of an asynchronous passive controller and a soft

real-time simulated passive plant representing a robotic arm

using an actual 802.1 1b wireless network. The controller is

implemented in an asynchronous manner so that the reference

input �̇sr [i ] is buffered and processed as measurements from

the plant upd[i ] arrive over the wireless network. The plant, a

Simulink-based model that requires a variable time step solver,

cannot be simulated in a hard real-time manner. However, we

are able to pace the simulation in a soft real-time manner

(the simulation can be paced such that the simulation time

proceeds closely to the operating systems clock) such that the
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Fig. 6. Pioneer 3 arm.

Fig. 7. Experimental setup.

experienced network delays correspond to delays an actual

networked controlled plant would be subjected to.5

A. Robotic System Simulation

We consider the Pioneer 3 (P3) arm, which is a robotic

manipulator built for the P3-DX and P3-AT ActivMedia

mobile robots. The P3 arm has two main segments, the

manipulator and the gripper. The manipulator has five degrees

of freedom and the gripper has an additional one. Fig. 6

shows the home position of the P3 arm including the locations

for the centers of gravity using the point-mass assumption.

The dynamic model of the robotic arm is described by (4)

and is derived using the Lagrangian approach for computing

the elements of the mass matrix, Coriolis and centrifugal

vector, and gravity vector [53]. The model is implemented

as a Simulink block using the “Robotics Toolbox for

MATLAB” [54] and includes gravity compensation and

velocity damping as described in Section IV.

B. Passive Control Architecture

In order to choose an appropriate set of CT gains k p and kd ,

we focus our attention on joint 1 which is subject to the largest

(changes of) inertia J as can be deduced from Fig. 6 such that

Gpm(s) = (1/Js). Similarly, we approximate the controller to

be of the form Gc(s) = (k p + kds/s). Next, using basic loop

5We selected to simulate the plant because robotic arms such at the Pioneer
3 are controlled using simple servos and they do not provide feedback.
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Fig. 8. Robot performance with no network disturbance.

shaping techniques we desire the system to have a crossover

frequency (ωc s.t. 20 log10[|Gpm( jωc)Gc( jωc)|) = 0 dB, in

which ωc = (ωn/N]. ωn = (π/Ts) is denoted as the Nyquist

frequency. Therefore, the control gains can be computed based

on a desired phase margin 0 < φ ≤ 90 (degrees) as follows:

1) τ = ((φ − 40)/5ωc); 2) k p = (Jω2
c/(τωc + 1)); and

3) kd = k pτ . Although the phase margin will never exceed

90°, you can still calculate appropriate gains for kp and kd

for φ > 90 using the above straight-line approximation. All

simulations given are for φ = 80 degrees, N = 2, and

J = 0.293 kg-m2. The remaining system parameters are as

follows: Ts = 0.1 s, ǫc = 1.0e−6, ǫ = 0.5, k p = 8.02, and

kd = 4.1. Because ǫc > 0 and ǫ > 0, Theorem V-A ensures

that our system will remain Lm
2 -stable for fixed time delays.

In order to allow for time varying delays which can satisfy

Conditions 1) and 2), we chose to use the TCP/IP protocol

layers as detailed in Section VI-C.

C. NCS Setup

The experimental setup is shown in Fig. 7. The network

is a wireless 802.1 1b ad hoc network with six wireless

nodes. One node contains the passive controller written in C,

another node contains a Simulink program which simulates

the robotic arm. The controller and the plant use the TCP/IP

Send and TCP/IP Receive blocks in Simulink to communicate

with the controller. The remaining four nodes are used to send

disturbance packets onto the network.

In order to evaluate the stability and robustness to time-

varying network delays of the proposed architecture, we record

the joint angles of the arm and the round-trip delays observed

at the plant. The controller produces a trajectory for the robot

to follow. The first stage moves the robotic arm from the zero

home position to the position of [1 0.8 0.6 0.4 0.2 0] rad

within 5 s. For the second stage, the robot remains in place

for 5 s. In the third stage, the robot returns to the home position

within 5 s.

During a simulation, the controller waits for a connection

from the computer containing the passive robotic model.

During this time, some or all of the disturbance machines

send ping floods to the computer containing the passive

controller. When the node containing the passive plant is able

to send and receive data successfully, the plant model records
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Fig. 9. Packet round-trip delay with no network disturbance.
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Fig. 10. Robot performance with one disturbance node.
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Fig. 11. Packet round-trip delay with one disturbance node.

the packet round-trip time. Specifically, the round-trip delay

(Fig. 9) corresponds to the time difference when u p[isent]
is sent (tsent = isentTs) and when the corresponding control

command arrives back to the plant in the form of a wave

variable vucd[iarrived] (tarrived = iarrivedTs), or in other words,

�tround trip = (iarrived − isent)Ts .

Experiment 1 (Nominal Conditions): In experiment 1, the

controller and plant operate and communicate with each other

without any interference due to communication from the

disturbance nodes. This experiment shows how the system

behaves under nominal conditions. Fig. 8 displays the joint

angles of the robotic arm that follow the reference trajectory
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Fig. 12. Robot performance with two disturbance nodes.
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Fig. 13. Packet round-trip delay with two disturbance nodes.
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Fig. 14. Robot performance with three disturbance nodes.

provided to the controller. The round-trip network delay, as

seen in Fig. 9, is minimal and repeatable, and it has very

little effect on the stability of the robot model. The delay

is a product of internal processing of both the plant and the

controller rather than network delay itself.

Experiment 2 (Network Disturbances): Figs. 10, 12, 14,

and 16 show how the robotic model behaves under network

disturbance with respective packet round-trip delays plotted

in Figs. 11, 13, 15, and 17. During the experiment, each

disturbance node outputs ping flood packets as fast as they

come back or 100 times/s, whichever is more. When one

node or two nodes send out ping floods, the robot behavior is
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Fig. 15. Packet round-trip delay with three disturbance nodes.
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Fig. 16. Robot performance with four disturbance nodes.
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Fig. 17. Packet round-trip delay with four disturbance nodes.

very close to the nominal case. However, when three and four

disturbance nodes participate on the network, the controller

computer has difficulty receiving messages from and sending

messages to the plant computer. This case demonstrates the

advantages of the passive control architecture. When the plant

is unable to communicate with the controller, the robot simply

stops and waits for the next packet from the controller. This

can be seen in Figs. 14 and 16. These results show that in the

face of crippling network traffic, the robot remains stable.

Experiment 3 (CPU Disturbances): In experiment 3, the dis-

turbance nodes are silenced. In this experiment, the controller

computer executes two programs simultaneously, the passive

control program and a disturbance program. The disturbance
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Fig. 18. Robot performance with 100% CPU load.
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Fig. 19. Packet round-trip delay with 100% CPU load.

program uses the Cygwin/Unix low-level copy program “dd”

to continuously write random numbers to a file. This process

overloads the CPU of the controller node. Both programs

have the same priority, and both share the same single core

processor. Figs. 18 and 19 show how the robotic model

behaves when the controlling computer is at 100 similar to

the nominal case in experiment 1, and Fig. 18 also shows a

similar performance to the system in experiment 1. Programs

that increase the load on the CPU running on the controller

computer had a negligible effect on degrading system perfor-

mance.

VII. CONCLUSION

This paper presented a passive control architecture that

offers advantages in building CPS with guaranteed stability

independent of network delay uncertainties provided the data

transmitted over a given network is only processed once

at the respective receiving controller or plant nodes. The

proposed approach leads to orthogonality across the controller

and implementation design layers and thus empowers model-

driven development. We have presented an architecture for a

system consisting of a robotic manipulator controlled by a

digital controller over a wireless network and we have proved

the NCS to be stable. The experimental results validated

the significant advantages of the passivity-based architecture,

especially in the presence of time-varying delays. Our current

and future work focuses on methods that provide an effective
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way to interconnect multiple passive systems and controllers

as well as an integrated end-to-end tool chain for the model-

based design of CPS based on passivity.
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