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Design of Non-Circular Pulleys for Torque

Generation: A Convex Optimisation Approach
Daniele Ludovico , Paolo Guardiani , Francesco Lasagni, Jinoh Lee , Ferdinando Cannella,

and Darwin G. Caldwell

Abstract—Nowadays, robotic research focuses more and more on
attaining energy-efficient and safe solutions. They are key-aspects
of industrial robots, such as inspection and maintenance robots.
The introduction of a mechanism that passively compensates the
joint torque caused by the weight of the robot may offer a valid
solution. Avoiding the need for actuators to balance gravity torques
helps decrease the power consumption and the size of the actuators.
Furthermore, a passive gravity compensation mechanism allows
the robot to hold a static position without the need for an external
power source, hence avoiding the risk of collapsing in case of
failure of the actuators. This work focuses on designing a torque
generator composed of a non-circular pulley and a spring, which, by
solving a convex optimisation problem, offers a new methodology
for creating any generic torque and thereby also succeeds in solving
gravity compensation problems. This methodology guarantees the
outcome of feasible non-circular pulleys which minimise the torque
required to perform any specific task.

Index Terms—Mechanism design, methods and tools for robot
system design.

I. INTRODUCTION

U
P TO NOW, most of the classical industrial robots are

designed to be perfectly rigid, to withstand high payloads

and accelerations, move at high velocity, and ensure precision

and repeatability of their movements. Achieving these perfor-

mances comes at the cost of having a bulkier and, above all,

heavier structure.

Another prerogative of classical industrial robots, particularly

in robot manipulators, is good manipulability and dexterity,

which can be achieved through a redundant kinematic chain. The

increment of the torque due to the weight of a heavier, stiffer, and
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longer structure, causes the need for more powerful actuators in

order to overcome the pull of gravity. In turn, a large actuator

adds weight to the robot and implies a higher power consumption

to keep static balance.

In this scenario, the study of mechanisms reducing static force

is crucial to increasing energy efficiency, improving dynamic

response, and carrying a heavier payload. Different types of

weight compensation mechanisms are presented and categorised

in [1]. The counterweight mechanism in [2] allows moving the

centre of mass of each link to the joint axis of rotation. This tech-

nique allows smooth dynamic behaviours but has the drawback

of increasing the total inertia and volume of the system.

Authors in [3] propose a magnetic balancing mechanism by

exploiting the fact that two nested Halbach cylinders produce a

sinusoidal torque enabling the compensation of that produced by

a gravitational load over a complete rotation of a revolute joint.

Even if this solution is difficult to finely tune and obtaining

perfect compensation is not possible, it has the advantages of

being extremely compact with the cylinders mounted in axis

with the joint as well as the possibility to be modular; several

modules can thus be combined in series to increasing torques.

Spring mechanisms are widely studied because they add less

inertia than counterweight and are simpler to implement than the

magnetic mechanism, but, on the other side, it is more difficult

to perfectly match the non-linear joint torque induced by gravity

and to obtain a smooth dynamic behaviour.

Torsional springs are rarely used compared to axial ones since

it is more complex to adapt and adjust their behaviour to achieve

static balance [4]. Radaelli et al. obtain good results for balanc-

ing an inverted pendulum with pre-stressed torsion bars [5].

The use of axial springs is well-documented in [6]. There are

different ways to connect the spring to the system to compensate

for the gravity torques. The simplest one is to connect the springs

directly to the manipulator links. However, this technique leads

to an exact compensation only if a zero-free length spring

is used, and even in this case, it is complex to fine-tune the

mechanism [7]. Besides, there is also the risk that the protruded

spring may interfere with other parts of the robot. To improve

the gravity compensation of the before-mentioned mechanisms

Arakelian et al. introduce auxiliary links to minimise the resid-

ual unbalance [8]. Kim et al. in [9] design a device partially

compensating the torque produced by gravity force on a 6-DOF

manipulator using a linear spring. Axial springs have been

recently applied to compensate for the gravity torque acting on

robotic waists. Yun et al. designed a 3-DOF mechanism capable

of compensating up to 23 kg load [10]. Reinecke et al. presented
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a 2-DOF device able to balance the weight of the upper body of

a robot that moves dynamically [11].

More elaborated techniques involving cables, additional links,

pulleys, and cams solve the problems related to zero-free length

spring and interference with other parts of the mechanism. For

example, a pulley and a cable can be arranged to simulate a

zero-free length spring by storing away the initial length of

the spring [12], [13]. Nguyen et al. in [14], [15] were able to

considerably reduce the peak torque produced by gravity force

acting on a planar articulated robotic arm and a parallel delta

robot employing gear-spring modules.

Pulleys and cams with non-circular shapes increase the num-

ber of design parameters in the system, simplifying the optimi-

sation of gravity compensation mechanisms [16]–[18]. Fedorov

et al. proposed mechanisms based on a pair of differential

non-circular pulleys to generate non-monotonic torque profiles

through a geometrical method [19]. In [20], Kim et al. defined

an analytical solution to find the shape of non-circular pulleys

employed to generate an arbitrary torque profile. One of the

limits of this work is that the authors did not consider all the

constraints on the feasibility of the pulley. In particular, they

did not count the potential presence of non-regular points [21],

where the rope cannot perfectly wrap the pulley. Furthermore,

during the design phase, evaluating constraints is not possible,

so it is necessary to iterate the design by tuning some parameters,

such as the spring stiffness, the spring initial length, or the

insertion point, until a feasible solution is obtained.

This letter proposes a convex optimisation formulation of the

pulley profile generation to overcome these limitations. First, in

Section II, the analytical solution derived in [20] is revisited as a

baseline. Section III presents the proposed convex optimisation

method defining the cost function and detailing how to obtain

the convex formulation of the constraints. Two design examples

are shown in Section IV to compare the analytical solution with

the convex optimisation solution.

II. BASELINE: ANALYTIC SOLUTION FOR NON-CIRCULAR

PULLEYS DESIGN

Consider the mechanism represented in Fig. 1, where O is the

origin of the reference frame Oxy . The pulley, body B1, is fixed

to the ground. On one side, the linear extension spring is attached

to the link, body B2, at insertion point R. On the other side, it

is fixed at the anchor point A through a cable that wraps around

the pulley. rm(θ) represents the moment arm that, multiplied

by the spring force at joint position θ, determines the torque

applied to the joint. The spring force line of action is tangent to

the pulley and passes through the insertion point R and the point

Q. The point P represents the tangent point between RQ and

the pulley. The angle formed by the intersection of the direction

of the spring force and the line passing through the point O and

R is called φ.

Given the spring stiffness, and its initial length, the pulley

profile is determined in closed form, as shown in [20] under

the assumptions that the spring behaviour is linear, no pulley

is present on the insertion point, and the cable is rigid with

negligible diameter. The derivation of the closed form solution,

Fig. 1. Schematic diagram of a mechanical system with a spring and a non
circular pulley.

discussed in detail in [20], is summarised as follows:

rm (θ) =
τd (θ)

√

2k
∫ θ

θ0
τd (α) dα+ k2u2

0

, (1)

φ = sin−1

(

rm (θ)

L

)

, (2)

S (θ) = tan (θ + φ) , (3)

Y (θ) = L [sin θ − cos θ · tan (θ + φ)] , (4)

(xp (θ) , yp (θ)) =

(

−
Y ′ (θ)

S ′ (θ)
, Y (θ)−

Y ′ (θ)

S ′ (θ)
S (θ)

)

, (5)

where xp and yp are x- and y-Cartesian coordinates of the pulley

profile represented in the frame Oxy , respectively.

However, it is worth noticing that the pulley shape obtained

through this method could be unrealistic. As discussed in previ-

ous works [20], [22], to get a feasible pulley, it is necessary to

avoid that the radius of the pulley contour goes to infinite, and

the shape must be convex. This condition can be translated into

a constraint on the curvature of the profile as follows:

1 + φ′ (θ) �= 0. (6)

Besides, the pulley profile cannot have non-regular points be-

cause, in these points, the rope cannot wrap perfectly. This

condition is satisfied if the zeros of x′
P (θ) are different from

the zeros of y′P (θ).

III. PROPOSED METHOD BASED ON CONVEX OPTIMISATION

In this section, a convex optimisation problem to compute the

moment arm rm(θ) as its solution, guaranteeing the feasibility

of the pulley shape, has been formulated. This approach enables

conditions on the pulley profile to be included as constraints of

the optimisation problem and promises a feasible shape at the

expense of introducing an error in the torque generation.

A. Cost Function Definition

The objective function of the optimisation problem is derived

directly from (1). The angle θ is discretised over the range of
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motion of the joint from the initial angle θi to the final θf , given

by

θ ∈ IRn : θ =
[

θ0 θ1 . . . θn−1

]T
.

Without loss of generality it is possible to parametrise the

moment arm as a polynomial of order m as follows:

rm = β0 1 + β1θ + β2θ
2 + · · ·+ βmθm

=
[

1 θ θ2 . . . θm
]

· β

= H · β. (7)

Define the angle increment as dα =
θf−θi

n
and the vector v

as

v ∈ IRn : vi =

√

√

√

√2k
i

∑

α=0

τd (θα) dα+ k2u20, ∀θα ∈ θ. (8)

Substituting v in (1) yields the moment arm equation rewritten

as

diag (v) · (H · β)− τ d = 0. (9)

By squaring the ℓ2-norm of (9), one can then obtain a convex ob-

jective function which minimises the sum of the torque residuals

squared as follows:

f0 (β) = ‖diag (v) · (H · β)− τ d‖
2

2
. (10)

B. Constraints Definition

1) Moment Arm Bounds: The moment arm rm(θ) must be

greater than 0 and smaller than the insertion lengthL. Otherwise,

the mobile link would hit the non-circular pulley and there would

be no space to insert the spring. These conditions can be written

as follows:

‖H · β‖∞ < L, (11)

‖H · β‖∞ > 0. (12)

2) Curvature Constraint: As discussed in Section II, to avoid

collision between the cable and other parts of the non-circular

pulley, the pulley shape needs to be convex. The straightforward

way to satisfy this condition is to introduce a constraint on the

curvature of the pulley, so that it does not change the sign.

Starting from (6) it is possible to write this constraint as

1 + φ′ > 0 ∪ 1 + φ′ < 0 ⇒

1 +
r′m

√

L2 − r2m
> 0 ∪ 1 +

r′m
√

L2 − r2m
< 0. (13)

The disequalities (13) can be written as

r′m > −
√

L2 − r2m ∪ r′m < −
√

L2 − r2m

⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r2m < L2

r′m ≤ 0

r2m + r′2m < L2

∪

{

r2m < L2

r′m ≥ 0
∪

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r2m < L2

r′m ≤ 0

r2m + r′2m > L2.
(14)

The set generated by (14) is not convex, as shown in Fig. 2

a. Many different convex subsets of (14) can be considered to

obtain a convex formulation of the curvature constraint. The

main effect of reducing the feasible set is not to reach the global

optimum, but the optimal solution belonging to the convex subset

Fig. 2. Geometric representation of the curvature constraint: (a) the set defined
by the curvature constraint (14); (b) the set defined by the convex approximation
of the curvature constraint (14) described by (15). The dashed lines represent
the points excluded in the set.

considered. A possible choice for the convex approximation of

(14) is represented by

r2m + r′2m < L2. (15)

As shown in Fig. 2 b, the set described by (15) is convex and

satisfies the constraint on the curvature of the pulley profile.

Furthermore, choosing (15) as curvature constraint, the variation

of the moment arm is bounded. This additional condition makes

rm smooth allowing to obtain a pulley on which the rope can

perfectly wrap.

As for rm, r′m can be written in terms of the discretised angle

θ and the design variables β

r′m = β1 1 + 2β2θ + 3β3θ
2 + · · ·+mβmθm−1

=
[

0 1 2θ 3θ2 . . . mθm−1

]

· β

= Hd · β. (16)

Finally, by substituting (16) into (15), the curvature constraint

can be written as a set of quadratic constraints in β as follows:

βT ·
(

HT
i
H

i
+HT

di
Hdi

)

· β < L, i = 1 . . . n, (17)

where H
i

and Hdi
are respectively the rows of H and Hd. This

type of constraint can be easily implemented using well-known

convex optimisation algorithms.

3) Non-Regular Points Avoidance: Consider the parametric

curve defined in (5)

γ (θ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xp (θ) = −
Y ′ (θ)

S ′ (θ)

yp (θ) = Y (θ)−
Y ′ (θ)

S ′ (θ)
S (θ) .

Non-regular points of γ(θ) are all the values of θ such that

γ′(θ) = 0 [21].

The derivative of γ(θ) can be written as

γ′ (θ) =

{

x′
p (θ) = −h (θ)

y′p (θ) = −h (θ)S (θ) .
(18)

where

h (θ) =
Y ′′S ′ − Y ′S ′′

S ′2
. (19)
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From (3) and (4), one can compute Y and its derivatives as

Y = L [sin (θ)− cos (θ)S] , (20)

Y ′ = L [cos (θ) (1− S ′) + sin (θ)S] , (21)

Y ′′ = L [sin (θ) (2S ′ − 1) + cos (θ) (S − S ′′)] . (22)

Substituting (20)-(22) into (19) gives h as a function of θ, S, S ′

and S ′′ only,

h = L
sin (θ)

[

2S ′2 − S ′ − SS ′′
]

+ cos (θ) [SS ′ − S ′′]

S ′2
. (23)

The points in which γ′(θ) = 0 are the zeros of the function h(θ).
Since S ′2 is always different from zero, and imposing h(θ) = 0,

the following equation is obtained:

tan (θ) =
SS ′ − S ′′

2S ′2 − S ′ − SS ′′
. (24)

Moreover considering that

S ′ (θ) =
(

1 + S2
)

(1 + φ′) , (25)

S ′′ (θ) =
(

1 + S2
)

[

2S (1 + φ′)
2
+ φ′′

]

, (26)

equation (24) can be rewritten as

tan (θ) =
φ′′ + Sg (φ′)

−Sφ′′ + g (φ′)
, (27)

where

g (φ′) = (1 + φ′) [2 (1 + φ′)− 1] . (28)

By using (3) and (27), the following equation is obtained:

φ′′ = −g (φ′)
tan (θ + φ)− tan (θ)

1 + tan (θ + φ) tan (θ + φ)
=

= −g (φ′) tan (φ) .

(29)

Finally computing the derivatives of φ and substituting (2)

and (28) into (29) gives

r′′m + rm

(

1 + 3
r′m

√

L2 − r2m
+ 3

r′2m
L2 − r2m

)

= 0. (30)

Considering that

1 + 3
r′m

√

L2 − r2m
+ 3

r′2m
L2 − r2m

≥
1

4
, (31)

it is possible to write the following inequality:

r′′m + rm

(

1 +
3r′m

√

L2 − r2m
+

3r′2m
L2 − r2m

)

≥ r′′m +
1

4
rm.

(32)

Equation (32) demonstrates that

r′′m +
1

4
rm > 0 ⇒ h (θ) �= 0. (33)

Note that r′′m and rm can be written in terms of the discretised

angle θ and the design variables β as

r′′m = 2β2 1 + 6β3θ + · · ·+m (m− 1)βmθm−2

=
[

0 0 2 · 1 6θ . . . m (m− 1)θm−2

]

· β

= Hdd · β.

(34)

Accordingly, to avoid non-regular points in the pulley shape, it

is enough to add the following linear constraints:
∥

∥

∥

∥

(

Hdd +
1

4
H

)

· β

∥

∥

∥

∥

∞

> 0. (35)

Fig. 3. Schematic of the force acting on an inverted pendulum.

C. Optimisation Problem

With considering the cost function (10) and constraints (11),

(12), (17) and (35), the problem of designing a non-circular

pulley for torque generation can be solved as the convex opti-

misation problem described by

min
β

‖diag (v) · (H · β)− τ d‖
2

2

s.t. ‖H · β‖∞ > 0

‖H · β‖∞ < L
∥

∥

∥

∥

(

Hdd +
1

4
H

)

· β

∥

∥

∥

∥

∞

> 0

βT ·
(

HT
i
H

i
+HT

di
Hdi

)

· β < L i = 1 . . . N. (36)

In this optimisation problem, the cost function is quadratic, and

the constraints are linear or quadratic inequalities. This family of

convex problems can be solved as a semidefinite program using

robust and efficient algorithms.

IV. DESIGN EXAMPLES

In this section, the comparison between the analytical and the

proposed convex optimisation solution is presented through two

examples.The first describes the design of non-circular pulleys

for compensating the gravity force acting on an inverted pen-

dulum. The second presents the design of non-circular pulleys

able to produce a generic torque profile. This example highlights

the benefit introduced by the convex optimisation approach.

The design algorithm is implemented in MATLAB, and the

optimisation problem is solved using the CVX toolbox [23],

[24].

A. Gravity Compensation of the Inverted Pendulum

In this example, the inverted pendulum presented in Fig. 3

is taken into account. The desired torque for compensating the

gravity force acting on this mechanism is represented in Fig. 4

and is defined as follows:

τd (θ) = τmax cos(θ), (37)

where τmax = Fg OG.
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Fig. 4. Comparison of the desired torque with the torque produced by the
analytical solution and the torque produced by the proposed convex optimisation
solution.

TABLE I
INVERTED PENDULUM EXAMPLE PARAMETERS

∗Considerations about spring selection are detailed in the appendix.

As described in [20], to generate a bidirectional torque, two

antagonistic pulleys are necessary. The desired torque has to

be divided into two different sub-profiles to compensate for the

gravity force acting on the pendulum in the range of motion

[θi, θf ]. Table I lists the parameters selected to define the torque

sub-profiles.

Figure 5 presents both profiles obtained by the analytical and

convex optimisation solution. The algorithm provides only the

profile points generated by the angles belonging to the desired

range of motion. Accordingly, the two boundary points have to

be connected by any smooth curve to produce the entire profile.

The light blue shape in Fig. 5 shows a possible complete pulley

profile for the convex optimisation solution.

The symmetry of τd and the choice of the splitting torque

coefficient λ = 0.5 entail that the profile of the two antagonistic

pulleys is symmetric, as explained in [20].

The design result highlights that the proposed algorithm gen-

erates a pulley profile able to approximate the desired torque

with a maximum error of 2.2 Nm while the analytical solution

has a maximum error of 0.9 Nm approximating better the desired

Fig. 5. Pulley shape for the inverted pendulum. The blue line represents the
shape obtained with the analytical solution. The red line represents the convex
optimisation solution. The complete pulley shape is represented in light blue for
the convex optimisation solution.

Fig. 6. Torque error produced by the analytical and the convex optimisation
solution for the inverted pendulum.

torque. Figure 6 depicts the torque error produced by both the

solutions.

To better evaluate the results, the error has been put in perspec-

tive with the desired torque. The percentage error is computed

as the relative percent difference as follows:

e% =

(

2
τd − τ

|τd|+ |τ |

)

× 100. (38)

This formulation allows to bound the value of the percentage

error in the range [−200 200] even if the desired torque is equal

to zero. Table II compares the absolute and percentage error,

respectively eabs and e%, for both the analytical and the proposed

convex optimisation method in different joint configurations.

When θ = π/2, the desired torque is zero, so the percentage
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TABLE II
TORQUE ERROR FOR THE INVERTED PENDULUM EXAMPLE

∗Bounded to the maximum value since the desired torque is zero.

Fig. 7. Profile of the desired torque (39) and the torque generated by the convex
optimisation solution.

error reaches the maximum value. Nevertheless, the residual

torque is about 0.6 Nm.

B. Generic Torque Profile Creation

To verify that the proposed convex optimisation method

always finds a feasible solution, in this example, the generic

torque, represented in Fig. 7 and defined as

τd (θ) = a (cos(θ)− sin(θ)) + c, (39)

is considered.

Since τd is not symmetric, both the analytical and convex

optimisation methods generate two antagonistic pulleys with dif-

ferent profiles. Table III lists the selected parameters to designing

the pulleys. In this torque profile, the analytical solution pro-

duces an unfeasible shape for both the antagonistic pulleys. The

first pulley does not satisfy the curvature constraints, whereas

the second contains a non-regular point. Since the two pulleys

have unfeasible shapes, the length of the cables wrapping on

the pulleys is not defined, making it impossible to compute the

torque produced by the analytical solution.

The convex optimisation approach, instead, can satisfy all the

constraints producing feasible shapes. Figure 8 shows one of the

TABLE III
GENERIC TORQUE EXAMPLE PARAMETERS

Fig. 8. Pulley shape to produce the generic torque (39). The blue line represents
the shape obtained with the analytical solution. The red line represents the convex
optimisation solution. The complete pulley shape is represented in light blue for
the convex optimisation solution.

Fig. 9. Torque error produced by the convex optimisation solution for the
generic torque (39).
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TABLE IV
TORQUE ERROR FOR THE GENERIC TORQUE EXAMPLE

Fig. 10. Graphical representation of curvature constraint for both the analytical
and convex optimisation solution.

Fig. 11. Graphical representation of non-regular point constraint for both the
analytical and convex optimisation solution.

two pulley profile obtained by both the convex optimisation and

the analytical solution where the presence of a non-regular point

is evident.

The two antagonist pulleys, generated by the convex opti-

misation solution, can approximate the desired torque with a

maximum error of 6.4 Nm, as shown in Fig. 9. Percentage errors

are given in Table IV.

The curvature constraint for both analytical and convex op-

timisation solution is shown in Fig. 10, where it is possible to

notice that the analytical solution has a zero in θ = 0.54 rad, vio-

lating the constraint. In Fig. 11, the non-regular point constraint

is represented for both the analytical and convex optimisation

solution. In the analytical solution appears a non-regular point

in θ = 0.91 rad.

V. CONCLUSION AND FUTURE WORKS

This letter presented a convex optimisation approach to de-

signing non-circular pulleys for torque generation. First, the

analytical solution was presented. Then, the problem was framed

as a convex optimisation problem and two different designs were

given as examples. In the first example, a gravity compensation

mechanism for an inverted pendulum was presented. Although

the analytical solution provided a better approximation of the

desired torque, the convex solution returned a good estimate of

the desired torque, too. For the second example, a generic torque

was required. In this case, the analytical solution was not able to

generate a feasible shape, while the convex approach provided

a good approximation of the desired torque.

In general the analytical method needs a long tuning procedure

to set the parameters, without any guarantee of finding a feasible

solution. The proposed convex optimisation solution overcomes

this limitation by considering all the constraints right from the

start, including the non-regular points constraint, while always

returning a feasible pulley shape and obtaining an acceptable

error with respect to the desired torque.

In future work, we plan to build a prototype of the non-circular

pulley torque generator to validate the proposed method and

to analyse the advantages in terms of mass reduction, energy

consumption, and safety of the mechanism on a real device.

Furthermore, convex optimisation problems can easily be

solved in real-time. This feature can be exploited to develop

an active pulley able to adapt its shape, allowing, for example,

to compensate the gravity acting on an articulated mechanism

such as a robotic manipulator in which the torque depends on

all the joint angles.

APPENDIX

CONSIDERATIONS ABOUT SPRING SELECTION

The stiffness and the initial length of the spring have to be set

before running the optimisation algorithm. These parameters can

be employed to define the size of pulleys or, when the analytical

solution is unfeasible, to find a realistic shape. Knowing the

maximum desired torque, τmax, the size of the pulley is strictly

related to the spring constant and initial length. Let assume to

wrap the cable on a circular pulley. Under this assumption the

maximum elongation of the spring is

umax = (θf − θi) r + u0, (40)
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TABLE V
SPRING PROPERTIES

where r is the pulley radius and u0 the initial elongation. Thus

the maximum torque acting on the pulley is computed as

τmax = kumaxr = kr [(θf − θi) r + u0] . (41)

Given the desired radius and a preliminary initial elongation, the

order of magnitude of the spring constant is estimated from (41)

as follows:

k =
τmax

(θf − θi) r2 + u0r
. (42)

To verify this relation let assume that a radius of about 45 mm

and a preliminary initial elongation of 0.015 mm are required.

Then from (42) it is possible to estimate the spring stiffness as

k ≈ 30000 N/m.

The properties of the candidate helical compression spring

made of 52CrMoV4 are listed in Table V. As shown in [25], the

elastic constant of the spring can be derived from

ks =
d4G

8D3Na

= 29 277
N

m
, (43)

where D represents the mean coil diameter, d the wire diameter,

G the shear module andNa the number of active coils. To obtain

a motion in the range [θi, θf ] the required deflection of the spring

is Lu = 107 mm. Thus the free length of the spring is L0 =
Lu + Ls = 328 mm where Ls is the solid length of the spring.

The maximum axial load is F = ksLu = 3133 N. As shown

in [25], the maximum stress of the designed helical spring is

Tmax =
8FD

πd3

(

4C − 1

4C − 4
+

0.615

C

)

= 387 MPa, (44)

where C = D/d = 6.7. The Von Mises stress of the critical

point is equal to σ′ = 670 MPa. Considering a safety factor

s = 1.5, the condition sσ′ < σy is verified and the spring design

can be considered feasible.
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