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Abstract—In the present study, a NARX (Nonlinear Auto 

Regressive with eXegenous input) model of nonlinear systems, 
where the physical parameters of interest for the system design 
appear explicitly as coefficients in the model, is introduced. The 
model is referred to as the NARX Model with parameters of 
interest for Design (NARX-M-for-D). The Output Frequency 
Response Function (OFRF) in terms of these physical parameters 
is then introduced for the NARX-M-for-D, and an efficient 
algorithm is derived to determine the OFRF so as to facilitate the 
design of nonlinear systems in the frequency domain. Moreover, a 
general procedure for the design of the physical parameters of the 
NARX-M-for-D in the frequency domain is proposed, which has 
the potential to be applied to design a wide range of engineering 
systems and structures. Finally, two case studies are provided to 
demonstrate the new OFRF-based nonlinear system design and its 
significance in engineering applications. 

Index Terms—The OFRF; Nonlinear systems; The frequency 
domain; The NARX model; Engineering system design; 

I. INTRODUCTION 

N engineering practice, the design of a system is often 
concerned with the determination of the system parameters 

that can be used to achieve desired system responses under 
considered loadings or input excitations [1-3]. The frequency 
domain design of linear systems [4-6] based on the traditional 
concept of Frequency Response Function (FRF) has been 
widely applied in engineering system designs such as, e.g., the 
design of the dynamic properties of vibration absorbers [7], 
vehicle suspensions [8], and aero engine blades [9]. 

In practice, many systems cannot be simply described by a 
linear model [10]. In this case, nonlinear system analysis and 
design methods in either the time or the frequency domain  have 
to be applied to study these systems. Compared with the time 
domain methods such as, e.g., the harmonic balance method 
and the multi-scale method [11], etc., the nonlinear system 
analysis in the frequency domain can deal with a general class 
of nonlinear systems rather than the systems with a specific 
model description [12, 13].  

This analysis is achieved by using the well-known 
Generalized Frequency Response Functions (GFRFs) [14]. 
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However, in spite of providing a general representation for a 
wide glass of nonlinear systems in the frequency domain, the 
GFRFs are a series of multi-dimensional functions which are 
often difficult to measure, display and interpret in practice. To 
address this issue, many new concepts such as Nonlinear 
Output Frequency Response Function (NOFRF) [15], Output 
Frequency Response Function (OFRF) [16], and Higher Order 
Sinusoidal Input Describing Functions (HOSIDF) [17] have 
been proposed. The OFRF reveals an analytical relationship 
between the output frequency response of nonlinear systems 
and the parameters which define the system nonlinearities and 
can be used to facilitate both the analysis and design of 
nonlinear systems in the frequency domain [18-19]. The 
HOSIDF can be considered as a special case of the OFRF [20]. 

Since the introduction of the OFRF in 2007 [16], many 
studies on the application of this concept to the nonlinear 
system analysis and design have been conducted. For example, 
Peng and Lang [21] have derived a recursive algorithm to 
determine the structure of the OFRF for the system described 
by a nonlinear differential equation model. More recently, the 
OFRF based approach has been applied in the analysis and 
design of nonlinear vibration isolators [22-24]. For example, by 
using the OFRF, Lang et al [22] and Peng et al [23] have 
rigorously proved significant beneficial effects of nonlinear 
damping on vibration isolation systems. Recently, Lv and Yao 
[24] have applied the OFRF to study the influence of damping 
coefficients on both the force and displacement 
transmissibility, showing that the nonlinear isolators can 
perform better than linear isolators over certain frequency 
ranges. 

The previous studies have shown that the OFRF-based 
nonlinear system analysis and design have advantages and 
potential to solve many engineering problems. However, 
almost all currently available results require that a nonlinear 
differential equation-based physical model of the system is 
available in which the physical parameters that can be used for 
the system analysis and design are the coefficients in the 
differential equation model. In most cases of engineering 
designs, such as, e.g., vibration isolators made of viscoelastic 
and composite materials [25] and bladed disks of aero-engines 
[26], it is difficult or impossible to find such a physical model 
for the systems. But, it is possible to find, via a nonlinear 
system identification approach, a data driven NARX model 
representing the relationship between the input excitation and 
corresponding system response [27]. In addition, as 
demonstrated by our previous work [28], it is also possible to 
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identify a NARX model such that the physically meaningful 
parameters appear explicitly as coefficients in the model. A 
general representation of such a NARX model is, in the present 
study, referred to as the NARX Model with parameters of 
interest for Design (NARX-M-for-D). The advantages of the 
OFRF in nonlinear system analysis and design as demonstrated 
in previous studies imply that there is a need to develop an 
OFRF based-approach for the NARX-M-for-D. 

In the present study, the OFRF of the NARX-M-for-D in 
terms of the design parameters is defined. The NARX-M-for-D 
is a novel and general model of nonlinear systems which can be 
directly determined from data and used to represent complex 
engineering systems for the purpose of system analyses and 
designs. A recursive algorithm for the determination of the 
structure of the OFRF for a class of nonlinear systems 
described by a NARX-M-for-D is derived, which can directly 
produce an OFRF representation of the system output 
frequency responses without involving any complicated 
mathematical derivations/operations. Then, a general OFRF- 
based approach to the frequency domain design of nonlinear 
systems described by the NARX-M-for-D is proposed, which 
allows a systematic OFRF-based design that, for the first time, 
can take the effect of both the system linear and nonlinear 
characteristics on the design into account. The new method is 
an extension of the original OFRF based method to a much 
more general case where the OFRF for a NARX-M-for-D has 
to be derived and design parameters of concern can affect both 
linear and nonlinear characteristics of the system. Case studies 
are used to demonstrate the effectiveness of the proposed new 
design approach, showing a promising application of the OFRF 
based design that is expected to be able to systematically 
address the design problems of a wide class of engineering 
systems. 

The paper is organized as follows. Section II  introduces the 
NARX-M-for-D and defines the model’s OFRF in terms of the 
system parameters of interest for design. Section III  is 
concerned with the determination of the OFRF for a class of 
nonlinear systems described by the NARX-M-for-D, where an 
effective recursive algorithm is derived for the determination 
the OFRF representation of the system output frequency 
responses. In Section IV, a general OFRF based approach for 
the frequency domain design of nonlinear systems is proposed. 
Then, two case studies with regard to the design of the output 
frequency response of a nonlinear oscillator and the force 
transmissibility of a nonlinear vibration isolator, respectively, 
are presented in Section V. Finally, conclusions are given in 
Section VI . 

II. THE NARX MODEL WITH PARAMETERS OF INTEREST FOR 

DESIGN AND ITS OFRF REPRESENTATION 

A. The NARX Model with parameters of interest for Design 
(NARX-M-for -D) 

1) The concept of the NARX-M-for-D 
The traditional NARX model of Single Input Single Output 

(SISO) nonlinear systems can be described as [29]: 
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where  .y  and  .u  are the outputs and inputs of the system; 

M  and K  are integers, p q m   and 
1 1, p q p q

K K K

k k k k 

   ; yn  

and un  are the maximum time delay of the system for  .y  and 

 .u , respectively;  .f  is a nonlinear function representing 

the dynamic relationship between the system input and output 
which has, in model (1), been approximated by a polynomial 
function of the delayed system input and output. 

In practice, the NARX model (1) can be determined by using 
a nonlinear system identification method from the input and 
output data of a system. However, the values of the coefficients 

 , .p qc  in model (1) generally have no direct physical 

meanings. Because of this, in most cases, the NARX model (1) 
is used for evaluating the system output responses to different 
inputs [30]. It is generally difficult to directly use the model to 
analyse the effects of system physical characteristics on the 
system behaviours so as to achieve the objectives of system 
designs. In order to overcome this problem, a new NARX 
model known as the NARX-M-for-D is introduced as follows.  

The NARX-M-for-D is a NARX model where the physical 
parameters of interest for the system design appear explicitly as 
model coefficients. A general form of the single input single 
output NARX-M-for-D of nonlinear systems can be given as: 

         
   

1 , , , , 1 , ,

,
y

u

y t y t n u t u t
y t f

u t n

   
    し つ

       (2) 

where  し つ  is a vector representing a set of functions of the 

parameter vector  1, , S つ , where 1, , S   are the 

physical parameters of interest for the system design, and S  is 
the number of these design parameters. 

Considering  .f  can be approximated by a polynomial 

function of the delayed system input and output as in model (1), 
the NARX-M-for-D can further be expressed as: 

 1 2

1

( , , , )
,

1 1 , 0 1 1

( ) ( ) 0p q

p q

p p qM m K
k k k

p q i i
m p k k i i p

y t k u t k 





     

 
   

 
   つ (3) 

where    1( , , )

,
p qk k

p q  つ し つ  with p q m   represents the 

coefficients of the NARX-M-for-D (3). 
2) An example of the NARX-M-for-D 

M0
u(t)

y(t)

1 3,c c

1 3,k k

fout

 
Fig.1 A nonlinear oscillator 

In order to demonstrate the practical relevance of the 
NARX-M-for-D (3), consider a nonlinear oscillator system as 
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shown in Fig.1, where 0 1kgM  , 1 3 1, ,k k c  and 3c  are the 

oscillator parameters to be designed to achieve a desired 
vibration isolation performance.  u t  and  y t  are the input 

and output of the system, respectively. 
The differential equation model of the system in Fig.1 is: 

           3 3

1 1 3 3y t c y t k y t k y t c y t u t             (4) 

Considering that the first and the second derivatives in (4) 
can be approximated by: 

             
2

1 1 2 1
,

y t y t y t y t y t
y t y t

t t

     
 

 
  (5) 

respectively, where t  is the sampling period, substituting (5) 
into (4) with 1 512 Hzt   yields a NARX-M-for-D of the 

system as: 
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つ つ つ
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つ

    (6) 

Eq. (6) is a specific case of the general NARX-M-for-D (3) 
with  1 1 3 3, , ,k c k cつ  and coefficients    (1) (1)

0,1 1,0, つ つ , etc. 

given in Appendix A.1 
The design of the parameters 1 3 1, ,k k c  and 1c  of the 

nonlinear system in Fig.1 can therefore be transformed to the 
design of the same parameters but for the NARX-M-for-D (6). 

It is worth pointing out that in order to obtain an effective 
discretized model, the sampling frequency 1sf t   is 

required to be large enough to cover all system behaviors of 
interest to ensure the discretized model can sufficiently 
represent the original nonlinear system.  

B. The OFRF of the NARX-M-for-D 

The OFRF of nonlinear systems is determined based on a 
nonlinear differential equation model [16], where a polynomial 
relationship between the system output frequency response and 
system parameters which defines the system nonlinearities is 
derived. In this relationship, the coefficients of the polynomial 
are dependent on the system linear characteristic parameters, 
and the order of the polynomial is determined by the highest 
order in the system's Volterra series representation.  

For the NARX-M-for-D (3), the OFRF concept can be 
introduced as described in Proposition 1 below. 

Proposition 1. Assume    1( , , )

,
p qk k

p q  つ し つ  can be 

represented by a polynomial function of the system design 
parameters 1, , S   up to the n th order such that 

   
 

1 1 2

1

1

( , , )
, 1 2, ,

, ,

p q S

S

S S

k k rr r
p q Sr r

r r

    



 
R

つ           (7) 

where SR  is a set of S -dimensional nonnegative integer 
vectors which contains the exponents of 1 2

1 2
Srr r

S   , and 

1, , Sr r n ,  1, , Sr r  are constants.  

    The output frequency response  jY   of the NARX-M-for-D 
can be written into a poynomial function of  1, , S つ  as 

     
 

1 2

1

1

1 2, ,
, ,

j j S

S

S

jj j
Sj j

j j

Y      


 
J

          (8) 

where    
1, , j

Sj j   are the functions of frequency variable   

and are dependent on  1( )
1,0

k つ  and  1( )
0,1

k つ  which are the 

linear characteristic parameters of system (3). J  denotes the 
integer vectors. (8) is the OFRF of the NARX-M-for-D (3). 

Proof of Proposition 1. Omitted due to the limited space. 
Remark 1: In the case of the NARX-M-for-D (6) of system 

(4), the parameters of interest for the system design are 3k  and 

3c , and the OFRF can be obtained as: 

             
           

3 30,0 1,0 0,1
2 2

3 3 3 32,0 1,1 0,2

j j j j

j j j

Y k c

k k c c

      
     

   
  

 (9) 

where    
1 2, jj j  , 1 2, 0,1,j j   are the functions of   and 

dependent on the system linear parameters 1c  and 1k . Also, it 
can be shown that the OFRF of the NARX-M- for-D (6) given 
by (9) is the same as the OFRF that can be determined from the 
differential equation model (4) of the system. This implies that, 
instead of using a physically meaningful differential equation 
model, the NARX-M-for-D of a nonlinear system can equally 
be used to perform the OFRF-based system analysis and 
design.  

Remark 2: It is worth pointing out that in most cases the 
differential equation model of complex nonlinear systems is 
difficult even impossible to be obtained. In these cases, the 
NARX-M-for-D of the system needs to be determined by using 
a nonlinear system identification approach which involves 
procedures to determine both model structure and coefficients 
as well as deal with noise and model mismatch etc. problems as 
demonstrated in our previous work in [28] and other relevant 
works [27, 30]. 

Remark 3: Given the order of system nonlinearity to be 
taken into account, the OFRF of the NARX-M-for-D is a 
unique polynomial form representation for the system’s output 
spectrum [16]. The increase of the system design parameters 
may increase the complexity of the OFRF. But, different from 
numerical approximation or curve fitting, there is no overfitting 
issue because of the OFRF’s uniqueness.  

In order to use the OFRF of a NARX-M- for-D to perform the 
system analysis and design, it is very important that the 
“structure” and “coefficients” of the OFRF representation have 
to be determined. The OFRF “structure” basically refers to the 
monomials that need to be included in the OFRF 
representation, whilst the “coefficients” are the value of 

   
1, , j

Sj j   associated with each monomial in the OFRF. In 

next section, these issues will be addressed for a more general 
NARX-M- for-D where the NARX-M-for-D (2) or (3) is a 
special case. 

III.  DETERMINATION OF THE OFRFS DESCRIBED BY A MORE 

GENERAL NARX-M-FOR-D 

A. A more general NARX-M-for-D 

Consider the nonlinear systems which can be described by 
the following more general NARX-M-for-D and are stable at 
zero equilibrium:  
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 (10b) 
where p q m  , 1 2,M M  are positive integers.  .u  is the 

input and  .x ,  .y  are two outputs of the system. 
Basically, the NARX-M-for-D (10) represents a single input 

double output nonlinear system. (10a) is essentially the same as 
the NARX-M-for-D (2) or (3), whilst (10b) describes how a 
second system output  y t  is determined by the system input 

 u t  and the first output  x t . 

If the model coefficients are constants, system (10) is 
basically the one input two output NARX model considered in 
Jing et al [31]. The GFRFs of system (10) with respect to 
system output  x t  can be determined recursively from the 

parameters of the system time domain model (10a) as [29]: 
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where t  is the sampling time of the discrete time system, 

1( , , ), 1,2,x
n nH n    represents the n th order GFRFs of  

system (10) with respect to the output  x t , and , 1,2,i i   
are physical frequency variables. 

Similarly, it can be shown that the GFRFs of system (10) 
with respect to system output  y t  can be determined from the 

parameters of the system time domain model as 
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where 1( , , ), 1,2,y
n nH n    represents the n th order 

GFRFs with respect to the system output  y t . 

Note that  , .n pH  in (11b) is the same as that in (11a) as the 

nonlinearities in (10b) is not related to  y t . Moreover, from 

[16], it is known that the output frequency responses of system 
(10) can be represented as 
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where N  is the maximum order of the system nonlinearity in 
the system’s Volterra series representation. 

From Eqs. (11) and (12), an effective algorithm can be 
derived to determine the OFRF representation of the spectra of 
the outputs  x t  and  y t  of system (10). 

B. Determination of the OFRF structure 

Assuming that the coefficients of system (10) can be 
expressed as a polynomial function of the system design 
parameters like Eq. (7), these coefficients can be written into a 
matrix form as: 

 
 

1 1 1

1 1 1
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                (13) 

where 0p q  , 1( , , )

,
p qk k

p q
つ  and 1( , , )

,
p qk k

p q
つ  are two vectors 

composed of the monomials of the form of 1 2
1 2

Srr r
S    and 

1 2
1 2

Srr r
S   , respectively. 1( , , )

,
p qk k

p q
く  and 1( , , )

,
p qk k

p q
く  are the 

two constant vectors of a corresponding dimension. 
Based on the results in Section III-A, a recursive algorithm 

for determining the structure of the OFRFs of system (10) can 
be derived are described in the following propositions. 

Proposition 2. For system (10), given  1 jxH  ,  1 jyH   

and the input spectrum  jU  , the n th order output spectra 

of nonlinear system (10) can be expressed as: 

   j jn n nX   を X  and    j jn n nY   を Y        (14) 

and the output spectra of system (10) can be expressed as: 

   
1

j j
N

n n
n

X  


を X  and    
1

j j
N

n n
n

Y  


を Y     (15) 

In Eq. (14) and Eq. (15), nを  and nを  are the vectors whose 

components are the monomials of the system design parameters 
of interest that have contribution to the n th order nonlinear 
output of the system,  jn X  and  jn Y  are vectors with 

corresponding dimensions whose components are dependent 
only on  1 jxH  ,  1 jyH   and the frequency variable  . 

Proof of Proposition 2. See Appendix B. 

Proposition 3. The vectors nを  and nを  introduced in 

Proposition 2 can be determined recursively using an 
algorithm as follows: 
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where the symbol “ ” is the Kronecker product with 

 1 1 1 を を                                     (17) 

 
1

, , 1
1

n p

n p i n i p
i

 

 


 を を を  and ,1n nを を              (18) 

Proof of Proposition 3. See Appendix C. 
Proposition 3 provides an efficient algorithm for the 

determination of the monomials that need to be included in the 
OFRF representation for the output  jX   and  jY   of the 

more general NARX-M-for-D (10). Although the OFRF 
structure is theoretically related to the system model and can be 
determined in an analytical way, Proposition 3 provides an 
algorithm which can readily be implemented using computer 
codes to automatically produce all the monomials in the OFRF. 

According to Proposition 3, the OFRF of the output spectra 
of the NARX-M-for-D (10) can, like (8), be represented by 
polynomial function of the design parameters 1 2, , , S   . A 

special case of Proposition 3 is given in Corollary 1 as follows. 

Corollary 1. In the special case where  1( , , )

,
p qk k

p q  つ  

 1( , , )

,
p qk k

p q  つ  with   being a non-zero constant, the 

OFRF representation of the output spectra of NARX-M-for-D 
(10) can be described as: 

       
   

 

1 2

1

1

1 2 2

1 2, ,
, ,

j j j j

j S

S

S

N N
jj j

Sj j
j j

X    
    



   
 

J

X を X を X
     (19) 

       
   

 

1 2

1

1

1 2 2

1 2, ,
, ,

j j j j

j S

S
S

N N
jj j

Sj j
j j

Y    
    



   
 

J

Y を Y を Y
        (20) 

In (19) and (20),  
1, , j

Sj j  and    
1, ,

j
Sj j

   are the 

functions of the same nature as    
1, , j

Sj j    in Proposition 1, 

and the monomials in Eq. (19) and Eq. (20) are the same, which 
can be found from the components of 

1

N

n
n

 を を を                               (21) 

Proof of Corollary 1. See Appendix D. 

C. Evaluation of the OFRF coefficients 

It is known from Corollary 1, Proposition 2 that, the 
evaluation of the coefficients of the OFRF of the NARX-M- 

for-D (10) involves determining    
1, ,

j
Sj j

   and    
1, ,

j
Sj j

   

in (19) and (20), respectively. These coefficients are generally 
dependent on the frequency variable  , the system input, as 

well as the system linear characteristic parameters. When all of 
these are fixed, these coefficients are constants and can be 
numerically evaluated as described in Proposition 4 below. 

Proposition 4. Assume that the coefficients    
1, ,

j
Sj j

   in 

the OFRF (19) are independent of the system design 
parameters 1 2, , , S   つ . Given the monomial vector  

 1 2

1

1 2

1

2 1 2 1

1 2
0 0

1, , , , ,S

S

S

S

jj j
N S S

mm
jj j

S
j j

j j  

  
 

       
 

  
  

を を を J
  (22) 

where im  is the maximum power of , 1, ,i i S   that has 
been determined by using Proposition 3, denote  

             2, ,1, , , 1 , ,j j N j j j M       を を を を を      (23) 

as the vector を  evaluated at the j th set of the system design 

parameters  , 1, ,i j i S  , M  as the total number of 
designs that have been initially tried. Then the OFRF 
representation of the system output spectrum under the j th set 
of initial design can be written as 

           
       

1

1 1

j 1 , ,

1 , ,

j j j M

Mj j M

X M

l M l

 



   
   

を を 】

を を 】
             (24) 

where 1M】  is a M  dimensional vector whose components 

are the coefficients of the OFRF (19) and 

1, , ; 0, 1, ,iMl l l i M    L                    (25) 

is a constant vector, and  

    T

11 1 11 , ,M M M Ml l M  
   】 】 】                  (26) 

are the coefficients in the representation of (24). Moreover, the 
coefficients in (24) can be determined as 

  1T T
1 1M N M N M N M N



    】 P P P X                     (27) 

where 

       

       

11 1

1

1

1

M

N M

MN N
N M

l M l

l M l




 
 
 
 
  

を を

P

を を

           (28) 

and  

       
T

11 j , , jN N
X X 
   X                    (29) 

is a vector the components of which are the system output 

frequency responses under N M  different pilot designs. 
Proof of Proposition 4. Proposition 4 can be proved by 

using the traditional Least Square (LS) algorithm. 
Remark 4: The LS algorithm is a very basic method that can 

be applied as shown in Proposition 4 to determine coefficients 
of the OFRF using the system response data generated from a 
number of prototype designs. The introduction of the constant 
vector L  in (25) is to ensure the numerical stability of the LS 
solution (27). When  1, ,1L , (27) produces the coefficients 

of the OFRF (19), that is 

1 1M M 】 】                                    (30) 
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Otherwise, the coefficient vector 1M】  evaluated from (27) 

is different from the coefficient vector of the original OFRF 
(19). This is needed in many practical cases to circumvent the 
problems numerically induced by significant difference 
between the values of different design parameters. 

Remark 5: It is known from Proposition 4 that a change of 
the values of system design parameters is required to determine 
the OFRF representation of a system. As the NARX-M-for-D is 
established by either a nonlinear system identification or a 
discretization process, the algorithm in Proposition 4 can be 
implemented using a NARX-M-for-D based simulation 
Therefore, there is no need to literally change the values of the 
system’s physical parameters. 

Remark 6: In general, the maximum order N  of the system 
nonlinearity is pre-determined. The error of a nonlinear 
system’s OFRF representation is induced by the truncation 
error associated with the Nth order Volterra series 
representation of the system. The increase of the order N will 
reduce the error of the representation.  In practice, up to 3-5th 
order system nonlinearity is often sufficient to use in an OFRF 
representation for the output frequency response of nonlinear 
systems [13, 16]. 

D. The OFRF based design of nonlinear systems  

The OFRF provides an analytical representation of the 
output spectrum of nonlinear systems. When the OFRF of a 
NARX-M-for-D has been determined using the algorithm 
derived above. The problem of the system design can be 
described as a constrained optimization problem and 
formulated as follows. 

Find the values of the system physical parameters of interest 
for the design: 

 0 1, , S つ                              (31a) 

to solve the optimization problem 

 
   

 
 1

1

11

1 0, ,
, ,, ,

j jMIN ;
S

S

SS

jj
Sj j

j j

Y
 

      


 
J

 

(31b) 
under the constraint: 

 1, , 0; 1, ,i Sg i m                         (31c) 

  In (31),   is the frequency range over which the design is 
considered,  0 jY  is a desired system output spectrum and 

 1, ,i Sg   , 1, ,i m  are the functions associated with the 
design constraints. 

The approach to the solution to the design problem (31) can 
be summarized in a procedure of five steps as follows. 

 
Procedure of the OFRF based Design  
1: System modelling: Establish a NARX-M-for-D for the 

nonlinear system by either discretizing an available 
differential equation model of the system or using a 
nonlinear system identification method. 

2: Identify model coefficients: 
 (i) Nonlinear coefficients: Identify the NARX-N-for-D 

coefficients which define the system nonlinearity and 
find the relationship between the coefficients and system 

design parameters    1( , , )

,
p qk k

p q  つ し つ  where 1p q  . 

 (ii) Linear coefficients: Identify the coefficients of the 

NARX-M-for-D which define the system linear 
characteristics and the relationship between these 
coefficients and system design parameters   1( )

1,0
k つ  and 

 1( )
0,1

k つ  

3: Determine the design constraints: Determine the 
system linear characteristic parameters  1( )

1,0
k つ  and 

 1( )
0,1

k つ  as required by the design for the FRF of the 
linear part of the system 

 

     

   

1

1

1

1

0,1 1
1

1
( )

1,0 1
1

exp j

j
1 exp j

K
k

k

K
k

k

k t

H
k t

 


 





 


  





つ

つ
             (32) 

and establish a constraint for the design given by (31c) 
such that  1 jH   is independent from the variation of 

the system design parameters 1, , S  .  
4: Formulation of the design problem: Determine the 

OFRF of the NARX-M-for-D using the algorithm in 
Section III and formulate the optimization design 
problem (31). 

5: Optimal design: Solve the optimization design problem 
(31) to find a solution to the design. 

 
Remark 7: The specific form of the design constraint (31c) 

is determined by the practical requirements for the design. 
However, it is worth pointing out that the design constraint 
(31c) also has to make sure that the OFRF coefficients 

   
1, , j

Sj j   are independent of the design parameters

1, , S  つ . This is required by the method used to evaluate 
the OFRF coefficients in Section III -C. 

IV.  CASE STUDIES 

In this section, two case studies will be conducted to 
demonstrate the new OFRF-based nonlinear system design and 
its significance in engineering applications.  

A. Case study 1 

Consider the nonlinear system in Fig.1 where the outputs are 
displacement  y t  and  outf t is the force transmitted to the 

wall. The differential equation description of the system is 
given by 

           
         

3 3

1 1 3 3
3 3

1 1 3 3out

u t y t c y t k y t k y t c y t

f t c y t k y t k y t c y t

     


   
  (33) 

Discreting (33) using (5) and sampling frequency sf 
512 Hz yields a specific case of the NARX-M-for-D (10) as  

                 
           
             
       

                 
               

1 0 1
0,1 1,0 1,0

2 1,1,1 3
1,0 3,0

1,1,2 2,2,22 3
3,0 3,0

1,2,2 2
3,0

1 2 1,1,1 3
1,0 1,0 3,0

1,1,2 1,2,22 2
3,0 3,0

1 1

2 1

1 2 2

1 2 0

1 2 1

1 2 1 2

u t y t y t

y t y t

y t y t y t

y t y t

y t y t y t

y t y t y t y t

  

 

 



  

 



   

   

    

   

    

     



つ つ つ

つ つ

つ つ

つ

つ つ つ

つ つ
       2,2,2 3
3,0 2 1 0outy t f t












     つ

(34) 
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where  1 1 3 3, , ,k c k cつ  is the vector of design parameters, 

and the coefficients     (1) (0)
0,1 1,0, つ つ , etc. in (34) are given in 

Appendix A.2 indicating that Corollary 1 is satisfied in this 
case. 

Consider 5N  . Then, according to Corollary 1 and using 
Proposition 3, the structure of the OFRF, i.e., the monomials 
that are involved in the OFRF representation of the output 
spectra  jY   and  joutF   of system (4) can be obtained as: 

2 2
3 3 3 3 3 3

1

1, , , , ,
N

n
n

k c k c k c


     を を を            (35) 

Therefore, the OFRF of NARX-M-for-D (34) can be 
represented as: 

             
           

3 30,0 1,0 0,1

2 2
3 3 3 32,0 1,1 0,2

j j j j

j j j

Y k c

k k c c

      
     
   

 
   (36a) 

             
           

3 30,0 1,0 0,1

2 2
3 3 3 32,0 1,1 0,2

j j j j

j j j
outF k c

k k c c

      

     

   

 
  (36b) 

where   j   and  j   are dependent on the system input 
and linear characteristic parameters 1 1,k c . 

Consider further the specific situation where u t 

 05cos t , 0 100 rad/s  , 4
1 10 N/mk   and 1

1 30 N/msc  .  
For the purpose of evaluating the OFRF coefficients, take the 

constant vector L  as 
2 21, , , , ,k c k k c cl l l l l l   L                          (37) 

with 8 210 , 10k cl l  , and evaluate, by numerical simulations 

(Runge-Kutta method), the system output frequency responses 
under the following four selections of the design parameters. 

 3 0.01, 0.5, 2, 8kk l   and  3 0.01, 4,10,15cc l     (38) 

In this case, N MP  and 1M】  with 6M   and 16N   in 

(28) and (26) are as follows, 

                

                

2 2

3 3 3 3 3 31 1 1 1 1

16 6

2 2

3 3 3 3 3 316 16 16 16 16

1

1

k c k k c c

k c k k c c

k l c l k l k c l l c l

k l c l k l k c l l c l



 
 
 
 
 
 

P  

(39a) 

         

           
6 1 0,0 0 0 01,0 0,1

T
2 2

0 0 02,0 1,1 0,2

j j j

j j j

k c

k k c c

l l

l l l l

     

     


 




】
     (39b) 

It is worth pointing out that there is no significant numerical 

difference among the components in matrix 16 6P  thanks to the 

introduction of L  in (37). This produces the OFRF coefficients 

  1T T
6 1 16 6 16 6 16 6 16 1



    】 P P P X                    (40) 

and, consequently, a theoretically equivalent but numerically 
more reliable OFRF representation for system (34) as follows. 

   
 
 
 
  
 

2 3
0

4 4 1
3

4 4 1
3

5 6 2 2
3

16 5
3 3

5 7 2 2
3

j 0.120 10 0.636 10 i

0.210 10 0.676 10 i

0.499 10 0.137 10 i

0.177 10 0.598 10 i

0.183 10 0.331 10 i

0.157 10 0.659 10 i

k

c

k

k c

c

Y

l k

l c

l k

l l k c

l c

  

  

  

  

 

  

    

   

    

    

   

  

      (41a) 

     
 
 
  
 

1
0 3

1
3

2 2 2
3

12
3 3

3 2 2
3

j 13.978 2.771i 0.211 0.676i

0.499 0.137i

0.018 0.591 10 i

0.178 10 0.033i

0.016 0.668 10 i

out k

c

k

k c

c

F l k

l c

l k

l l k c

l c

 



 



 

    
  
   

  

 

(41b) 

Fig.2 shows the frequency spectra  0jY   and  0joutF   

of system (34) with respect to the variation of 2
3 1,15 10c    

3 3N/m s  in the case of 8 3
3 3 10 N/mk   . The results are 

determined by the OFRFs (41) and the numerical simulation, 
respectively. A comparison of these results clearly indicates a 
very good match between the OFRF representation and the 
accurate (simulated) result, demonstrating the effectiveness of 
the proposed OFRF determination method.  
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(b) Output spectrum of  0joutF   

Fig.2 A comparison of the output spectra of system (34) determined 
using the OFRF (41) with the numerical simulation results  

In order to demonstrate how to follow the five step procedure 
in Section III-D to carry out a design, consider the design of the 
simple nonlinear system (33). The design objective is to 
achieve a specified force  outf t  for the system. 

In this case, Steps 1 and 2 have been completed as the 
NARX-M-for-D (34) of the system has been established. 
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In Step 3, by designing the natural frequency of the system at 
100 rad/sr   and the linear damping coefficient as 

1 30 N/msc  , two design constraints in this case can be 

obtained as 

 
 

1 1 1 3 3 1

2 1 1 3 3 1

, , , : 100 0

, , , : 30 0

g k c k c k

g k c k c c

  


 
                   (42) 

In Step 4, the OFRF representation of the spectrum of the 
output force of system (34) is obtained as given in (41b). By 
specifying  0 0j 12.0 NY   , 0 100 rad/s  , and introducing 

two more constraints 8 3
3 12 10 N/mk    and 2

3 15 10c  
3 3N/m s  on the design parameters 3k  and 3c , the optimization 

problem (31) can now be formulized as: 
Find 

 0 1 1 3 3, , ,k c k cつ                                (43a) 

to solve the optimization problem 

 
 

1 1 3 3
0

, , ,
MIN j 12.0out

k c k c
F                             (43b) 

under the constraint 

 
 
 
 

1 1 1 3 3 1

2 1 1 3 3 1
8

3 1 1 3 3 3
2

4 1 1 3 3 3

, , , : 100 0
, , , : 30 0

, , , : 12 10 0

, , , : 15 10 0

g k c k c k
g k c k c c

g k c k c k

g k c k c c

  
  
   
   

                 (43c) 

The solution to the optimization problem (43) is 
straightforward. From the OFRF (41b), the relationship 

between  0joutF   and the design parameters 3k  and 3c  can 

be obtained as shown in Fig.3 and 4. 
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Fig.3 The output spectrum of system (33) 

3 3
3 / N/m sc 

3
3

/
N

/m
k

10.410
.8

10.8

11
.2

11.2

11
.6

11.6

12

12

12
.4

12.4

12
.8

1 2. 8

13
.2

13 .2

13
.6

13.6

1 4

14

14
. 4

14 .4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150
1
2
3
4
5
6
7
8
9
10
11
12

6.72

×102

×108

 
Fig.4 Contour map of the output spectrum of system (33) 

According to Fig.4, the design for 3k  and 3c  can be reached 
simply by finding the values of  3k  and 3c  along the contour 

line of 12.0. For example, if selecting 8 3
3 10 10 N/mk   , 

along the contour line of 12.0 in Fig.4, 3k  can be obtained as 
2 3 3

3 6.72 10 N/m sc   . Consequently, a final design can be 

achieved as 4
1 10 N/mk  , 3 -3

1 30 N/m sc  , 8 3
3 10 10 N/mk    

and 2 3 3
3 6.72 10 N/m sc   . Substituting the designed 1k , 1c , 

3k  and 3c  into the system model (34) and, evaluating the 
output force of the system by simulation yields 

 0j 12.241 NoutF                               (44) 

which is a good match to the design specification. Note that 
8 3

3 10 10 N/mk    is beyond the range of  6 8
3 10 , 0.5 10 ,k  

8 8 32 10 , 8 10 N m   over which the OFRF (41) was 

determined. This demonstrates that the OFRF is not a simple 
approximation but an inherent representation of the system 
output frequency response and can, therefore, be used to 
perform the system design over a wide range of the design 
parameter space. 

In this case, the NARX-M-for-D of the system is established 
by discretizing an available physical differential equation 
model. However, in practice, a NARX-M-for-D often cannot be 
determined in this way as a differential equation model is often 
not available for complex physical systems. In next case study, 
a component of the system to design can only be described by a 
data-driven dynamic model. Consequently, the newly proposed 
NARX-M-for-D becomes a natural representation of the 
system that needs to be used to perform the system design. 

B. Case study 2 
In this case study, the design of the vibration isolation system 

shown in Fig.5 is considered where 0 1kgM  . 1 1k   and 

1 2c   are the parameters of the spring and damper in the 
system. The isolator in the system is a piece of damping 
material which cannot be described by an analytical physical 
model but whose NARX-M-for-D has been determined under 
the sampling frequency 512 Hzsf   as 

       3 3
1 3 2 3 3 3 1isof t a y t a y t a y t               (45) 

by using  nonlinear system identification techniques described 
in [28].  

In (45),  isof t  is the damping force produced by the isolator 

in the system, 3  is the parameter of the isolator to be used for 

the system design, and  
3 4 4

1 2 34 10 , 10 , 0.75 10a a a                   (46) 

are constants.  

M0
u(t)

y(t)

1c
fout

1k

Isolator
3

 
Fig.5 The vibration isolation system to design in Case study 2 

According to the basic physical principle, the system in Fig.5 
can be described as: 

         
       

0 1 1

1 1

iso

out iso

u t M y t c y t k y t f t

f t c y t k y t f t

   


  
             (47) 

From (45) to (47), the NARX-M-for-D of the isolation 
system can be obtained as: 
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1 2 1
0,1 1,0 1,0

1,1,1 2,2,2 03 3
3,0 3,0 1,0

1 2 1,1,1 3
1,0 1,0 3,0

2,2,2 3
3,0

1 2 1

1 2 0

1 2 1

2 1 0out

u t y t y t

y t y t y t

y t y t y t

y t f t

  

  

  



      

     


     


   

つ つ つ

つ つ つ

つ つ つ

つ

 (48) 

which is clearly a specific case of the NARX-M-for-D (10) 
with  1 2 3, ,  つ , and the details of the coefficients are 

given in Appendix A.3. 
In the following, the design of parameters つ  of the vibration 

isolation system when the system is subject to the multi-tone 
input  

     36cos 4cosF Fu t t t                        (49) 

where 100 rad/sF   is considered. The design objective is to 
achieve a desired force transmissibility at the frequency F  as 
defined by 

   
 

j
j

j
outF

T
U





                                 (50) 

where  jU   and  joutF   is the spectrum of the input and 
output forces of the system, respectively. 

From the NARX-M-for-D (48), the results in Steps 1 and 2 of 
the proposed general design approach are obtained, which are 
the NARX-M-for-D (48) and the relationship between the 
system design parameters つ  and the linear and nonlinear 
characteristic parameters of the system. In Step 3, three 
constraints on the design parameters つ  are introduced as 

 
 
 

3 4
1 1 3

2 2
4

3 1

: 4 10 10 0
: 30 0

: 6 10 0

g
g

g

 



    
  
   

つ
つ
つ

                    (51) 

to ensure that the FRF of the system at the driving frequency 
100 rad/sF   is as specified in the following 

 
     

           

1
0,1

1 1 2
1,0 1,0

5 4

exp j
j

1 exp j exp 2j

3.469 10 3.320 10 i

F
F

F F

t
H

t t

 


   
 

 


     

   

つ
つ つ  (52) 

and  3g つ  is a constraint on the maximum value of the 

stiffiness of the spring. 
Moreover, in Step 4, the OFRF representation of the force 

transmissibility  j FT   of the system is determined. In this 
case, 11N   

2 3 4 5
3 3 3 3 3

1

1, , , , ,
N

n
n

    


     を を を              (53) 

and the OFRF was determined from the system output 
responses to input (49) when the design parameters 3  changes 

over the range of  0.01, 0.8, 2, 3, 4, 5 as 

     
   
   

1
3

2 2 3 3
3 3

4 4 3 5 5
3 3

j 2.456 1.443i 1.383 4.098i

0.846 3.293i 0.285 1.244i

0.047 0.220i 0.306 10 0.015i

FT l

l l

l l



 

 

 
 
 



 

  

     
    

    

 (54) 

where 610l   

Based on the results of Steps 1-4 above, in Step 5, the design 
issue in this case study can be described as an optimal design 
probem as follows. 

Find  

 0 1 2 3, ,  つ                                   (55a) 

to solve the optimization problem 

 
 

1 2 3, ,
MIN j 1.5FT
  

                                 (55b) 

under the constraint 

 
 
 

3 4
1 1 3

2 2
4

3 1

: 4 10 10 0
: 30 0

: 6 10 0

g
g

g

 



    
  
   

つ
つ
つ

                  (55c) 

where 

     2 2j Re j Im jF F FT T T                      (56) 

and 

 

 

1 2 2
3 3

3 3 4 4 3 5 5
3 3 3

1 2 2
3 3

3 3 4 4 5 5
3 3 3

Re j 2.456 1.383 0.846

0.285 0.047 0.306 10

Im j 1.443 4.098 3.293

1.244 0.220 0.015

F

F

T l l

l l l

T l l

l l l

 

  

 

  

  
  

  
  

 

   

 

  

       
  

      
  

  (57) 

Considering the constraints of  1g つ  and  3g つ , it can be 
obtained that 

4
61

3 3

10
12.5 10

4 10


 


  


                         (58) 

Under the constraint of (58), inequality (55c) can be solved 
to yield 

6 6
32.3 10 12.5 10                             (59) 

Consequently, from (58) and (59), it can be obtained that 
4 4

11.92 10 6 10                                (60) 

Therefore, the feasible solutions to the design problem in the 
case study are: 

6 6
3

2
4 4

1

2.3 10 12.5 10
30

1.92 10 6 10






    
 
    

                     (61) 

If  3  is designed as 6
3 2.3 10   , the corresponding 

1 1k   and 2 1c   can be obtained as 4
1 1 1.92 10k   

N/m , 1
2 1 30 N/msc   . The time history of the output 

force and the corresponding transmissibility are shown in Fig.6, 
where a comparison with the result in the case of 

4
1 1 1.92 10 N/mk    , 1

2 1 30 N/msc    and 3 0   can 
also be observed. 
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(a) Time history of the output force 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 




j
F

T


つ3=0 

つ3=2.3×106 

Linear Transmissibility

Nonlinear Transmissibility

Frequency/ Hz
0 100 200 300 400 500 600

0

0.5

1.0

1.5

2.0

2.5

3.0

 
 (b) The force transmissibility 

Fig.6 A comparison of the system performances under the linear and 
nonlinear designs 

From Fig.6, it can be observed that under the design, the 
transmissibility at the base frequency of 100 rad/sF   has 
reached 1.5 as required. But, compared to the case of 3 0   
where no material-based nonlinear isolator is introduced, the 
optimal design induces additional components at super 
harmonic frequencies, 3 F   and 5 F  . However, the 
time history of the system response shown in Fig.6 (a) indicates 
that the optimal design has an overall better performance in 
vibration isolation. In order to confirm this observation, the 
concept of power transmissibility  FE   introduced in [32]  
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    (62) 

was used to evaluate the vibration isolation performance of the 
system in the two cases. The results are  

  8.457FE                                   (63) 

when no material-based isolator is used and 
  2.559FE                                  (64) 

when the isolator is applied. Clearly, the optimal nonlinear 
design has achieved an overall better performance than the 
linear solution. 
    It is worth pointing out that because the optimisation 
problem is formulated using the OFRF which is a polynomial 
function of the design parameters, the numerical costs 
associated with the new design are normally less than the costs 
associated with a completely numerical simulation based 
method. In the case study above, for example, the overall 
computation on a standard PC running MATLAB codes only 
took 30 sec to complete.    

V. CONCLUSIONS 

Traditional nonlinear system designs are basically based on 
the time domain response analysis, which is often difficult to 
reveal the relationship between the system performance and the 
parameters that can be used to perform the design. Motivated 
by the wide engineering applications of the FRF-based linear 
system frequency domain analysis and design, the OFRF 
concept was proposed in order to extend the effective linear 
system approach to the nonlinear case. However, the methods 
required to know a differential equation-based physical model 
of the system where the physical parameters that can be used 
for analysis and design are the coefficients in the model. 

Considering that it is difficult even impossible to find a 
differential equation model for complex engineering systems 

and the need to extend the physical model-based system design 
approach to address more complicated complex system 
designs, a new model known as the NARX-M-for-D is first 
proposed in the present study. A NARX-M-for-D can be 
derived from a nonlinear differential equation model of a 
system but, more importantly, can also be determined from the 
system input output data through a nonlinear system 
identification process. Moreover, a new OFRF-based 
methodology is developed that can be applied to the design of 
nonlinear systems described by a NARX-M-for-D. The 
methodology consists of a five step procedure including novel 
algorithm and technique for determining the structure and 
evaluating the coefficients of the OFRF of a NARX-M-for-D 
and can be applied to design a general class of nonlinear 
systems in the frequency domain. Two case studies have been 
provided to demonstrate the significance of the new design 
methodology.  

The paper is basically concerned with the introduction of the 
NARX-M-for-D of nonlinear systems and the design of a 
nonlinear system based on the OFRF of the system’s 
NARX-M-for-D. The determination of the NARX-M-for-D 
from practical testing data has been demonstrated in our 
previous works, and the focus of the present study is therefore 
the evaluation of the OFRF and the OFRF based optimal 
system design which is relevant to real world nonlinear system 
design.  

The new design method, for the first time, transforms a 
complicated dynamic loading oriented engineering design into 
a much simpler polynomial-based optimal design problem.  
The method, therefore, has potential to be applied to address 
challenges with the optimal design of complex engineering 
systems and structures which, so far, can only be deal with 
using numerical simulation and random search etc. 
sophisticated and time consuming procedures. 

Appendix A.1 The coefficients of NARX-M-for-D (6) 
The model coefficients can be written as 

       
     
     
     
       
   

1 05
0,1 1,0

1 2 5
1,0 1 1

2 2
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1,1,1 5 3
3,0 3 3
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2,2,2 3
3,0 3

0.381 10 ; 1;

0.195 10 0.381 10 2 ;

1 0.195 10 ;
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Appendix A.2. The coefficients of NARX-M-for-D (34) 
The model coefficients can be written as 
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0.195 10 0.381 10 2 ;

1 0.195 10 ;

0.381 10 0.512 10 ;
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0.512 10 ; else p
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and 
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 1 2

1 23 3
1,0 1 1 1,0 1

1,1,1 1,1,28 7
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1,2,2 3,3,37 8
3,0 3 3,0 3

( , , , )

,
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else 0p qk k k

p q

c k c

k c c

c c

 

 

 

 

 

 

     

     

    



つ つ
つ つ
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つ
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such that  

     1 1 1( , , ) ( , , ) ( , , )2 5
, , ,2.621 10p q p q p qk k k k k k

p q s p q p qf      つ つ つ  (A4) 

for 2p q  , and the condition of Corollary 1 is satisfied. 

Appendix A.3. The coefficients of NARX-M-for-D (48) 
The model coefficients can be written as 
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and 
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Appendix B. Proof of Proposition 2 
According to (11a) and (11b), it can be seen that given linear 

coefficients    .
0,1 つ ,    .

1,0 つ ,    .
0,1 つ  and    .

1,0 つ , the n th 

order GFRFs of the (10a) can be written as [16]: 
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where V  represents a sN -dimensional nonnegative integer 

vectors which contains the exponents of 1 2
1 2

sNvv v
sN    and 

 1, , sNv vh  are constants,  1( , , )
1 2 ,, , , 2nk k

sN p q p q       つ . 

Substituting (13) into (B1), yields: 
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where : 1( , , )n i nh    are the i th element of 1( , , )n n h , 

nを  is composed of  :n iつ , 1, ,i N  , and N  is the maximum 

dimension of vector ne . 
Substituting (B2) into (11a), yields: 
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where  
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Similarly, it can be obtained that  

    
1

j j
N

n n
n

Y  


を Y                       (B5) 

Therefore, Proposition 2 is proven. 

Appendix C. Proof of Proposition 3 
In (11a), the n th order GFRFs’ coefficient vector ne  can be 

calculated by using the algorithm discussed in Peng et al [33]: 
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Substituting (13) into (C1), 2を  can be obtained satisfying 

Proposition 3. Moreover, by using the mathematical induction 
and assuming Proposition 3 holds for nを , it can be obtained 

that 
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where, according to (11a), 1,n pを  can be obtained as: 

 
1 1

1, 1 , 1
1

1,1 1

n p

n p i n i p
i

n n

  

   


 


 


 

を を を

を を
                   (C3) 

Therefore, (16a) in the Proposition 3 is proven. For (16b), it 
can be proved by using the same process as from (C1) to (C3). 

Appendix D. Proof of Corollary 1 

From the condition    1 1( , , ) ( , , )

, ,
p q p qk k k k

p q p q  つ つ and (13), 

it is known that 
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,
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and (16b) can be reduced to (16a) as 
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Then Corollary 1 is proven. 
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