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Design of Nonlinear Systems in the Frequen
Domain: An Output Freguency Response
Function Based Approach

Yunpeng Zhu, Z Q Lang*

Abstract—In the present study, a NARX (Nonlinear Auto
Regressive with eXegenous input) model of nonlinear systems,
where the physical parameters of interest for the system design
appear explicitly as coefficients in the model, is introduced. The
model is referred to as the NARX Moded with parameters of
interest for Design (NARX-M-for-D). The Output Frequency
Response Function (OFRF) in terms of these physical parameters
is then introduced for the NARX-M-for-D, and an efficient
algorithm is derived to deter mine the OFRF so asto facilitate the
design of nonlinear systemsin the frequency domain. M oreover, a
general procedurefor the design of the physical parameters of the
NARX-M-for-D in the frequency domain is proposed, which has
the potential to be applied to design a wide range of engineering
systems and structures. Finally, two case studies are provided to
demonstrate the new OFRF-based nonlinear system design and its
significance in engineering applications.

Index Terms—The OFRF; Nonlinear systems; The frequency
domain; The NARX model; Engineering system design;

I. INTRODUCTION

However, in spite of providing a general representation for a
wide glass of nonlinear systems in the frequency domain, the
GFRFs are a series of multi-dimensional functions which are
often difficult to measure, display and interpret in practice. T
address this issue, many new concepts such as Nonlinear
Output Frequency Response Function (NOFRFE), Output
Frequency Response Function (OFRF)], and Higher Order
Sinusoidal Input Describing Functions (HOSIDE)/| have
been proposed. The OFRF reveals an analytical relationship
between the output frequency response of nonlinear systems
and the parameters which define the system nonlinearities and
can be used to facilitate both the analysis and design of
nonlinear systems in the frequency domairs-19]. The
HOSIDF can be considerega special case of the OFRF].

Since the introduction of the OFRF in 20075], many
studies on the application of this concept to the nonlinear
system analysis and design have been conducted. For example,
Peng and Lang21] have derived a recursive algorithm to
determine the structure of the OFRF for the system described
by a nonlinear differential equation model. More recently, the

N engineering practice, the design of a system is oftépFRF based approach has been applied in the analysis and

concerned with the determination of the system parametdtsign of nonlinear vibration isolatdes?-24]. For example, by
that can be used to achieve desired system responses ubgélg the OFRF, Lang et a?2] and Peng et al23] have
considered loadings or input excitatioris3]. The frequency rigorously pl’OVGd significant beneficial effects of nonlinear
domain design of linear systerfis6] based on the traditional damping on vibration isolation systems. Recently, Lv and Yao
concept of Frequency Response Function (FRF) has beéfi] have applied the OFRF to study the influence of damping
widely applied in engineering system designs such as, e.g., f@gfficients on both the force and displacement
design of the dynamic properties of vibration absortiérs transmissibility, showing that the nonlinear isolators can
vehicle suspensioris], and aero engine bladgs. perform better than linear isolators over certain frequency

In practice, many systems cannot be simply described bya@nges.
linear model[10]. In this case, nonlinear system analysis and The previous studies have shown that the OFRF-based
design methods in either the time or the frequency dommaia  nonlinear system analysis and design have advantages and
to be applied to study these systems. Compared with the tiffential to solve many engineering problems. However,
domain methods such as, e.g., the harmonic balance met@g@ost all currently available results require that a nonlinear
and the multi-scale method 1], etc., the nonlinear system differential equation-based physical model of the system is
analysis in the frequency domain can deal with a general cla@gilable in which the physical parameters that can be used for
of nonlinear systems rather than the systems with a specifit¢ system analysis and design are the coefficients in the
model descriptiof12, 13] differential equation model. In most cases of engineering

This analysis is achieved by using the well-knowrlesigns, such as, e.g., vibration isolators made of viscoelastic

Generalized Frequency Response Functions (GFRES)
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ard composite material®5| and bladed disks of aero-engines
[26], it is difficult or impossible to find such a physical model
for the systems. But, it is possible to find, via a nonlinear
system identification approach, a data driven NARX model
representing the relationship between the input excitation and
corresponding system responsg7]. In addition, as
demonstrated by our previous wdtkg|, it is also possible to
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identify a NARX model such that the physically meaningful (t)= f(y(t—l) y(t—n ) u(t—]) u(t—rL))
parameters appear explicitly as coefficients in the model. A y ) n v T )
general representation of such a NARX model is, in the present _ < o AT e
study, referred to as the NARX Model with parameters of ;;K% Gk ke ’kp*q)li;[ v ki)H u(t-k)
interest for Design (NARX-M-for-D). The advantages of the re y(.) andu(.) are the outputs and inputs of the system:
OFRF in nonlinear system analysis and design as demonstra‘lﬁg}? i : y '
in previous studies imply that there is a need to develop . 3 SEER STEE S
OFRF based-approach for the NARX-M-r- M andK are integersp-+q= mand k; = kaZ > Ny

In the present study, the OF_RF O.f the NARX-M-for-D in q h ) ime del fl'h‘”' v q
terms of the design parameters is defined. The NARX-Mbfor-and n, are the maximum time delay of the system §¢r) an

is a novel and general model of nonlinear systems which can b@) respectively; f (.) is a nonlinear function representing

directly determined from data and used to represent complf% dynamic relationship between the system input and output

engineering systems for the purpose of system analyses - ; :
designs. A recursive algorithm for the determination of th%r}ﬁgt?oza;’the?ggtyegl)s'ygfee; ii‘;ﬁ?;{g%fg&y a polynomial

structure of the OFRF for a class of nonlinear systems ; - ;
. . . . . In practice, the NARX model (1) can be determined by using
described by a NARX-M-for-D is derived, which can directly, . jn00, system identification method from the input and

produce an OFRF representation (.)f the system outp tput data of a system. However, the values of the coefficients
frequency responses without involving any complicate . del (1 v h direct phvsical
mathematical derivations/operations. Then, a general OFREna() N model (1) generally have no direct physica

based approach to the frequency domain design of nonlingéaganings. Because of this, in most cases, the NARX model (1)
systems described by the NARX-M-for-D is proposed, whicl$ used for evaluating the system output responses to different
allows a systematic OFRF-based design that, for the first tiniputs[30]. It is generally difficult to directly use the model to
can take the effect of both the system linear and nonlinedfalyse the effects of system physical characteristics on the
characteristics on the design into account. The new methods¥stem behaviours so as to achieve the objectives of system
an extension of the original OFRF based method to a muggsigns. In order to overcome this problem, a new NARX
more general case where the OFRF for a NARX-M-for-D hagodel known as the NARX-M-for-D is introduced as follows.

to be derived and design parameters of concenaffect both ~ The NARX-M-for-D is a NARX model where the physical
linear and nonlinear characteristics of the system. Case studiégameters of interest for the system design appear explicitly as
are used to demonstrate the effectiveness of the proposed fe@gel coefficients. A general form of the single input single
design approagishowing a promising application of the OFRFoutput NARX-M-for-D of nonlinear systems can be given as:

i=p+1

based design that is expected to be able to systematically y(t-1),...,y(t-=n,),u(t),u(t=1 ,..,
address the design problems of a wide class of engineering y(t)= f{uét—r{) 0(5() Y) (9 u(t-3 (2
systems. '

The paper is organized as follows. Sectibimtroduces the whereg(¢&) is a vector representing a set of functiarishe
NARX-M-for-D and defines the model’s OFRF in terms of the parameter Vectorf — [gll’ .. ’és] , where 51,“ . 'fS are the

system parameters of interest for design. Seclibnis sical parameters of interest for the system designSaisd
concerned with the determination of the OFRF for a class ﬁ}Py P . Y 9
e number of threedesign parameters.

nonlinear systems described by the NARX-M-for-D, where an . . :
effective recursive algorithm is derived for the determination Considering f () can be approximated by a polynomial
the OFRF representation of the system output frequentynction of the delayed system input and output as in model (1)
responses. In SectidW, a general OFRF based approach fot€ NARX-M-for-D can further be expressed as:

the frequency domain design of nonlinear systems is propose& noX (kKo Kovg) P ak B

Then, two case studies with regard to the design of the outp ml;h;igp,q (5)1:! Y(t—ki)H u(t- K)} =0(3)
frequency response of a nonlinear oscillator and the force (quk ) .
transmissibility of a nonlinear vibration isolator, respectivelywhere &, (§)€0(¢) with p+q=m represents the
are presented in Section V. Finally, conclusions are given ooefficients of the NARX-M-for-D (3).

i=p+1

SectionVI. 2) An example of the NARX-M-for-D
y(t)
II. THENARX MODEL WITH PARAMETERS OF INTEREST FOR Ky, Ky
DESIGN AND ITSOFRFREPRESENTATION W

A The NARX Model with parameters of interest for Design fout Mo U@
NARX-M-for -D G, G
( ) el
1) The concept of the NARX-M-for-D el

The traditional NARX model of Single Input Single Output O O

(SISO) nonlinear systems can be descrig@9|: k ] ,
Fig.1 A nonlinear oscillator

In order to demonstrate the practical relevance of the
NARX-M-for-D (3), consider a nonlinear oscillator system as
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shown in Fig.1, whereM, =1kg, k, ks, c, andc; are the where4; ; (jo) are the functions of frequency varialsie

oscillator parameters to be designed to achieve a desired :
o : ) t oy (la) which th
vibration isolation performancei(t) and y(t) are the input and are dependent off’(¢) and 6}’ () which are the

. linear characteristic parameters of systejn 3 denotes the
and output of the system, respectively. P ystem @3

X . : o integer vectors(8) is the OFRF of the NARX-M-for-D {3
The differential equation madel of the systienFig.1is: Proof of Proposition 1. Omitted due to the limited space.

§(t)+cy(t)+ky(t)+ ky(t) +c,9(1)° = u( 1) 4) Remark 1: In the case of the NARX-M-for-D (6) of system
Considering that the first and the second derivatives)in (#), the parameters of interest for the system desigh,aaed
can be approximated by: c,, and the OFRF can be obtained as:
)—y(t—1 t+1)— 2y(t)+y(t— - - - ,
y(t)zw, y(t)= y(t+9-2y(t)+y(t-7 (5) Y(Ja))=/1(o‘0)(Ja))+i(lyq(j a))k3+/1(04(1 w)Cy+

At At? C N2 : D N2
A +1 ko, + 4 Cy +-o
respectively, where\t is the sampling periqaubstituting (% 20 (10)k"+ Ay (10) kot A5 (F0)

into (4) with /At = 512 Hz yields a NARX-M-for-D of the Wwhere 4, ; (j®), j;,j, =0,1,.. are the functions of» and

(9)

system as: dependent on the system linear parametgrand k; . Also, it
oY (EVu(t-1)+ oY t—1)+ 62 t—2)+ can be shown that the OFRF of the NARX-M- for-D (6) given
(()’fl,(f) ( s ) 1 10((61)13/( )2 1;(6) y(2 ) by (9) is the same as the OFRF that can be determined from the
5" (§) Y’ (t-2)+0557 (&) y* (t-1) y(t- 2+ (6) differential equation model (4) of the system. This implies that,
022 (&) y(t-1)y? (t-2)+ 65577 (&) y* (t- 2)+ instead of using a physically meaningful differential equation
o (&)y(t)=0 model, the NARX-M-for-D of a nonlinear system can equally
1,0

; - be used to perform the OFRF-based system analysis and
Eq. (6) is a specific case of the general NARX-M-for- (3design.
with & =[k, c,, k;, c;] and coefficientsd; (£),653(&) , etc. Remark 2: It is worth pointing out that in most cases the
given in Appendix A.1 diffgrential quation model of comp_lex nonlinear systems is
difficult even impossible to be obtained. In these cases, the

The design Of_ thg parametelg, k;, ¢, and ¢, of the NARX-M-for-D of the system needs to be determined by using
nonlinear system in Fig.1 can therefore be transformed to theqnlinear system identification approach which involves

design of the same parameters but for the NARX-M-forD (6 r5cedures to determine both model structure and coefficients
Itis worth pointing out that in order to obtain an effectivé,s \yel| as deal with noise and model mismatch etc. problems as
discretized model, the sampling frequendy =1/At is demonstrated in our previous work [it8] and other relevant
required to be large enough to cover all system behaviorswbrks[27, 30]
interest to ensure the discretized model can sufficiently Remark 3: Given the order of system nonlinearity to be
represent the original nonlinear system. taken into account, the OFRF of the NARX-M-for-D is a
B. The OERE of the NARX-M-for-D unique ponnomiafqrm representation for the syste_m’s output
] ] ] spectrum[16]. The increase of the system design parameters
The OFRFof nonlinear systemss determined based a@ may increase the complexity of the OFRF. But, different from

nonlinear differential equation model], where a polynomial nymerical approximation or curve fitting, there is no overfitting
relationship between the system output frequency response afe because of the OFRF’s uniqueness.

system parameters which defines the system nonlinearities i$n order to use the OFRF aNARX-M-for-D to perform the
derived. In this relationship, the coefficients of the polynomialystem analysis and design, it is very important that the
are dependent on the system linear characteristic parametefg,cture” and “coefficients” of the OFRF representation have

and the order of the polynomial is determined by the highegfpe determined. The OFRF “structure” basically refers to the
order in the system's Volterra series representation. monomials that need to be included in the OFRF

~ For the NARX-M-for-D (3), the OFRF concept can beepregntation, whilst the “coefficients” are the value of
introduced as described in Proposition 1 below.

Proposition 1. Assume 6o 0 can be _ , .
P e (£)€0(¢) __next section, these issues will be addressed for a more general
represented by a polynomial functiai the system design NARX-M- for-D where the NARX-M-for-D @) or (3) is a

/1(1.1'“_']5) (ja)) associated with each monomial in the OFRF. In

parameters;,...,&s up to then, th order such that special case.
e(kﬂ“,kpm) ‘f _ Mgl . £ls (7)
v (4 (rl,...,rzs)eRs'B““""S)é b2’ e IIl. DETERMINATION OF THEOFRFS DESCRIBED BY A MORE
where R, is a set ofS -dimensional nonnegative integer GENERALNARX-M-FOR-D
vectors which contains the exponents&ife,=---&, and A Amore general NARX-M-for-D
Moo fs <ng, B, .., are constants. Consider the nonlinear systems which can be described by

The output frequency respon¥éjw) of the NARX-M-for-D  the following more general NARX-M-for-D and are stable at
can be written inta@ poynomial function o =[&,,...,&] as 2810 equilibrium:

Y(io)= 2. Ay (i@)&"E" & (8) Mzi ZK; {égyk;""’kp*”)(&)ﬁx(t—ki)ﬁu(t—lg)}:o(10a)

(Jreis)ed m=1p=0k , ky,q=0 i=p+1
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LN R S (O ) [16], it is known that the output frequency responses of system
DD |G e Hx(t k)H u(t—k) |- y(t)=0  (10) can be represented as
m=1p=0k , k;,4=0] i=p+1

(op)  X(j@)=2X,(je)

where p+qg=m, M;,M, are positive integersu(.) is the N 1 no (12a)
input andx(.), y(.) are two outputs of the system. = ZWL%*“'“%W H, (a)l""’wn)HU (jw)do,
Basically, the NARX-M-for-D (10) represents a single input "~ \ -
double output nonlinear system. (10a) is essentially the Same@gj ) = 3'Y, (jw)
the NARX-M-for-D (2) or (3), whilst (10b) describes how a = (12b)
N 1
second system outpui(t) is determined by the system input _ I (o, HU jo,)
LU '
u(t) and the first outpux(t) . win(2r)"

If the model coefficients are constants, systéifl) is where N is the maximum order of the system nonlinearity in
basically the one input two output NARX model considered iffte system’s Volterra series representation.
Jing et al[31]. The GFRFs of systeml(@) with respect d From Egs. (11) and(12), an effective algorithm can be
system outputx(t) can be determined recursively from the derived to determine the OFRF representation of the spectra of

the outputsx(t) ard of system (1
parameters of the system time domain mdtied) as|29]: Htpd X( ) y( ) 4 (1n

{ Zg(kl) exp(_Kwﬁ...Jra)n)klAt)}H:(a)l,...,a)n)

B. Determination of the OFRF structure
Assuming that the coefficients of system (10) can be

i = expressed as a polynomial functimf the system design
= D O (8)exp(~ okt o k,)At) parameters like Eq. (7), thecoefficients can be written into a
Sy K matrix form as:
+ > [.9("1 or q) EH, (@, 0, ) (11a) g(h.mkmq) (&)= E(klf-v,kw)ﬁ(kl,~-,kM)
oLk k=0 {%kl,- Kora) S a) s ko) (13)
xexp( j( Oy qaKper T +wnkmq) )} Op.a (5) € ﬂpq
+Z": ZK: [0;"3 [ (%)Hn,p(a’l,"wa’n)] where p+q>0, é‘ < and f ) are two vectors
I composed of the monomials of the form@rfgjz ---55@ and
with e (p1) ghgfEfs respectively.ﬂ,(), e and ﬂ(ki " are the
H,ol@, - 0,)= H (o, 0)H,  , 1@, ,®,)  two constant vectors of a corresponding dimension.
=1 Based on the results in Section IlI-A, a recursive algorithm
xexp( (Z@ jk At for determining the structure of the OFRFs of system (10) can
bederived are described in the following propositions.
Hoi(@n - 0,) = Hi(oy, -, 0,)exp(— [o,++0,)kAt) Proposition 2. For system (10), givem, (jw), HY (jo)

where At is the sampling time of the discrete time systemynq the input spectrutd (jw), the nth order output spectra
HX(@, -, ®,),n=12,.. represents théth order GFRFs of

system (10) with respect to the outpyt), and e, i =1,2,.. ) _ ) _ PR

are physical frequency variables X,(jo)=5.X,(jo) andY,(jo)=ZY,(jo)  (14)
Similarly, it can be shown that the GFRFs of systen) (1@1ndthe output spectra of system (10) can be expressed as:

with respect to system outpyf(t) can be determined from the

of nonlinear system (10) can be expressed as:

: , Z_ W(jo) andY(jo)= Z_n (jo)  (15)
parameters of the system time domain model as
HY (@, -+, Z eék;,,.,,m é;)exp(— Kw1k1+"'+wnkn)m) In Eq. (14) and Eq. (15)£, and £, are the vectors whose
ki k=0 components are thlmonomials of the system design parameters
+" “f ZK: [ (@, ) of interest that have contribution to theh order nonlinear
Pq qu p a)l‘ ’wf‘fq . . .
L pik, k=0 (11b) output of the systemX (jw) andY,(jw) are vectors with
XeXp(J O q+1k t +a)nkp+q) )J corresponding dimensions whose components are dependent
Lo onlyon H)(jw), H} (jw) andthe frequency variable .
I CERRCERCE) yonHi (ie). Hi(ie) cuency
1k, k=0 Proof of Proposition 2. See Appendix B.
where H) (@, -, ®,),n=1,2,.. represents thel th order Proposition 3. The vectorsZ, and £, introduced in

Proposition 2 can be determined recursively using an
algorithm as follows:
Note thatH_ (.) in (11b) is the same as that in (11a) as the

nonlinearities in (10b) is not related iqt) . Moreover, from

GFRFs with respect to the system outt) .
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_ K e well as the system linear characteristic parameters. When all of
g = U o(knlk“) U U U (f,,,;’ o ®5mqp) these are fixed, these coefficients are constants and can be
Kk =0 Rl TR 16 numerically evaluated as described in Proposition 4 below.

’ (169)
s

Proposition 4. Assume that the coefﬁcient%wis) (jo) in

the OFRF 19) are independent of the system design

P { LKJ st ‘%)}U{nlnq LKJ (g(kl i g 2 ):| parameterss,,&,, --,& € & . Given the monomial vector
n n p.q n-qp _ = = o L+ - -
K eoeky =0 g=1p=1k ,.. k,= 0 (16b) = :[1":2""!‘:N]:[éhézjz'“gsj (Jl"" ) S)EJ:|
n K
) o o A . (22
U{U U (s“p,o ®‘:’n,p):| g{UU EhE ...gsls}
p=2k ...k,=0 =0 Js=0
where the symbol “ ® ” is the Kronecker product with where m is the maximum power of,i=1...,S that has
2 =5=1 (17) been determiiled by u:%ing Proposition 3, denot_e
z —HUM(E ®F, ) and=,, =5 9 =) :[ ’Ezm""'EN,(J')J:[EG)(]) 'Eﬂ)(M)J 23)
e A AT et =n1==n as the vectotZ evaluated at thg th set of the system design
Proof of Proposition 3. See Appendix C. parametersé (j),i=1...S , M as the total number of

Proposition 3 provides an efficient algorithm for thedesigns that have been initially tried. Then the OFRF
determination of the monomials that need to be included in thepresentation of the system output spectrum undej theset

OFRF representation for the outpXt(jw) andY (jw) of the of initial design can be writteas

more general NARX-M-for-D (10). Although the OFRF x(j)(ja))=[5(1_)(;|_),...,5(j)(|\ﬁ)JXAMX1
structure is theoretically related to the system model and can be _ e - ()
determined in an analytical way, Proposition 3 provides an =[~=(j)(1)/|1,"',~=(j)(|\/| )/IM:|><AM><1
algorithm which can readily be implemented using computer, o YT -
codes to automatically produce all the monomials in the OFR .ere A 18 .a M dimensional vector whose components
According to Proposition 3, the OFRF of the output spect@{€ the coefficients of the OFREJ) and
of the NARX-M-for-D (10)can like (8), be represented by L=[l,...15 i, >0i =1,..M 2
polynomial function of the design parametéiss,,---,&s. A is a constant vector, and
special case of Proposition 3 is given in Corollary 1 as follows. ~ —\77
p p g y Ao =[LAg (V) g A (V)] (26)

Corollary 1. In the special case wherg' "
’ P . () are the coefficients in the representatid24). Moreover, the

=aB,5""(&) with « being a non-zero constant, thecoefficientsin (24) can be determined as

OFRF representation of the output spectra of NARX-MHor- A, :(i’ﬁ B )7113@MTX,¢ 1 o7
(10) can be described as: x « x «
' i = i = ; where
X(10)=X,(j0)+ Z:X(j @)+ 5y Xy ) = ) - Ey (M),
- Z IR Ts)(ja))§1J1§2]z"'§sjs (19) _ O . 1 . =) . M
U o) Rk — : - : 29
Y(io) =% {jo)+5Xe( ?)+'.}+€NYN 0e) (20) En @M - Fy (M)A |
=(T Ts) ji(l’lv--wi'é)(m)glfzz'”(’ZSS and
1009 s)€ ~ ]
In (19 and @0), 4; (jw) and A(E"_JS)(jw) are the Xle:[X(l)(Jw)""’X(N)(Jw):| 29

functions ofthe same nature dﬁmjs)(jw) in Proposition 1 1S @ vector the components gf which are the system output
frequency responses undbkr> M different pilot designs.

Proof of Proposition 4. Proposition 4 can be proved by
using the traditional Least Square (LS) algorithm.

and the monomials in EdL9) and Eq. 20) are the same, which
can be found from the components of

N
E=EF-= Uén A1) Remark 4: The LS algorithm is a very basic method that can
n-1 be applied as shown in Proposition 4 to determine coefficients
Proof of Corollary 1. See Appendix D. of the OFRF using the system response data generated from a

number of prototype designs. The introduction of the constant
vector L in (25) is to ensure the numerical stability of the LS

It is known from Corollary 1, Proposition 2 that, thegqiion (27), WherL =[1...,1, (27) produces the coefficients
evaluation of the coefficients of the OFRF of the NARX-M-

for-D (10) involves determining. - (jo) and4. - (jo) of the OFRF (19), that s
- involv ining- - (jo - -
(Taeds) (Jpeods) Ao =4, 30)

C. Evaluation of the OFRF coefficients

in (19) and (20), respectively. These coefficients are generally
dependent on the frequency variakle the system input, as
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NARX-M-for-D which define the system linee
e o o characteristics and the relationship between tt
is dlffer(.an't from the 'coeff|C|ent vector of the ongmal OFRF  (pefficients and system design parametefs (¢) and
(19). This is needed in many practical cases to circumvent the ’

problems numerically induced by significant difference ‘95,1)(5)_ . ) ]

between the values of different design parameters. 3: Determine the design constraints: Determine the
Remark 5: It is known from Proposition 4 that a change of ~ System linear characteristic paramete’ (&) and

the values of system design parameters is required to determine 6§’ (&) as required by the design for the FRF of -

the OFRF representation of a system. As the NARX-M-for-D is  linear part of the system

established by either a nonlinear system identification or a

Otherwise, the coefficient vectof . evaluated from (27)

discretization process, the algorithm in Proposition 4 can be 25’0 ¢)exp(— jok At)
implemented using a NARX-M-for-D based simulation H,(jo)= 32
Therefore, there is no negalliterally change the values of the Zg“‘i) exp( jwk At)
system’s physical parameters.

Remark 6: In general, the maximum ordét of the system and establish a constralnt for the design given3iy)(
nonlinearity is pre-determined. The error of a nonlinear such thatHl(ja)) is independent from the variation 1
system’s OFRF representation is induced by the truncation the system design parametegs -, &, .

error associated with the Nth order Volterra serleg
representation of the system. The increase of the order N will
reduce the error of the representation. In practice, up to 3-5th
order system nonlinearity is often sufficient to use in an OFRF
representation for the output frequency response of nonlme?
systemg 13, 16]. '

Formulation of the design problem: Determine the
OFRF of the NARX-M-for-D using the algorithm i
Section 1l and formulate the optimization desi
problem @1).

Optimal design: Solve the optimization design proble
(31) to find a solution to the design.

D. The OFRF based design of nonlinear systems
Remark 7: The specific form of the design constraidi¢)
The OFRF provides an analytical representation of thg determined by the practical requirements for the design.
output spectrum of nonlinear systems. When the OFRF oftiywever, it is worth pointing out that the design constraint
NARX-M-for-D has been determined using the algorlthn(31c) also has to make sure that the OFRF coefficients

derived above. The problem of the system design can o (Ja,) are independent of the design parameters

described as a constrained optimization problem and‘l
formulated as follows. ., & €& . This is required by the method used to evaluate

Find the values of the system physical parameters of interé’%‘? OFRF coefficients in Sectidh-C.
for the deign:

~[& &] (31a) IV. CASE STUDIES
1 i)
to solve the optimization problem In this section, two case studies will be conducted to
/1 i i . demonstrate the new OFRF-based nonlinear system design and
[éMIN Z, (Ja’ RS _Yo(J“’) ywe its significance in engineering applications.
=T s)ed
(31b) A Casestudy1l
under the constraint: Consider the nonlinear system in Fig.1 where the outputs are
g (&&)<0i=1..m 819 displacementy(t) and f ,(t)is the force transmitted to the

In (31), £2 is the frequency range over which the design iwall. The differential equation description of the system is
considered.Y, (ja)) is a desired system output spectrum andiven by

g (&.++.&), i =1....m are the functions associated with the {u(t) = y()+gy(t)+ ky(t)+ I<3y(t)3 + %y(t)3

design constralnts. fot)=c,y(t)+ky(t)+ky(t) +c.y(t)
The approach to the solution to the design probl@th ¢an ) _°”t( ) 1y( ) kly( ) Sy( ) _3y( )
be summarized in a procedure of five steps as follows. Discreting (33) using (5) and sampling frequenty=

512 Hz yields a specific case of the NARX-M-for-D (10) as

(33)

Procedur e of the OFRF based Design () (1) :

1: System modelling: Establish a NARX-M-for-D for the foa (€)u(t- 1)+€1° (€)y(1)+610(¢) ¥(t-1)
nonlinear system by either discretizing an availa +62 (&) y(t-2)+65 (&) y* (t-1)
differential equation model of the system or using 7112 2(t_1) v(t— (2.2 3t 2
nonlinear system identification method +03f22(§)y (t-2)y(t-2)+ 85> (£)y’(t-2)

2: Identify model coefficients: +05577 (€)y(t-1)y* (t-2)=0 (39
(i) Nonlinear coefficients: Identify the NARX-N-forD 500) (119 B
coefficients which define the system nonlinearity & elo(é)y(t 1)+6'10(§)y( )+93° (€)y'(t-9
find the relationship between the coefficients and sys +931012) (5) (t 1) y(t 2)+53102 2 (g) y(t - 1) yZ(t - 2)

; (CR) o
design parameter§,; " () 0(¢) where p+q>1. $O227(£) P (t-2)~ £ (t-D)= 0

(ii) Linear coefficients: Identify the coefficients of the
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where & =[k;, ¢, k;, ¢;] is the vector of design parameters, Y(jw0)=(0.120>< 10%— 0.636 10 )i+
and the coefficientsgy; (£),6,% (&), etc. in B4) are given in (0.210x 10* + 0.676 10 )i, *, +
Appendix A.2 indicating that Corollary 5 satisfied in this (_0.499)< 10°+ 0.13% 10 )IC’]C3+
case. ;

ConsiderN =5. Then, according to Corollary 1 and using (_0'177X 10°- 0.598 10 )'k "+
Proposition 3, the structure of the OFRF, i.e., the monomials (0.183< 10°- 0.33¢ 10 )(Iklc)’1k3c3+
that are involved in the OFRF representation of the output ( 5 2 2

0.157x 10°- 0.659 10 )i c,
Fou (i) =(13.978- 2.773)+( 0.21% 0.67 'k, +

(412)

spectraY (jw) and F,, (jw) of system (4) can be obtained as:

E=F={JZF, =[1k.c;k ¢ k] (35)

(~0.499+ 0.137)1, "¢, +
n=1 P
Therefore, the OFRF of NARX-M-for-D (34) can be (-0.018- 0.59% 16 )i, *,*+ (41b)
represented as: o (0.178<10° - 0.033(1,J.) "k, +
Y(i0)=Aog (i0)+ hug(fo)kat Aoy (@)oo (0.016- 0.668 10 )i, %c,”

(
Ay o (i0)k2+ A, (Jo)kCy+ A o, (j @) € _
(2,0)( ) (1,1)( 373 (0,3( ) 3 FOM(J%)|

Ful(io)=1,,(o)+1,,(io)k+1,,(o)c+
(10)= 409 (12) + Aug (1) o) , (360)  of system (34) with respecttothevariatior@fs[l,le 16]

i(z,o)(jw)ksz"'2(1,1;(1.“’)'(303"'2(0,3(] ®)C; . & N
where 7 (jw) and A(jw) are dependent on the system inputN/m S”in the case oflg=3x10 N . The results are

and linear characteristic parametégsc, . determined by the OFRF41) and the numerical simulation,

i i T respectively. A comparison of theresults clearly indicates a
Consider further the specific situation whevgt)= very good match between the OFRF representation and the
5coq @, 1), @, =100 rad/;, k =10° N/m andc, =30 N/ms*.  accurate (simulated) respttemonstrating the effectiveness of

For the purpose of evaluating the OFRF coefficients, take tffée Proposed OFRF determination method.

Fig.2 shows the frequency specfYd je, )| and

constant vectolL as 1 35210°
e . o ]
=[ah e 1 o S|
with |, =10 |_ = 1G, and evaluate, by numerical simulations 21.20 1
Q.
(Runge-Kutta method}he system output frequency responses £ Eg
under the following four selections of the design parameters. 5 105
k,/I, = {0.01, 0.5, 2, ? andc,/I. = {0.0l, 4,10, 1}5 (38) g 1.00
. = ~ - — . 0.95
In this case,P ; and A, , with M =6 and N =16 in 0.905 s i I
(28) and (26) are as follows, Nonlinear dampec, / N/m°s®  x10°
2 2 H
1 (k3/lk)(1) (c3/lc)(1) (ko/1y) o (k§3/lljc)(]) 4. g (a) Output spectrum of (ja,)
D | : : : : : 155
Pes=1: : : : : : S
2 2 14l ° imulation |
l(k3/|k)(16)(03/|C)(16)(k3/|k) (1e(k§3/|k|c)(1g(cs/lc) (15 % —— OFRF (41b)
) (39a) s 1
Ag = [ﬂo,o(jwo) lkﬂ(l,o) (J a’o) Ic/l(o,j) (J @) 312t
. R 51 E
L2 (i) I Ay (joo) 1. Ao (i wo)} 11y
It is worth pointing out that theiis no significant numerical 10 T
difference among the components in matdy, , thanks to the 0 Non|in5ear dampe[;sl/([)\]/mézg’ xll%z
introduction of L in (37). This produces the OFRF coefficients (b) Output spectrum oF,,(j,)
/]ex .= ( 131 oo 131& 6)71 1316 X 40) Fig.2 A comparison of the output spectra of systéd) (letermined

using the OFRF4Q) with the numerical simulation results

order to demonstrate how to follow the five step procedure
in Section I11-D to carry out a design, consider the design of the
simple nonlinear system38). The design objective is to
achieve a specified forcé,, (t) for the system.

In this case, Steps 1 and 2 have been completed as the
NARX-M-for-D (34) of the system has been established.

and, consequently, a theoretically equivalent but numericallym
more reliable OFRF representation for syst@d) as follows.
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In Step 3, by designing the natural frequency of the systemaaid c, = 6.72x 16 N/ni S, Substituting the designek , ¢,
o, =100rad/s and the linear damping coefficient ask, and c, into the system model (34) anevaluating the
¢, =30 N/ms, two design constraints in this case can bgutput force of the system by simulation yields

obtained as Fou(j@y) =12.241N (4)
. which is a good match to the design specification. Note that
,Cy): —-100= G
{31((|:1 c;ll kkz (;33)) \E 30— 0 (2) k,=10x10 N/ni is beyond the range d, ={106 ,0.5¢ 16
2 ) ) ) . - =

In Step 4, the OFRF representation of the spectrum of 110, 8 16} M mi over which the OFRF 40) was

output force of systemB) is obtained as given irt{b). By determined. This demonstrates that the OFRF is not a simple

P ; _ _ ’ : : approximation but an inherent representation of the system
specifying Y, (je,) =12.0 N, a, =100 rad/s, and introducing output frequency response and can, therefore, be used to
two more constraintsk, <12x10 N/m' and ¢, <15x1G  perform the system design over a wide range of the design
parameter space.

3
N/m®s* on the design parameteks and c, , the optimization ™ this case, the NARX-M-for-D of the system is established

problem @1) can now be formulized as: by discreizing an available physical differential equation
Find model. However, in practice, a NARX-M-for-D often cannot be
& =[k, ¢, ks, cj (43a) determined in this way as a differential equation model is often
to solve the optimization problem not available for complex physicall systems. In next case Study
MIN 12 o 43b a component of the_ system to design can only be described by a
Fou (J “’0 | (43b) data-driven dynamic model. Consequently, the newly proposed

(k1. ks, c3f
under the constraint NARX-M-for-D becomes a natural representation of the

g, (k. ¢, k, c)ﬁ 100= 0 system that needs to be used to perform the system design.
1 1 1 1 V3

9, (k, ¢, k;, ¢;) 1 ¢—30=0 B. Case study 2
(43c) ; ; T .

05 (ky, G ks, C;) k= 12x 16 < € In this case study, the design of the vibration isolation system

gs(kl 6.k, €)1 ¢~ 15x 16 < € shown in Fig.5 is considered wheh, =1kg. k, =&, and
Th | t'4 ,t ' t;1 i i blema . ¢, =¢, are the parameters of the spring and damper in the
t .ehtfsou |3n FO '?h O%Q_\',T:i'on tphro erln t'sﬁ E’ system. The isolator in the system is a piece of damping
straightiorward. - =rom the 1b). the relationship maierial which cannot be described by an analytical physical
betweenFout(Ja)o) and the design parameteks andc, can model but whose NARX-M-for-D has been determined under

be obtained as shown in Fig.3 and 4. the sampling frequency, =512 Hz as

s s s feo (t ) =ad; y(t) +as,y ( t) +agsy ( = 1) (45)

z, by using nonlinear system identification techniques described
S 13 n[2g.

:g 124 In (45), f,(t) is the damping force produced by the isolator

g; in the system(, is the parameter of the isolator to be used for

B — the system design, and
5 >~ o a =4x10°%,a,=10 ,a4=-0.7% 1t (46)

1 .
G/NS® 150 2 e S 0 are constants.
t
Fig.3 The output spectrum of system (33) k, aul
x10°

12y - —/\V\V
T e ‘ = uo
97 B o ﬁ Eo E 1 f——

Eo| \ ] AN ™o

270 | ] fou

~67 | 1 — G

g / ] [ =
3E / / ] OO
21 @ v < 1
11588849 6;“/2 s Fig.5 The vibration isolation system to design in Case study 2
001234567 891011 12 1314 : According to the basic physical principle, the system in Fig.5

Fioa Cont fth%/ N/:” St t fx102t @y 6" be described as:
ig.4 Contour map of the output spectrum of system . .
According to Fig.4, the design fd¢, and ¢, can be reached u(t) = Moy (t)+c,y(t)+ ky(t)+ fg, (t) 7)
simply by finding the values ofk, andc, along the contour fo () =cy(t)+ky(t)+ f (1)

line of 12.0. For example, if selecting, =10x1G N/nt, From (45) to (47), the NARX-M-for-D of the isolation
along the contour line af2.0 in Fig.4, k, can be obtained as system can be obtained as:

c,=6.72x16 N/nis’. Consequently, a final design can be
achieved as, =10' N/m, ¢, =30 N/n’'s’, k, =10x16 N/n?
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oY (EVu(t-1)+8? t—2)+ 9" t—1) Based on the results of Steps 1-4 above, in Step 5, the design
o (Ju(t-y+ 1'0_(§)y( i 1‘0(6)_)/( )+ issue in this case study can be described as an optimal design
a5 (&)Y (t-1)+0 277 (&)Y (t-2)+6. (&) y(t)= 0 9 probem as follows.
05 (£)y(t-0+ 053 (£) y(t-2)+ 03 (&) y -3+ e
“(Y2v2 2 3 | Y o= [?:1, Sar ‘fs] (%D
O 7 (&)Y’ (t-2)- T, (t-2)=0 to solve the optimization problem
which is clearly a specific case of the NARX-M-for-I0f MIN [T (j coF)—l.5| (55b)
with ¢=[&,&,,&], and the details of the coefficients are 166285
: . ; under the constraint
given in Appendix A.3. _ Ax10° 10= 0
In the following, the design of parametefsof the vibration 91(5)-51_ x107¢;-10 =
isolation system when the system is subject to the multi-tone 9,(¢):¢,-30=0 (585)
input 0:(&):&£,-6x10°< 0
u(t)=6cog m.t)+ 4co¥ wet) 49 where
where @ =100 rad/s is considered. The design objective is to . B > - > -
achieve a desired force transmissibility at the frequencyas |T(JwF )| B \/Re [T( Joe )] im [T(JwF )] (56)
defined by and
E (i R T(jw.)]=—-2.456+ 1.3837%, - 0.846%,%+
T(ja))= our(Ja)) (50) |: ( F)] 8@ 3 p 3

U (jo) 0.288,3%°— 0.047,“5,*+ 0.306 10, %,°
whereU (jw) and F,, (jo) is the spectrum of the input and IM[T(joo )| =1.443- 4.098 7, + 3.293 75,7 -
output forces of the system, respectively. 1.244.°5%+ 0.2207°5,*~ 0.015°%¢,°

From the NARX-M-for-D @8), the results in Steps 1 and 2 of - . .
the proposed general design approach are obtained, which argonsmermg the constraints @1(5) and g, (é) L

the NARX-M-for-D (48) and the relationship between thePPtained that

(57)

system design parametets and the linear and nonlinear &, :ﬂglzsx 16 %8)
characteristic parameters of the system. In Step 3, three 4x10
constraints on the design parametérare introduced as t U_n<|jder the constraint 06§), inequality (55c) can be solved
o yie
9,(€): 6 -4x10°¢,-10 = ¢ 23«10 <& < 125 10 59
9(¢):¢,-30=0 & Consequently, from5@) and £9), it can be obtained that
95(¢):6,-6x10°< 0 1.92<10 <& < 6 10 40)

o ensure that .the FRF Of thg system at _the driving 1ErequencyTherefore,h]efeasible solutions to the design problem in the
o =100 rad/< is as specified in the following case study are:

4 (&)exp(- jo, At) 2.3x10 <& < 12.5 10
1-0Y (&) expl— jo.At) - 02 (&) exq(~ 2iv.At) (52) ¢ =30 (61)
A
7 e ! If & is designed asf, =2.3x10 , the corresponding
and g3(§) is a constraint on the maximum value of the‘;::lzk1 and & =c, can be obtained ag =k =1.92x 10
stiffiness of the spring. N/m, & =c, =30N/ms'. The time history of the output

Moreover, in Step 4, the OFRF representation of the forggrce and the corresponding transmissibility are shown in Fig.6,
transmissibility T (je; ) of the system is determined. In thiswhere a comparison with the result in the case of

H, (jor )=

case,N=11 & =k =1.92« 16 N/m, &, =c¢=30 N/ms* and &,=0 can
N also be observed.
E=E=JE =[15.8 .56 & (53) 40

n=1
and the OFRF was determined from the system output 201

responses to inpud® when the design parametefs changes
over the range 0{0.01,0.8, 2, 3, 4,E as
T(jo, )=(-2.456+ 1.443)+( 1.383 4.098i. ¢, +
(—0.846+ 3.293)1, 75,7 +( 0.285 1.24M1.°¢ %+ (54)
(-0.047+ 0.220)l, &, +( 0.308 10— 0.018} °,°
wherel, =10°

i
I
|
|
il |
444!
AR R RN
B
| -~ Linear output Force

—— Nonlinear output Force

Output Force /N
o

1 1.5 2
Time/ s
(a) Time history of the output force
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3.0 , ' ' ' ' and the need to extend the physical model-based system design
ﬁ'\‘f =0 a h to add licated I t
o5 ! § pproach to address more complicated complex system
i designs, a new model known as the NARX-M-for-D is first
?2-0' i &=2.3x10 ] proposed in the present study. A NARX-M-for-D can be
Z1.5) 1 derived from a nonlinear differential equation model of a
Ll of -—- Linear Transmissibility | system but, more importantly, can also be determined from the
' — Nonlinear Transmissibility system input output data through a nonlinear system
0.5 ] identification process. Moreover, a new OFRF-based
0 L methodology is developed that can be applied to the design of
0 100 %?gqueﬁgy, by 100 500 6o nonlinear systems described by a NARX-M-for-D. The
(b) The force transmissibility methodology consists of a five step procedure including novel
Fig.6 A comparison of the system performances under the linear a@igorithm and technique for determining the structure and
nonlinear designs evaluating the coefficients of the OFRF of a NARX-M-for-

From Fig.6, it can be observed that under the design, thad can be applied to design a general class of nonlinear
transmissibility at the base frequency @f =100 rad/s has systems in the frequency domain. Two case studigsbeen
reached 1.5 as required. But, compared to the cagg-00  Provided to demonstrate the significance of the new design
where no material-based nonlinear isolator is introduced, tAeethodology. . _ _ _
optimal design induces additional components at superThe paper is basically concerned with the introduction of the
harmonic frequenciegazga)': and 5025%- However, the NARX-M-for-D of nonlinear systems and the design of a
time history of the system response shown in Fig.6 (a) indicatg@linear system based on the OFRF of the system’s

that the optimal design has an overall better performance WMARX-M-for-D. The determination of the NARX-M-fob
vibration isolation. In order to confirm this observation, thérom practical testing data has been demonstrated in our

concept of power transmissibilit&(wF) introduced in37] previous works, and the focus of the present study is therefor

ITD ()|2 the evaluation of the OFRF and the OFRF based optimal

fo (O d = ) 2 27 system design which is relevant to real world nonlinear system
E(a)F):OTO—zzzT(Ja)Nw:pw; ! TO :(0_ (62) design.

Io “(t)| e e= F The new design method, for the first time, transforms a
was used to evaluate the vibration isolation performance of the@mplicated dynamic loading oriented engineering design into
system in the two cases. The results are a much simpler polynomial-based optimal design problem

E(w, )=8.457 (63) The method, therefore, has potential to be applied to address

challenges with the optimal design of complex engineering
systems and structures which, so far, can only be deal with

E(w:)=2.559 (64) using numerical simulation and random search etc.
when the isolator is applied. Clearly, the optimal nonlineaophisticated and time consuming procedures.

design has achieved an overall better performance than H\]SpendixA 1 The coefficients of NARX-M-for-D (6)

linear solution. The model coefficients can be written as
It is worth pointing out that because the optimisation

problem is formulated using the OFRF which is a polynomial 65 (¢)=0.381x 10° A\ (&) =- 1,
function of the design parameters, the numerical costs 0{%(6):—(0.19& 10%c,+ 0.38% 10k — )2;
associated with the new design are normally less than the costs

- : ical simulati 07 (¢)=-(1-0.195< 10°g,) ;
associated with a completely numerical simulation based 10 . G)s
method. In the case study above, for example, the overall o (& :—(0.38]x 10°k, + 0.512 19@;3) :

computation on a standard PC running MATLAB codes only 112 ) (123
took 30 sec to complete. 6507 (§)=1.023¢ 10c; #5,7 (¢)=— 1.028 1T,

6% (¢)=0.512« 10c, ; els@ > ") (&) =0

when no material-based isolator is used and

(A1)

V. CONCLUSIONS

Traditional nonlinear system designs are basically based #RPendix A.2. The coefficients of NARX-M-for-D (34)
the time domain response analysis, which is often difficult to The model coefficients can be written as
reveal the relationship between the system performance and the 90(11) (5) =0.381x 10° ; 1(?,) (cf) =-1
parameters that can be used to perform the design. Motivated 7@ .\ _ 2 3 )
by the wide engineering applications of the FRF-based linear ‘21,0 (é)_ (0'195X 10°c,+ 0.382 10k, )2 '
system frequency domain analysis and design, the OFRF 7 (¢)=—(1-0.195 10°c)) ;
concept was proposed in order to extend the effective linear ~uiy, .\ 5 .
system approach to the nonlinear case. However, the methods 6_’30 (f)——(0.381x 10 IfﬁJr 0.512 13@53) '
requiredto know a differential equation-based physical model 93%1'2)(5):1,02& 16c, ;gg’tz’?(g):_ 1.028 1,

6577 (&)=0.512¢ 16c, ; els@ =) (&) =0

(A2)

of the system where the physical parameters that can be used

for analysis and design are the coefficients in the model.
Considering that it is difficult even impossible to find aand

differential equation model for complex engineering systems



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEE TO EDIT) <

0% (£)=0.512« 16¢,+ k, 19”(10(5)= 0512 1,
G (&) =k, +0.745¢ 10%c, Hya? (&) = - 0.149 10c,
0““(8:) 0.149: 107c, 7533 (&)= 0.745 16c, ;

3,0
elsedis ") (&)= 0
O (&)= 120,57 (£) =2.621 100 5 (&) (A4)

such that
for p+g=> 2, and the condition of Corollary 1 is satisfied.

(A3)

Appendix A.3. The coefficients of NARX-M -for-D (48)
The model coefficients can be written as

501(5) 0.381x 10° 2,9 (&)=- 1,
63 (&)=2-0.195 10°¢,~ 0.38¢ 18,~ 0.153 18,
09 (&)=0.195¢ 10°¢,~ 19;" ()=~ 0.038, ;

222(g) 0.02%;,; els@ v ") (&)= 0
and
0 (6)=0.512¢ 16&,+ &, + & 10¢, ;
6% (£)=-0.512< 16¢&, §537 (&) = 16¢, ;
G%%9 (&) =0.75x 10, ; els@ s "> ) (&)

3,0

(A5)

(AB)
(

Appendix B. Proof of Proposition 2

According to (11a) and (11b), it can be seen that given linear

coefficients 81 (8) , 83(8) . 651(&) and 81}(2), the nth
order GFRFs of thél0a) can be written asi6]:

H:(wl,...,wn)_ 2 TR AR N
(v sN)EV (Bl)
=0,h, (@, @,)

whereV represents &N -dimensional nonnegative integer

vectors which contains the exponents@fé,”---6,,» and
ﬁ(vl’“ are constantsg,,f,,...,0,, € [égf‘g‘“"‘") (§)| p+q2 2] )

Substituting (13) into (Bl) yields:

“Ven)

H:(a)ll" a)) th(a)l'“"a)n)é?(n:i)ﬁ(n:i) (BZ)
=EH (o, 0,
where R, (@, ---, w,) are thei th element ofh, (@, -, @,),

Z, is composedf &, ,i=1...,N",and N' is the maximum

dimension of vecto®, .
Substituting (B2) into (11a), yields:

N
X(jo)=3 X, (io)
n=1
N 1 o n .
S . — EH (o, 0)| |U(jo)do, (B3
;Jﬁ 272.)”71 J.o)l+-~-+o)n:w ( 1 )]IZJ: (l ) ( )
N — .
=Y EX,(jo)
n=1
wher
. 1
Xn(lw)z\lﬁ(z )n_lj.‘”ﬁ“-wn © (01," CO)HU ](l) dO' (B4)
T

Similarly, it can be obtained that

11

(B5)

Z_

Therefore Proposition 2 is proven.

(jw)

Appendix C. Proof of Proposition 3
In (11a), thenth order GFRFs’ coefficient vector @, can be
calculated by using the algorithm discussed in Peng[&gal

_ Ko n-1n-q K
o] 0 el U o ase.,)
Ky oKy =1 g=1p=1k,.. k=1 (Cl)
0.0 @ ~@se,)
p=2k,..k,=1
where@, | = nU (6,©0,,,,) and6,, =06,

i=1
Substituting (13) into (Cl).,?2 can be obtained satisfying
Proposition 3. Moreover, by using the mathematical induction
and assuming Proposition 3 holds ﬁ%p, it can be obtained

that
Kora) @ =
0n+1 ‘| [ ®‘:’n+1—q,p):|

-
“n+1_[

n n+l-q K

Ju U (&

a=1 p=1 k... k=1

U &

K kig =1

(C2)
n+l K
2lak) o =
U[U U (é:p,o ®“n+1,p):|
p=2K .. kyyq=1
where, according to (11aF,,, , can be obtained as:
n+1- p+1 _
= = ER®E L.
n+l,p |L:J1 ( i n+l—|,p—1) (C3)
Eh11= S

Therefore, (63 in the Proposition 3 is proven. Fo6f, it
can be proved by using the same process as from (C1) o (C3

Appendix D. Proof of Corollary 1
From the conditiorégfgm’k”)(f)=
it is known that
adfy OB <l )

Ak Kpig) Z(K Kpig) pkei K g)
=054 M(é):‘fpqu By T

aééf(;""’kp*“)(é’) and (13),

(b1)

As E;T‘;’""k’”“‘) and Egﬂk”) are variables, (D1) indicates
that
e a -
iy =g
and (Bb) can be reduced to§d) as
. K Z k) n-1n-q K (ko ko)
Z, = U on U UU U <§p,q' o ®Ervqp)
Ky oo Ky =1 q=1p=1k ,.. k;=1 (D3)
K

Then Corollary 1is proven.
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