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Design of optical meta‑structures 
with applications to beam 
engineering using deep learning
Robin Singh1,2*, Anu Agarwal3,4,5 & Brian W. Anthony1,2,6*

Nanophotonics is a rapidly emerging field in which complex on‑chip components are required to 
manipulate light waves. The design space of on‑chip nanophotonic components, such as an optical 
meta surface which uses sub‑wavelength meta‑atoms, is often a high dimensional one. As such 
conventional optimization methods fail to capture the global optimum within the feasible search 
space. In this manuscript, we explore a Machine Learning (ML)‑based method for the inverse design 
of the meta‑optical structure. We present a data‑driven approach for modeling a grating meta‑
structure which performs photonic beam engineering. On‑chip planar photonic waveguide‑based 
beam engineering offers the potential to efficiently manipulate photons to create excitation beams 
(Gaussian, focused and collimated) for lab‑on‑chip applications of Infrared, Raman and fluorescence 
spectroscopic analysis. Inverse modeling predicts meta surface design parameters based on a desired 
electromagnetic field outcome. Starting with the desired diffraction beam profile, we apply an 
inverse model to evaluate the optimal design parameters of the meta surface. Parameters such as the 
repetition period (in 2D axis), height and size of scatterers are calculated using a feedforward deep 

neural network (DNN) and convolutional neural network (CNN) architecture. A qualitative analysis of 
the trained neural network, working in tandem with the forward model, predicts the diffraction profile 
with a correlation coefficient as high as 0.996. The developed model allows us to rapidly estimate 
the desired design parameters, in contrast to conventional (gradient descent based or genetic 
optimization) time‑intensive optimization approaches.

Nanophotonics is driving technological innovations in a variety of applications. �e widespread use of nano-
photonics requires the design of complex photonic microstructures that manipulate and guide light waves at the 
nanoscale. �e design space of such microstructures is o�en high dimensional, where conventional methods fail 
to capture the global optimum in  functionality1,2. One such example is an optical meta-surface which enables 
the miniaturization of complex cascades of optical elements on a plane. Metasurfaces derive their properties 
less from the base materials and more from their structure and  orientation3,4. Optical metasurfaces are based on 
sub-wavelength structures oriented to capture and re-emit light with a de�ned phase, polarization, mode, and 
spectrum, allowing us to sculpt di�erent light propagation patterns with unprecedented accuracy. Hence, they 
play a crucial role in engineering beam patterns in integrated photonic applications such as grating-based light 
coupling, Bragg gratings and �at-meta lens  etc3–5.

Important in the design of an optical metasurface is the size, orientation, shape and distribution of the meta-
atoms (individual scattering units on the surface)5,6. Various analytical and numerical approaches have been used 
to predict the electromagnetic response of  metasurfaces7. Researchers have developed analytical models such 
as the Lewin, s-parameter based, and Generalized E�ective Medium (GEM) model that approximate the spatial 
dispersion and �nite e�ective refractive index of the meta-atoms through a reliable, e�ective model of  epsilon5–10. 
However, these approaches are o�en time-consuming and are limited by their long-wavelength approximations, 
precluding their use in calculating the response of meta-atoms whose dimensions are comparable to the wave-
length of  light10. Hence, researchers adopt numerical approaches, relying on iterative waveform simulations that 
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are based on �nite-element method (FEM), �nite-di�erence time-domain (FDTD) method and �nite integration 
techniques (FIT)7. �e major drawback of these approaches is that they are based on trial-and-error or empirical 
reasoning, making them ine�cient for the design of highly non-linear  devices8.

We consider a machine-learning-based approach, which is faster and more e�ective, to develop an inverse 
model for meta-surface design. With its enormous hidden layer capability, Deep Neural Network (DNN) based 
ML algorithms allow us to estimate complex and non-linear functions according to the Universal Approxima-
tion  �eory5,11. Hence, it is possible to use these architectures to develop nanophotonic models/simulators that 
are otherwise time-intensive when using a conventional approach. Speci�cally, we de�ne a forward model that 
predicts the electromagnetic response (EM) for given design parameters; and an inverse model that predicts the 
design/geometric parameters for a given EM response.

We consider inverse modeling of our photonic beam engineering structure that comprises a distribution 
of meta scatterers along the planar photonic waveguide. �e ability to engineer di�erent beam pro�les such as 
Gaussian, focused and collimated beam enables improved e�ciency in an integrated opto-�uidic sensor. It can 
be used to excite the analyte and observe on-chip �uorescence, or to perform IR  spectroscopy12–17. It improves on 
other existing on-chip and bench-scale excitation methods in various ways. First, it helps scale up with the �eld 
of view by multiplexing a large number of excitation sources. Second, it provides compact hardware geometry 
to develop a scalable and low-cost solution. �ird, this method can automate various biological analyses, such 
as screening and probing. Besides, it allows us to develop more e�cient grating couplers for photonic integrated 
 circuits18. One can engineer the beam pro�le to allow maximum power transmission through �ber couplers. 
Additionally, it also opens up the possibility of using edge emitter laser sources (semiconductor laser dies) as 
vertical light excitation (VSCEL like) devices required in LiDAR and 3D depth sensing  applications19.

Related work. Optimizing meta surface design has been of great interest to the photonics community in 
recent years. Many independent studies have demonstrated the use of DNN-based approaches to learn the rela-
tionship between device geometry and optical response in the forward model. Zhang et al. demonstrated the 
use of Arti�cial Neural Networks for RF and Microwave  designs20. Gilliard et al. studied the dispersion relation 
of 2D photonic crystal designs using Multi-layer perceptron  model21. Ferreira et al. used a hybrid EM optimiza-
tion method enhanced with AL algorithm (MLP) to develop full-waveform numerical simulation and used it 
to predict the permittivity of  metamaterials22. In a recent publication, Jiang et al. used simulator based training 
of GNN (Generative Neural Networks) for the inverse design of meta-surfaces23. Yao et al. worked on develop-
ing an intelligent nanophotonic structure using DNN to explore the enormous parameter space  e�ciently11. 
Kudyshev et al. optimized the topology on the metasurface based thermal emitter using machine learning. �ey 
used two coupled neural networks to implement GANs (Generative Adversarial Network) to perform unsuper-
vised  learning24. Lui et al. used DNN for the inverse optimization of nanophotonic structures and developed 
DNN based equivalent EM solver to design 1-D, 2-D, and 3-D dielectric  metasurfaces25,26. Other works include 
meta-surface design to enhance the waveguide  couplers27,28. Huang et al. showed out-of-plane waveguide-based 
 holography29. Guo et al. showed chip integrated geometric meta surface for directional  couplers30.

Meta surface design and modeling. In this manuscript, we consider a planar meta surface composed of 
5 by 5 meta scatterers distributed on the plane, which di�racts an engineered light beam in free space on top of 
the photonic waveguide. Figure 1b shows the photonic waveguide terminating with the meta surface fabricated 
in SiN material, which sits on top of a  SiO2-On-Si wafer. We design a single-mode waveguide that supports the 
fundamental TE and TM modes at C and L bands of the operating wavelength. Hence, the thickness of the SiN 
waveguide is kept 400 nm with a width of 800 nm. �e taper that combines the waveguide to the planer meta 
surface has a width and length of 3 μm and 5 μm, respectively.

Theory and fundamentals. �e photonic waveguides form a region with a high e�ective index to support 
orthogonally polarized fundamental modes that propagate through the grating structure. �e light propagation 
from the structure can be understood using Huygens-Fresnel principle through constructive and destructive 
interference resulting from the di�raction of light from the meta surface. We assume the �eld distribution does 
not have y-direction dependence ( ∂

∂yi
= 0 ). Please note that the area above the meta surface is air clad. Assuming 

that the incoming optical wave from the le� (in Fig. 1) in the generalized form E = Einc0 (y, z)ei(βx−ωt) , the dif-
fracted light wave is given by the space harmonic �eld E

diff
0 (y, z)ei(kxnx−ωt) , where the propagation  constant31,32

Here, βn is the propagation constant of the di�racted beam that depends on the periodicity of meta scatterers 
in the x direction, �x,α is the energy leakage factor and n refers to the di�raction order. �e angle of di�raction 
measured from the vertical axis, φn for nth order of di�raction is given  by32

To obtain an out-of-plane di�racted beam and avoid higher order beam di�raction, the following condition 
needs to be  satis�ed32

(1)kxn = βn + iα = β0 +
2nπ

�x
+ iα.

(2)φn = sin
−1

(

βn

k0

)
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where nwg is the e�ective index of waveguide and εa is the permittivity of the cladding (in this case air). Further, 
the leakage energy in the di�racted beam is given by 32

where αh(ω, h, g) is the coe�cient that depends on the light wave frequency, height and gap factor of the meta 
scatterers (the design parameters are de�ned in Fig. 1b), εwg and εa is the permittivity of the waveguide and air 
respectively.

(3)
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Figure 1.  Schematic of on-chip photonic beam collimator. (a) De�nitions of forward and inverse models 
de�ned for understanding the performance and design of metasurfaces. (b) SiN based photonic waveguide 
terminating in a meta structure that di�racts light out-of-plane. (c) Design parameters of the meta structure, 
grating period and scatterer width in horizontal and vertical directions are de�ned. (d–f) Top view of the 
di�raction pro�les for di�erent combination of the design parameters.
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Design parameters. While there are many secondary parameters (e.g. the cladding thickness, substrate 
thickness etc.) that in�uence the di�raction of the light from the meta structure, we focus on the following 
primary parameters:

Periodicity (Grating Period, λx). �e meta surface di�racts light waves that propagating in the waveguide in an 

out-of-plane direction. �is results in space harmonic �elds varying in the form of E
diff
0 (y, z)ei(kxnx−ωt) where 

the propagation constant kxn described in Eq. (1) above depends on the grating period (λx) along the propagation 
direction. �e grating period controls the angle of di�raction as shown in Eq. (2).

Gap factor (g, 1 − dx/λx). In Eq. (5), the energy leakage α depends on the gap factor (g) in two ways. First, 

αh(ω, h, g = 1 −
dx
�x

) shows slow variation of energy leakage coe�cient with the gap factor. Second, gap factor 

critically in�uences the energy leakage in the form of a squared sine function where the maximum energy loss 
occurs when g = 1/2.

Height (h). Rigorous analysis described elsewhere con�rms that the energy leakage depends on the etch depth 
of the meta scatterers (during fabrication)32. Etch depth controls the height of the meta scatterers (h) in the 
planar waveguide. For small values of the etch depth, α is proportional to ED2 . However, as we increase the etch 
depth, α oscillates around the saturated value of αT . �e details of the dependency on the height can be found 
 elsewhere32.

Scatterers size  (Ci). �e size of the meta scatterers controls the e�ective permittivity ( εr ) of the medium. �is 
in turn in�uences the leakage energy of the di�racted beam. In general, the optical energy of the propagating 
mode tends to spread more in the denser medium (medium with higher ε ). Hence, the size of meta scatterers 
in individual rows changes the leakage energy through it and controls the di�raction beam pro�le (as shown in 
Fig. 2). Speci�cally, we keep the width of the scatterers in the x-direction constant and only change their width 
in y-direction through the design parameters  (Ci) de�ned for each row as shown in Fig. 2b.

Formulation of the inverse problem. Having understood the in�uencing factors and mechanism of the 
free space di�raction from the grating structure, we formulate the design problem. For the given design parame-

ters of optical meta structure, �x , g ,ED,Ci(1 ≤ i ≤ 5 ), we de�ne the forward model that computes the free space 

di�raction pattern. Let �(a1 = �x , a2 = g = 1 −
dx
�x
, a3 = h, a4 = C1, a5 = C2, a6 = C3, a7 = C4, a8 = C5) 

de�ne the forward operator that computes the output di�raction �eld. Hence, 

�(a1 = �x , a2 = g = 1−
dx
�x
, a3 = h, a4 = C1, a5 = C2, a6 = C3, a7 = C4,a8 = C5) = ID(x, y, z)

Similarly, for the given di�raction pro�le, ID(x, y, z) , we map it to the design space via �−1 de�ned as,

Hence, our de�ned inverse problem is to �nd the best estimate of �−1 to enable us to obtain the design 
parameters of the meta-grating structure.

Results
Feedforward Deep Neural Network (DNN). Feedforward Deep Neural Network contains multiple 
hidden layers that can be used to represent an unknown complex function. �e di�raction pro�le of the meta 
surface is fed into the input layer that is connected to the set of hidden layers through the activation function 
(ReLU). �e hidden layers terminate with the output layer that predicts the design parameters of the meta sur-
face.

�−1ID(x, y, z) = (a1 = �x , a2 = g = 1−
dx

�x
, a3 = h, a4 = C1, a5 = C2, a6 = C3, a7 = C4, a8 = C5).

Figure 2.  Cascade mirror model of the meta surface. Light is coupled in through a waveguide. As it propagates 
through individual grooves in the meta grating structure, it undergoes successive di�raction, transmission 
and absorption. We control the di�ractance through the grooves by de�ning the width of the scatterers in 
y-direction  (Ci) as shown in (b).
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Convolutional Neural Network (CNN). In contrast to the fully connected deep neural network (DNN) 
with similar-sized layers, CNN has fewer connections and parameters making them easier to train. �ey tend 
to have theoretically better performance compared to the fully connected DNN with higher relative e�ciency 
of their local architecture. Beside using fully connected DNN, we also investigate CNN architecture to estimate 
�

−1 as shown in Fig. 3. It contains 1 Convolutional layer and 3 fully connected layers. �e convolution �lter has 
a padding of 2, kernel size of 5 and stride of 1. �e output of the �lter is passed through an activation function 
with non-saturating non-linearity as ReLU to improve the performance in terms of training time. Following the 
activation, we perform max-pooling to avoid any over�tting of the trained model. �e fully connected layers 
follow the max pooling layer to produce 8 continuous-valued outputs.

Performance of DNN and CNN. We begin with the DNN consisting of 3 layers with 512 units in the hid-
den layer (see Fig. 4). While the training and test loss decreased with an increase in the number of iterations, 
there are signi�cant jitters in the test loss. We obtain the test loss of 0.030/sample a�er 1000 iterations. To fur-
ther investigate the e�ect of hidden layers in estimating the design parameters, we increase the depth of DNN 
to 4, consisting of 1024, 512 units in the hidden layers respectively. We obtain improvement in the predicted 
values with test loss of 0.012/sample a�er 1000 iterations. Interestingly, as we further increase the depth to 5 
layers (comprising of 1024, 512 and 256 hidden units respectively), we start to see an increase in the test error. 
It increases to the value of 0.021/sample. We suspect the reason to be over-�tting of the data that kicks in as the 
number of hidden layers is increased. Figure 4 summarizes the performance of the 3 di�erent architectures of 
the deep neural network. Additionally, we believe that it is possible to increase the accuracy of our model by 
using more training samples and by running it for more iterations. �e experimentation with the neural network 

Figure 3.  (a) Feedforward neural network architecture to estimate the inverse model for meta structure. 
Di�raction pro�le of the meta surface is input to the network. We use a 4-layer architecture with decreasing 
number of units. �e output of the network is 8 design parameters of the meta structure. (b) Convolutional 
neural network (CNN) is used to report the estimation values in Fig. 5 and the text. We use a single convolution 
layer with 3 fully connected layers to output 8 design parameters.

Figure 4.  Training and test error for di�erent architecture of the neural network. Mean square error with 
number of iterations for the architecture (a) that has 3 layer DNN. (b) that has 4 layer DNN (c) that has 5 layer 
DNN. �e test error is minimum for the 4 layer DNN.
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architecture concludes that the 4-layer deep network estimates the design parameters with the highest accuracy. 
Figure 5a shows the test error in estimating the individual design parameters.

We also test the performance of Convolutional neural network (CNN) and �nd that the training procedure 
is not as e�ective as that of DNN. We perform experiments with di�erent CNN architectures and �nd that the 
network with single convolution layer and 3 fully connected layers gives the best estimation with test error of the 
design parameters as 0.0170/sample. However, due to much larger test errors in estimating the design parameters 
as shown in Fig. 5b, we restrict our majority of discussion to DNN for the beam engineering.

Discussions
Qualitative evaluations. Going further, we investigate the performance of the DNN and CNN in estimat-
ing individual design parameters. Figure 5 plots the estimation error for �x , dx, h and scatterers width  (Ci) respec-
tively using DNN and CNN. For DNN, we observe that the error bars are relatively low for �x , dx, h (< 0.005) and 
 Ci estimation is accompanied by larger inaccuracy with the error (~ 0.025). �is suggests that �x , dx, h are the 
primary design parameters controlling the di�raction pro�le from the meta surface. On the other hand, higher 
error bands on  Ci estimation are ascribed to ill-posed nature of the optimization problem. One can obtain the 
same di�raction pro�le with di�erent combinations of  Ci.

To reason out the error analysis, we perform the forward model with the estimated design parameters. �is 
is performed to understand the dependency of the di�raction pro�le on the design parameters. Figure 6 shows 
the di�raction pro�le obtained with the estimated design parameters and compares it with that of the ground 
truth pro�le. We calculate the correlation coe�cient between the di�raction pro�le images. Mathematically, the 
correlation coe�cient is given  by33

where X  and Y  are the mean of X and Y images respectively. Given that DNN outperforms CNN architecture 
signi�cantly for the given training data set, we restrict our discussion to the DNN based estimator. We develop 
a DNN validator network based on the pre-trained inverse design model tandem pipeline (Fig. 6a). We compare 
di�erent beam pro�les, Gaussian, focused, collimated and random beam, estimated from the DNN with the 
ground truth. We �nd that DNN predicts the beams for Gaussian, collimated and random pro�le with a high 
correlation coe�cient of 0.986, 0.925 and 0.996 respectively. However, the DNN does not perform very well in 
predicting the focused beam, as shown in Fig. 6, and has a correlation coe�cient of 0.925. We believe that the 
performance of the meta surface in beam engineering can be further improved by increasing the number of 
scatterers in x and y directions.

Bandwidth and power efficiency. It is ideal for the meta surface design to operate over a wide range of 
wavelength, particularly for cases where we intend to use them for spectroscopic applications. We calculate the 
3 dB operation bandwidth of the meta structures. We �nd that the bandwidth is di�erent for the di�erent design 
with values of 30 nm, 24 nm, 65 nm and 70 nm for collimated, focused, Gaussian and random beam pro�les 
respectively. Hence, we conclude that the beam pro�les with extreme spatial distribution of the di�racting light 
tend to have smaller operating bandwidth. Further, we believe that, as we increase the degree of freedom in 
design parameters, for instance, apodization of grating period, the bandwidth can be improved  further34.

r =

∑

m

∑

n

(Xmn − X)(Ymn − Y)
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(

∑

m

∑

n

(Xmn − X)2

)(

∑

m

∑

n

(Ymn − Y)2

)

,

Figure 5.  (a) Test error in estimating individual design parameters obtained from the best performing DNN 
architecture. (b) Test error in estimating individual design parameters obtained from the best performing CNN 
architecture. We conclude that DNN outperforms CNN in estimating the design parameters. �e test errors in 
predicting �x ,  dx, h are signi�cantly low as compared to  Ci estimation.
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Conclusion
In the manuscript, we present the inverse modeling of optical dielectric meta-surfaces for integrated photonic 
applications. We develop the inverse model for a demonstration meta surface i.e., planar waveguide-based surface 

Figure 6.  Evaluating the performance of DNN in estimating the inverse model for photonic beam engineering. 
�e tandem DNN inverse model estimator with the FDTD forward is used to pipeline the output of DNN to 
FDTD simulator. (a) We call it the tandem network as DNN validator network. (b) Original Gaussian beam 
viewed from the top (c) �e predicted Gaussian beam from the DNN validator network. (d) Comparison of the 
predicted and original beam pro�le along the propagation direction. (e) Original focused beam viewed from 
the top. (f) �e predicted focused beam from the DNN validator network. (g) Comparison of the predicted and 
original beam pro�le along the propagation direction. (h) Original collimated beam viewed from the top (i) 
�e predicted collimated beam from the DNN validator network. (j) Comparison of the predicted and original 
beam pro�le along the propagation direction. (k) Original random beam viewed from the top. (l) �e predicted 
random beam from the DNN validator network. (m) Comparison of the predicted and original beam pro�le 
along the propagation direction.
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to engineer out-of-plane di�raction beams. We demonstrate the engineering of di�erent beam pro�les such as, 
uniform, focused or Gaussian.

We use a Deep Neural Network (DNN) and Convolutional Neural Network (CNN) based models to estimate 
the inverse operator that maps the free space di�raction pro�le of the metasurface to its design space composed 
of the grating period, gap factor, height and size of meta scatterers on the planar waveguide. We �nd that DNN 
performed better than CNN based function estimator for the given training set. While most conventional gra-
dient descent iterative design approaches are time-consuming and computationally expensive, the developed 
inverse model allows us to rapidly estimate the design parameters of the meta surface, given the free space dif-
fraction pro�le.

Given the generality of the approach that we implemented here, the presented machine learning-based 
method can easily be adapted to design complex photonic structures with high dimension design spaces. Fur-
ther, our method can be used for designing an apodized meta grating structure to enhance the grating coupler 
e�ciency as  well18. In general, the proposed method provides a paradigm for developing and analyzing various 
nanophotonic structures where the conventional approach fails to yield a faithful model.

Methods
FDTD simulation. �e electromagnetic simulation of optical meta-surfaces is performed using the �nite 
di�erence time domain (FDTD) simulation implemented using commercially Lumerical so�ware (Lumerical 
Inc., Vancouver, BC, Canada). We consider a photonic planar 400 nm thick SiN based waveguide structure on 
3 µm  SiO2 substrate with air cladding on top of the waveguide. �e refractive index of SiN and SiO2 are taken as 
1.91 and 1.414, respectively at λ = 1550 nm. In the manuscript, we use FDTD for two major purposes; to develop 
exhaustive training data set and to achieve the DNN validator network based on the pre-trained inverse design 
model tandem pipeline.

Data generation, formatting and preprocessing. We use the random parameter combination of grat-
ing period ( �x ), scatterer size in x direction ( dx ) scatterer size in y direction for each row Ci (0 < i < 6) and height 
(h) of the meta surface in python script and combined it with Python API of Lumerical So�ware. �e API inte-
grates the Lumerical tools with Python enabling us to automate the data generation. Lumerical FDTD so�ware 
performs the full wave 3D FDTD simulation. �e beam di�raction pro�le of the grating structure (viewed from 
the top) is stored as an RGBP image labeled with its corresponding design parameter values. Speci�cally, we vary 
‘λx’ between 0.3 to 1.4 µm, ‘ dx ’ in range between 50 nm to 1.2 µm, ‘h’ between 100 to 400 nm and ‘ Ci ’ in ranges 
between 50 to 480 nm. Di�erent combinations of these design parameters are used to generate the di�raction 
beam pro�les. We generate about 4000 training dataset with these design parameters. �e input light wavelength 
is kept constant at 1.5 µm, most commonly used wavelength range in the integrated photonic applications.

Network generation. Training procedure. Neural Network is implemented through Pytorch library on 
Python. As such, we begin with de�ning the neural network architecture using the hidden layers and units. We 
test with di�erent architectures to optimize the estimation error. �e output from the hidden units is passed 
through the activation function. It is followed by de�ning the loss function and optimizer to estimate the values 
of the parameters. Once the appropriate functions are de�ned in the so�ware, we perform gradient decent based 
optimization to estimate the model parameters.

Hyperparameters, loss and activation function. Our DNN based machine learning algorithms require an opti-
mal selection of hyperparameters such as batch size, number of iterations and learning rate. Batch size is one of 
the most important hyper parameters to tune in DNN models. On the one extreme, larger batch size guarantees 
convergence to the global optimum of the objective function, on the other extreme, smaller batch size has a faster 
convergence rate to a "good" solution, but does not guarantee a global optimum of the objective function. We 
choose a batch size of 125 for training dataset of about 4000 images to feed in the images to the training network. 
Further, we use stochastic gradient descent (SGD) algorithm to �nd the local/global maxima/minima in our 
design space. SGD typically requires an ideal learning rate and number of iterations to explore the design space 
and reach the local extremum of the optimization function. For our training, we use learning rate of 0.06 and 
1000 iterations. We �nd that increasing the learning rate resulted in training jitters and increased training loss. 
Similarly, a�er 1000 iteration, the change in the training and test loss are insigni�cant.

Among other aspects, we need to choose the loss and activation function. Given the values to be predicted 
are continuous real positive values, we use ReLU as the activation function for all the hidden layers. Further, it 
helps to improve the convergence rate of the model as well. As a part of the optimization algorithm, the error for 
the current state of the neural network model must be estimated repeatedly. �is requires the choice of an error 
function, conventionally called a loss function that could quantify the di�erence between the computed output 
of the network and the true value. Since our neural network is designed to estimate the continuous values of the 
design parameters, we chose the mean square loss function. Mathematically, it is de�ned as

Data availability
Lumerical script �les and any other accompanied codes used for modeling and training of the meta-surface are 
available from the corresponding authors upon reasonable request.

MSE =
1

n

n∑

i=1

(Yi − Ŷi)
2
.
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