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Design of Optimal Sparse Feedback Gains via the

Alternating Direction Method of Multipliers

Fu Lin, Makan Fardad, and Mihailo R. Jovanović

Abstract—We design sparse and block sparse feedback gains that mini-

mize the variance amplification (i.e., the norm) of distributed systems.

Our approach consists of two steps. First, we identify sparsity patterns of

feedback gains by incorporating sparsity-promoting penalty functions into

the optimal control problem, where the added terms penalize the number

of communication links in the distributed controller. Second, we optimize

feedback gains subject to structural constraints determined by the identi-

fied sparsity patterns. In the first step, the sparsity structure of feedback

gains is identified using the alternating direction method of multipliers,

which is a powerful algorithm well-suited to large optimization problems.

This method alternates between promoting the sparsity of the controller

and optimizing the closed-loop performance, which allows us to exploit the

structure of the corresponding objective functions. In particular, we take

advantage of the separability of the sparsity-promoting penalty functions to

decompose the minimization problem into sub-problems that can be solved

analytically. Several examples are provided to illustrate the effectiveness of

the developed approach.

Index Terms—Alternating direction method of multipliers (ADMM),

communication architectures, continuation methods, minimization,

optimization, separable penalty functions, sparsity-promoting optimal

control, structured distributed design.

I. INTRODUCTION

We develop methods for the design of sparse and block sparse feed-

back gains that minimize the variance amplification of distributed sys-

tems. Our approach consists of two steps. The first step, which can

be viewed as a structure identification step, is aimed at finding sparsity

patterns that strike a balance between the performance and the spar-

sity of the controller. This is achieved by incorporating sparsity-pro-

moting penalty functions into the optimal control problem, where the

added sparsity-promoting terms penalize the number of communica-

tion links. We consider several sparsity-promoting penalty functions

including the cardinality function and its convex relaxations. In the

absence of sparsity-promoting terms, the solution to the standard

problem results in centralized controllers with dense feedback gains.

By gradually increasing the weight on the sparsity-promoting penalty

terms, the optimal feedback gain moves along a parameterized solution

path from the centralized to the sparse gain of interest. This weight is

increased until the desired balance between performance and sparsity

is achieved. In the second step, in order to improve the performance

of the structured controller, we solve an optimal control problem sub-

ject to the feedback gain belonging to the identified structure.

We demonstrate that the alternating direction method of multipliers

(ADMM) [1] provides an effective tool for the design of sparse
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distributed controllers whose performance is comparable to the per-

formance of the optimal centralized controller. This method alternates

between promoting the sparsity of the feedback gain matrix and

optimizing the closed-loop norm. The advantage of this alternating

mechanism is threefold. First, it provides a flexible framework for

incorporation of different penalty functions that promote sparsity or

block sparsity. Second, it allows us to exploit the separability of the

sparsity-promoting penalty functions and to decompose the corre-

sponding optimization problems into sub-problems that can be solved

analytically. These analytical results are immediately applicable to

other distributed control problems where sparsity is desired. Finally, it

facilitates the use of descent algorithms for optimization, in which

a descent direction can be formed by solving two Lyapunov equations

and one Sylvester equation.

The norm is widely used as a proxy for cardinalityminimization in

applied statistics, in sparse signal processing, and in machine learning;

see [1]–[4]. In the controls community, recent work inspired by sim-

ilar ideas includes [5]–[7]. In [5], an induced gain was introduced to

quantify the sparsity of the impulse response of a discrete-time system.

In [6], the weighted framework was used to design structured dy-

namic output feedback controllers subject to a given performance.

In [7], an relaxationmethodwas employed for the problem of adding

a fixed number of edges to a consensus network.

Our presentation is organized as follows. We formulate the sparsity-

promoting optimal control problem and compare several sparsity-pro-

moting penalty functions in Section II. We present the ADMM algo-

rithm, emphasize the separability of the penalty functions, and pro-

vide the analytical solutions to the sub-problems for both sparse and

block sparse minimization problems in Section III. Several examples

are provided in Section IV to demonstrate the effectiveness of the de-

veloped approach. We conclude with a summary of our contributions

in Section V.

II. SPARSITY-PROMOTING OPTIMAL CONTROL PROBLEM

Consider the following control problem:

(1)

where and are the disturbance and control inputs, is the per-

formance output, , and , with

standard assumptions that is stabilizable and is de-

tectable. The matrix is a state feedback gain, and

are the state and control performance weights, and the

closed-loop system is given by

(2)

The design of the optimal state feedback gain , subject to structural

constraints that dictate its zero entries, was recently considered by the

authors in [8], [9]. Let the subspace embody these constraints and

let us assume that there exists a stabilizing . References [8],

[9] then search for that minimizes the norm of the transfer

function from to

(SH2)

where

stabilizing

otherwise.
(3)
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The matrix in (3) denotes the closed-loop observability Gramian

(4)

which can be obtained by solving the Lyapunov equation

(5)

While the communication architecture of the controller in (SH2) is

a priori specified, in this note our emphasis shifts to identifying favor-

able communication structures without any prior assumptions on the

sparsity patterns of the matrix . We propose an optimization frame-

work in which the sparsity of the feedback gain is directly incorporated

into the objective function.

Consider the following optimization problem:

(6)

where

(7)

denotes the cardinality function, i.e., the number of nonzero elements

of a matrix. In contrast to problem (SH2), no structural constraint is

imposed on ; instead, our goal is to promote sparsity of the feed-

back gain by incorporating the cardinality function into the optimiza-

tion problem. The positive scalar characterizes our emphasis on the

sparsity of ; a larger encourages a sparser , while renders a

centralized gain that is the solution of the standard LQR problem. For

, the solution to (6) is given by , where is

the unique positive definite solution of the algebraic Riccati equation,

A. Sparsity-Promoting Penalty Functions

Problem (6) is a combinatorial optimization problem whose solution

usually requires an intractable combinatorial search. In optimization

problems where sparsity is desired, the cardinality function is typically

replaced by the norm of the optimization variable [10, Chapter 6]

(8)

Recently, a weighted norm was used to enhance sparsity in signal

recovery [4]

(9)

where are non-negative weights. If ’s are chosen

to be inversely proportional to the magnitude of , i.e.,

,

then the weighted norm and the cardinality function of coincide,

This scheme for the weights, however,

cannot be implemented, since the weights depend on the unknown

feedback gain. A reweighted algorithm that solves a sequence of

weighted optimization problems in which the weights are deter-

mined by the solution of the weighted problem in the previous

iteration was proposed in [4], [11]. This reweighted scheme was

recently employed by the authors to design sparse feedback gains for

a class of distributed systems [12], [13].

Both the norm and its weighted version are convex relaxations

of the cardinality function. On the other hand, we also examine utility

of the nonconvex sum-of-logs function as a more aggressive means for

promoting sparsity [4]

(10)

Remark 1: Design of feedback gains that have block sparse structure

can be achieved by promoting sparsity at the level of the submatrices

instead of at the level of the individual elements. Let the feedback gain

be partitioned into submatrices that need not have

the same size. The weighted norm and the sum-of-logs can be gen-

eralized to matrix blocks by replacing the absolute value of in (9)

and (10) by the Frobenius norm of . Similarly, the cardi-

nality function (7) should be replaced by where

does not promote sparsity within the block; it instead pro-

motes sparsity at the level of submatrices.

B. Sparsity-Promoting Optimal Control Problem

Our approach to sparsity-promoting feedback design makes use of

the above discussed penalty functions. In order to obtain state feedback

gains that strike a balance between the quadratic performance and the

sparsity of the controller, we consider the following optimal control

problem

(SP)

where is the square of the closed-loop norm (3) and is a

sparsity-promoting penalty function, e.g., given by (7), (8), (9), or

(10). When the cardinality function in (7) is replaced by (8), (9), or

(10), problem (SP) can be viewed as a relaxation of the combinatorial

problem (6)–(7), obtained by approximating the cardinality function

with the corresponding penalty functions .

As the parameter varies over , the solution of (SP) traces

the trade-off path between the performance and the feedback

gain sparsity . When , the solution is the centralized feedback

gain . We then slightly increase and employ an iterative algorithm

– the alternating direction method of multipliers (ADMM) – initial-

ized by the optimal feedback matrix at the previous . The solution of

(SP) becomes sparser as increases. After a desired level of sparsity is

achieved, we fix the sparsity structure and find the optimal structured

feedback gain by solving the structured problem (SH2).

Since the set of stabilizing feedback gains is in general not convex

[14] and since the matrix exponential is not necessarily a convex func-

tion of its argument [10], need not be a convex function of . This

makes it difficult to establish convergence to the global minimum of

(SP). Even in problems for which we cannot establish the convexity of

, our extensive computational experiments suggest that the algo-

rithms developed in Section III provide an effective means for attaining

a desired trade-off between the performance and the sparsity of the

controller.

III. IDENTIFICATION OF SPARSITY-PATTERNS VIA ADMM

Consider the following constrained optimization problem:

(11)

which is clearly equivalent to the problem (SP). The augmented La-

grangian associated with the constrained problem (11) is given by

where is the dual variable (i.e., the Lagrange multiplier), is a pos-

itive scalar, and is the Frobenius norm. By introducing an ad-

ditional variable and an additional constraint , we have

simplified the problem (SP) by decoupling the objective function into

two parts that depend on two different variables. As discussed below,

this allows us to exploit the structures of and .
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In order to find a minimizer of the constrained problem (11), the

ADMM algorithm uses a sequence of iterations

(12a)

(12b)

(12c)

until and In contrast to

the method of multipliers [1], in which and are minimized jointly,

ADMM consists of an -minimization step (12a), a -minimization

step (12b), and a dual variable update step (12c). Note that the dual

variable update (12c) uses a step-size equal to , which guarantees that

one of the dual feasibility conditions is satisfied in each ADMM itera-

tion; see [1, Section 3.3].

ADMM brings two major benefits to the sparsity-promoting optimal

control problem (SP):

� Separability of . The penalty function is separable with re-

spect to the individual elements of the matrix. In contrast, the

closed-loop norm cannot be decomposed into componentwise

functions of the feedback gain. By separating and in the mini-

mization of the augmented Lagrangian , we can determine an-

alytically the solution to the -minimization problem via decom-

position of (12b) into sub-problems that only involve scalar vari-

ables.

� Differentiability of . The square of the closed-loop norm

is a differentiable function of [9]; this is in contrast to which

is a non-differentiable function. By separating and in the min-

imization of the augmented Lagrangian , we can utilize de-

scent algorithms that rely on the differentiability of to solve the

-minimization problem (12a).

We next provide the analytical expressions for the solutions of the

-minimization problem (12b) in Section III-A, describe a descent

method to solve the -minimization problem (12a) in Section III-B,

present Newton’s method to solve the structured problem (SH2) in Sec-

tion III-C, and discuss the convergence of ADMM in Section III-D.

A. Separable Solution to the -Minimization Problem (12b)

The completion of squares with respect to in the augmented La-

grangian can be used to show that (12b) is equivalent to

(13)

where To simplify notation, we drop

the superscript in throughout this section. Since both and

the square of the Frobenius norm can be written as a summa-

tion of componentwise functions of a matrix, we can decompose

(13) into sub-problems expressed in terms of the individual el-

ements of . For example, if is the weighted norm, then

This facilitates

the conversion of (13) to minimization problems that only involve

scalar variables . By doing so, the solution of (13) can be deter-

mined analytically for the weighted norm, the sum-of-logs, and the

cardinality function.

1) Weighted Norm: The unique solution to (13) is given by the

soft thresholding operator (e.g., see [1, Section 4.4.3])

(14)

where . For given , is obtained by moving

towards zero with the amount . In particular, is set to

zero if , implying that a more aggressive scheme for

driving to zero can be obtained by increasing and and by

decreasing .

2) Cardinality Function: The unique solution to (13) is given by

the truncation operator

(15)

where . For given , is set to if

and to zero if .

3) Sum-of-Logs Function: As shown in [15], the solution to (13) is

given by

or

and and

and

(16)

where

(17)

and For fixed and , (16)

is determined by the value of . For small , (16) resembles the soft

thresholding operator and for large , it resembles truncation operator.

Remark 2: In block sparse design, is determined by

and the minimizers of (13) are obtained by replacing the absolute value

of in (14), (15), and (17) with the Frobenius norm of the

corresponding block submatrix .

B. Anderson-Moore Method for the -Minimization Problem (12a)

We next employ the Anderson-Moore method to solve the -min-

imization problem (12a). The advantage of this algorithm lies in its

fast convergence (compared to the gradient method) and in its simple

implementation (compared to Newton’s method); e.g., see [9], [16],

[17]. When applied to the -minimization problem (12a), this method

requires the solutions of two Lyapunov equations and one Sylvester

equation in each iteration. We next recall the first and second order

derivatives of ; for related developments, see [17].

Proposition 1: The gradient of is determined by

where and are the controllability and observability Gramians of

the closed-loop system

(NC-L)

(NC-P)

The second-order approximation of is determined by
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where is the linear function of

and , are the solutions of the following Lyapunov equations:

By completing the squares with respect to in the augmented La-

grangian , we obtain the following equivalent problem to (12a)

where Setting to zero

yields the necessary conditions for optimality

(NC-F)

where and are determined by (NC-L) and (NC-P).

Starting with a stabilizing feedback , the Anderson-Moore method

solves the two Lyapunov equations (NC-L) and (NC-P), and then

solves the Sylvester equation (NC-F) to obtain a new feedback gain

. In other words, it alternates between solving (NC-L) and (NC-P)

for and with being fixed and solving (NC-F) for with

and being fixed. It can be shown that the difference between two

consecutive steps forms a descent direction of ; see [9]

for a related result. Thus, line search methods [18] can be employed

to determine step-size in to guarantee closed-loop stability

and the convergence to a stationary point of .

Remark 3 (Closed-Loop Stability): Since the norm is well de-

fined for causal, strictly proper, stable closed-loop systems, we set to

infinity if is not Hurwitz. Furthermore, is a smooth func-

tion that increases to infinity as one approaches the boundary of the set

of stabilizing gains [9]. Thus, the decreasing sequence of en-

sures that are stabilizing gains.

C. Solving the Structured Problem

We next turn to the problem subject to structural constraints on

the feedback gain. Here, we fix the sparsity patterns identified

using ADMM and then solve (SH2) to obtain the optimal feedback gain

that belongs to . This procedure, commonly used in optimization [10,

Section 6.3.2], can improve the performance of sparse feedback gains

resulting from the ADMM algorithm.

As noted in Remark 3, the sparse feedback gains obtained in ADMM

are stabilizing. This feature facilitates the use of descent algorithms

(e.g., Newton’s method) to solve (SH2). Given an initial gain ,

a decreasing sequence of the objective function is gener-

ated by updating according to ; here, is

the step-size and is the Newton direction that is determined

by the minimizer of the second-order approximation of the objective

function (3). Equivalently, is the minimizer of

where structural identity of

subspace (under entry-wise multiplication of two matrices) is used

to characterize structural constraints

if is a free variable

if is required

To compute Newton direction, we use the conjugate gradient method

that does not require forming or inverting the large Hessian matrix ex-

plicitly; see [18, Chapter 5]. It is noteworthy that techniques such as

the negative curvature test [18, Section 7.1] can be employed to guar-

antee the descent property of the Newton direction; consequently, line

search methods, such as the Armijo rule [18, Section 3.1], can be used

to generate a decreasing sequence of .

D. Convergence of ADMM

For convex problems the convergence of ADMM to the global

minimizer follows from standard results [1]. For nonconvex problems,

where convergence results are not available, extensive computational

experience suggests that ADMM works well when the value of is

sufficiently large [19], [20]. This is attributed to the quadratic term

that tends to locally convexify the objective function

for sufficiently large ; see [21, Chapter 14.5].

For problem (SP) with determined by the weighted norm (9),

we next show that when ADMM converges, it converges to a critical

point of (SP). For a convergent point of the sequence

, (12c) simplifies to Since min-

imizes and since minimizes , we

have where is the

subdifferential of the convex function in (9). Therefore,

satisfies the necessary conditions for the optimality of (SP) and ADMM

converges to a critical point of (SP).

IV. EXAMPLES

We next use three examples to illustrate the utility of the approach

developed in Section III. The identified sparsity structures result in

localized controllers in all three cases. Additional information about

these examples, along with MATLAB source codes, can be found at

www.ece.umn.edu/~mihailo/software/lqrsp/

A. Mass-Spring System

For a mass-spring system with masses on a line, let be the

displacement of the th mass from its reference position and let the

state variables be and . For unit masses

and spring constants, the state-space representation is given by (1) with

where is an tridiagonal Toeplitz matrix with on its main

diagonal and 1 on its first sub- and super-diagonal, and and are

identity and zero matrices. The state performance weight is

the identity matrix and the control performance weight is .

We use the weighted norm as the sparsity-promoting penalty func-

tion, where we follow [4] and set the weights to be inversely pro-

portional to the magnitude of the solution of (SP) at the previous

value of , This places larger relative weight on

smaller feedback gains and they are more likely to be dropped in the

sparsity-promoting algorithm. Here, is introduced to have

well-defined weights when .

The optimal feedback gain at is computed from the solution of

the algebraic Riccati equation. As increases, the number of nonzero

sub- and super-diagonals of both position and velocity gains

decreases; see Fig. 1(a) and (b). Eventually, both and become

diagonal matrices. It is noteworthy that diagonals of both position and

velocity feedback gains are nearly constant except for masses that are

close to the boundary; see Fig. 1(c) and (d).

After sparsity structures of controllers are identified by solving (SP),

we fix sparsity patterns and solve structured problem (SH2) to ob-

tain the optimal structured controllers. Comparing the sparsity level
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Fig. 1. Sparsity patterns of for the mass-spring

system obtained using weighted norm with (a) and (b)

. As increases, the number of nonzero sub- and super-diagonals of

and decreases. The diagonals of (c) and (d) for different values of

: ( ), 0.0281 ( ), and 0.1 ( ). The diagonals of the centralized position

and velocity gains are almost identical to ( ). (a) . (b) .

(c) . (d) .

Fig. 2. (a) Sparsity level and (b) the performance degradation of compared

to the centralized gain for mass-spring system. (c) Sparsity vs. performance:

using 2% of nonzero elements, performance of is only 7.8% worse than

performance of . (a) . (b) .

(c) .

and the performance of these controllers to those of the centralized con-

troller , we see that using only a fraction of nonzero elements, the

sparse feedback gain achieves performance comparable to the

performance of ; see Fig. 2. In particular, using about 2% of nonzero

elements, performance of is only about 8% worse than that

of .

B. Network With 100 Unstable Nodes

Let nodes be randomly distributed with a uniform distribu-

tion in a square region of 10 10 units. Each node is an unstable second

order system coupled with other nodes through the exponentially de-

caying function of the Euclidean distance between them [22]

with . The performance weights and are set to iden-

tity matrices.

We use theweighted norm as the penalty function with the weights

given in Section IV-A. As increases, the underlying communication

Fig. 3. (a)–(c) Localized communication graphs of distributed controllers ob-

tained by solving (SP) for different values of for the network with 100 nodes.

Note that the communication graph does not have to be connected since the

nodes are dynamically coupled to each other and allowed to measure their own

states. (d) The optimal trade-off curve between the performance degradation

and the sparsity level of compared to the centralized gain . (a) .

(b) . (c) . (d).

graphs gradually become localized; see Fig. 3(a)–(c). With about 8%

of nonzero elements of , performance of is about 28% worse

than performance of the centralized gain . Fig. 3(d) shows the op-

timal trade-off curve between the performance and the feedback

gain sparsity.

We note that the truncation of the centralized controller could result

in a non-stabilizing feedback matrix [22]. In contrast, our approach

gradually modifies the feedback gain and increases the number of zero

elements, which plays an important role in preserving the closed-loop

stability.

C. Block Sparsity: A Bio-Chemical Reaction Example

Consider a network of systems coupled through the fol-

lowing dynamics:

where denotes the th block of a matrix and

The performance weights and are set to identity matrices. Sys-

tems of this form arise in bio-chemical reactions with a cyclic negative

feedback [23].

We use the weighted sum of Frobenius norms as the sparsity-pro-

moting penalty function and we set the weights to be inversely

proportional to the Frobenius norm of the solution to (SP) at the

previous value of , i.e., with As

increases, the number of nonzero blocks in decreases. Fig. 4 shows

sparsity patterns of feedback gains and the corresponding communica-

tion graphs resulting from solving (SP) with sparse and block sparse

penalty functions. Setting to values that yield the same number of
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Fig. 4. Sparse feedback gains obtained by solving (SP) using (a) the weighted

sum of Frobenius norms with and (b) the weighted norm (9) with

. Here, is partitioned into 25 blocks . Both

feedback gains have the same number of nonzero elements (indicated by dots)

and close performance (less than 1% difference), but different number of

nonzero blocks (indicated by boxes). Communication graphs of (c) the block

sparse feedback gain in (a), and (d) the sparse feedback gain in (b) (red color

highlights the additional links). An arrow pointing from node to node indi-

cates that uses measurements from .

nonzero elements in these feedback gains results in the block sparse

feedback gain with a smaller number of nonzero blocks. In particular,

the first two rows of the block sparse feedback gain in Fig. 4(a) are

identically equal to zero (indicated by blank space). This means that

the subsystems 1 and 2 do not need to be actuated. Thus, the commu-

nication graph determined by the block sparse feedback gain has fewer

links; cf. Fig. 4(c) and (d).

V. CONCLUSION

We design sparse and block sparse state feedback gains that opti-

mize the performance of distributed systems. The design proce-

dure consists of a structure identification step and a “polishing” step.

In the identification step, we employ the ADMM algorithm to solve the

sparsity-promoting optimal control problem, whose solution gradually

moves from the centralized gain to the sparse gain of interest as our

emphasis on the sparsity-promoting penalty term is increased. In the

polishing step, we use Newton’s method in conjunction with a conju-

gate gradient scheme to solve the minimum variance problem subject

to the identified sparsity constraints.

Although we focus on the performance, the developed frame-

work can be extended to design problems with other performance in-

dices. We emphasize that the analytical solutions to the -minimiza-

tion problem are independent of the assigned performance index. Con-

sequently, the -minimization step in ADMM for (SP) with alterna-

tive performance indices can be done exactly as in Section III-A. Thus,

ADMM provides a flexible framework for sparsity-promoting optimal

control problems of the form (SP).

We have recently employed ADMM for selection of an a priori spec-

ified number of leaders in order to minimize the variance of stochas-

tically forced dynamic networks [24], for creation of new social links

to maximize public awareness in social networks [25], and for identi-

fication of sparse representations of consensus networks [26]. We also

aim to extend the developed framework to the observer-based sparse

optimal feedback design. Our results on the identification of classes of

convex optimal control problems will be reported elsewhere.
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