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e paper proposes a procedure for design of PI controllers for hydraulic systems with long transmission lines which are described
by models of high order. Design is based on the combination of the IE criterion and engineering speci�cations (settling time and
relative stability) as well as on the application of D-decomposition. In comparison with some known results, the method is of
graphical character, and it is very simple (solving nonlinear algebraic equations is eliminated). 
e paper presents the algorithm
of so�ware procedure for design of the controller. 
e method is compared with other methods at the level of simulation, and its
superiority is shown. By applying theNyquist criterion, it is shown that themethod possesses robustness in relation to nonmodelled
dynamics.

1. Introduction


e �rst heuristic rules for selection of parameters of the PI
controller were given by Ziegler andNichols in 1942 [1]. Since
then, numerous papers have been devoted to determination
of parameters of the controller, according to di�erent types of
assumed controlled processes. It is estimated that more than
95% of controllers used in industry are PID controllers, and
most of them are PI controllers [2]. 
e performed analysis
connectedwith the e�ciency of control contours in industrial
production has shown that PI controllers are used to a large
extent, but they are commonly tuned in a bad manner [3,
4]. According to [4], only 20% of controllers in industry
operate well, while 30% of them have poor performance due
to the incorrectly tuned controller. In [5], based on research
in process industry, the managers and engineers reach a
common conclusion that tuning of parameters of PI and
PID controllers is an important and di�cult problem that
deserves more attention. According to [6], the PI controller
is the most frequently used control algorithm in process
industry. 
e reason for that is its relatively simple structure,
which can be easily understood and implemented in practice.
Despite its wide application, there is still a need for improved
tuning of parameters of the PI controller [7]. 
e heuristic
method proposed by Ziegler and Nichols has the great
advantage because it requires very little information about the

process. However, this method has signi�cant disadvantages,
and it gives very bad damping (it is usually � = 0.2) [7].
Small damping leads to degradation of the system and very
bad performances from the aspect of relative stability and
robustness.

Most PI controllers in process industry operate in the
regime of set point value. 
erefore, it is of principal impor-
tance to e�ciently solve the problem of load disturbance
rejection [8]. Reference [9] considers optimal tuning of
controllers. It is shown that the IE criterion (integrated error)
is in direct relation with integral gain of controllers. 
ose
results are further expanded in [10], where it is proposed
to have optimal load disturbance rejection with constraints
on the function of system sensitivity and the weighting
coe�cient of the given value. 
e problem is reduced to solv
nonlinear algebraic equations.
eNewton-Raphsonmethod
is used for solving these equations. 
e initial conditions are
the critical factor in this method.

Reference [11] presents a simple procedure for tuning of
the PI controller. 
e problem is reduced to minimization
of the IE criterion with the constraint that the Nyquist
curve of the loop transfer function has a tangent in its le�
semiplane, parallel to an imaginary axis. 
e result of the
procedure is explicit formulas for proportional and integral
gains. Reference [12] proposes a new procedure for tuning of
ideal PID controllers in series with the �rst-order noise �lter.
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e problem is reduced to solving two nonlinear algebraic
equations.

Reference [13] gives the procedure for synthesis of the
P controller based on the generalized Nyquist criterion for
hydraulic systems with long transmission lines described
by models of high order. Such a type of controllers can-
not eliminate the static error of control. 
at weakness is
eliminated by the PI controller. 
e method that enables
design of the PI controller for systems of high order is D-
decomposition. 
e D-decomposition method was devel-
oped by Nĕımark [14, 15]. It was considerably expanded by
Mitrović establishing a strong link between the values of
tuning parameters of the characteristic polynomial and the
appearance of the transition process expressed through the
corresponding degree of relative stability of the system [16].

e D-decomposition method was fully generalized in the
algebraic method developed by Siljak in [17–19]. For e�cient
interpretation of results obtained by the D-decomposition
method it is also necessary to have appropriate graphical
interpretation which, for the systems of high order, was
not possible without the corresponding so�ware support.
Intensive development of computer technique has renewed
the interest in this methodology [20]. Let us emphasize
that modern control theory allows design of controllers, for
processes of high order, whose order will be equal to the order
of the process [21–24]. Implementation of such controllers in
industry is very complex and expensive. From that aspect,
there is a need for design of controllers of low order, which
are most frequently present in industrial practice, for control
of processes of high order [25–27].


is paper proposes the procedure for design of the PI
controller for systems of high order. 
e results from [9],
which establishes a direct relation between the IE criterion
and the integral gain (the higher the integral gain, the smaller
the value of the IE criterion), are the starting point. 
e
result is extended by introducing engineering speci�cations
(settling time and relative stability). It results in a simple
and e�cient procedure for design of the PI controller for
systems of high order. 
e method is basically graphical, and
unlike [10, 12], it is not necessary to solve any nonlinear
algebraic equations. 
e complete methodology of design is
given in the second chapter of this paper. 
e third chapter
gives the results of simulation for the hydraulic system with
long transmission lines. AMATLAB programwas created for
graphical interpretation of results, and its �ow is presented
by the algorithm given in this chapter. 
e fourth chapter
presents the results of comparative analysis of the proposed
method for design of the PI controller and other methods,
showing the superiority of themethod proposed in this paper.

2. Design of the PI Controller for Systems of
High Order

In [9], the problem of disturbance rejection is reduced to
minimization of the following IE criterion:

IE = ∫∞
0

� (�) ��. (1)

��(�) ��(�)
�(�)

�(�)

−
�(�)

�	(�)

(s)

Figure 1: Automatic control system.

As the result, the following relation is obtained:

IE = 1
�� . (2)


e result is extended in [10] by introducing constraints
on the sensitivity function and the weighting factor of the
set point value in the optimization problem. 
e problem
belongs to the category of nonconvex optimization and is
reduced to solving nonlinear algebraic equations by iterative
methods.


is paper also considers the IE criterion, but instead of
constraints from [10], engineering constraints are introduced
on

(i) relative stability (damping of the closed loop) and

(ii) settling time.


e solution of the problem lies in the intersection between
the previous two conditions. In accordance with the mini-
mum of the IE criterion, the additional condition is that the
integral gain should have the maximum value. 
is is the
basis for development of a simple graphical method based on
D-decomposition.


e transfer function of the PI controller is

�� = �� + ��	 . (3)


e transfer function of the process is represented in the
form:

�� (	) = 
 (	)
� (	) = ∑��=0 �	�∑	�=0 ��	� , � ≤ �. (4)


e characteristic equation of the automatic control
system from Figure 1 is determined by the equation:

� (	) = 1 +�� (	)�� (	) = 0, (5)

� (	) = 1 + (�� + ��	 ) ⋅ 
 (	)
� (	) = 0, (6)

� (	) = 	 ⋅ � (	) + (��	 + ��) ⋅ 
 (	) = 0, (7)

�1 (	) = 	 ⋅ � (	) = 	∑
�=0

��	�+1. (8)

By connecting (7) and (8), the �nal expression for the
characteristic equation of the automatic control system in the
complex domain is obtained as follows:

� (	) = �1 (	) + (��	 + ��) ⋅ 
 (	) = 0. (9)
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Figure 2: Area with the required settling time and relative stability.

Taking into account (9), it is necessary to express the
complex number 	 in a suitable form and use it for estab-
lishing the relation between the damping degree � and the
variable parameters of the controller, �� and ��, contained
in the characteristic equation (9) for the automatic control
system. 
is is how the area from the “	” plane below the
straight line � = const. (Figure 2) is mapped in the area of the
corresponding damping coe�cient represented by the curve� = const., in the parameter plane of tuning parameters of the
controller (��, ��) as follows:
	 = �	�
� = �	�
(�−) = −�	�−
 = −�	 cos � + ��	 sin �,

(10)

where

� = cos �, 0 ≤ � ≤ 1, (11)

	 = − �	� + ��	√1 − �2. (12)

By connecting (9) with (12), the characteristic equation of
the automatic control system obtains the form:

�1 (�, �	) + [�� (−��	 + ��	√1 − �2) + ��]
⋅ 
 (�, �	) = 0,

(13)

�1 (�, �	) = ! (�, �	) + �" (�, �	) , (14)

where !(�, �	) and "(�, �	) represent the real and imaginary
parts of the polynomial �1(�, �	). 
e real and imaginary
parts of the polynomial �1(�, �	) are obtained by connecting
(8) with (12) as follows:

! (�, �	) =
	∑
�=1

��−1(−1)���	#� (�) ,

" (�, �	) = √1 − �2 	∑
�=1

��−1(−1)�+1��	$� (�) ,
(15)

where #� and $� are Chebyshev functions of the �rst and
second kinds for which the following recurrent equations
hold:

#�+1 = 2�#� − #�−1, $�+1 = 2�$� − $�−1, (16)

#0 = 1, #1 = �, $0 = 0, $1 = 1, (17)


(�, �	) = % (�, �	) + �& (�, �	) , (18)

where %(�, �	) and &(�, �	) represent the real and imaginary
parts of the polynomial 
(�, �	), and they are determined
based on the following equations:

% (�, �	) =
�∑
�=0

�(−1)���	#� (�) ,

& (�, �	) = √1 − �2 �∑
�=0

�(−1)�+1��	$� (�) .
(19)

By connecting (13) with (14) and (18), it is obtained that

! (�, �	) + �" (�, �	) + [�� (−��	 + ��	√1 − �2) + ��]
⋅ [% (�, �	) + �& (�, �	)] = 0.

(20)

By separating the real and imaginary parts from (20) and
by solving it, the following system of equations is obtained:

�� [� ⋅ �	 ⋅ % (�, �	) + √1 − �2 ⋅ �	 ⋅ & (�, �	)]
− �� ⋅ % (�, �	) = ! (�, �	) ,

�� [� ⋅ �	 ⋅ & (�, �	) − √1 − �2 ⋅ �	 ⋅ % (�, �	)]
− �� ⋅ & (�, �	) = " (�, �	) .

(21)
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By solving the system of equations at�	 ̸= 0, 0 ≤ � < 1 the
expressions for the parameters�� and�� of the PI controller
are obtained as follows:

�� = ! (�, �	) ⋅ & (�, �	) − " (�, �	) ⋅ % (�, �	)
�	 ⋅ √1 − �2 ⋅ [%2 (�, �	) + &2 (�, �	)] , (22)

��= − � ⋅ (" (�, �	) ⋅ % (�, �	) − ! (�, �	) ⋅ & (�, �	))
√1 − �2 ⋅ [%2 (�, �	) + &2 (�, �	)]

+ √1 − �2 ⋅ (" (�, �	) ⋅ & (�, �	) + ! (�, �	) ⋅ % (�, �	))
√1 − �2 ⋅ [%2 (�, �	) + &2 (�, �	)] ,

(23)

�� = �	 [� + √1 − �2

⋅" (�, �	) ⋅ & (�, �	) + ! (�, �	) ⋅ % (�, �	)" (�, �	) ⋅ % (�, �	) − ! (�, �	) ⋅ & (�, �	)] ⋅ ��.
(24)

For �	 = 0, the system of (21) gives the solution:

�� = 0. (25)

Equation (25) represents a singular straight line which,
together with the curve described by (22), represents the
closed contour of the region of possible solutions, in the plane
of variable parameters��, �� shown in Figure 3.

For � = 1, the system of (21) is reduced to one equation
described by

�� = �	�� − ! (1, �	)% (1, �	) . (26)

Equations (22) through (26) completely de�ne the param-
eter (��, ��) plane for the selected value of the damping

coe�cient � = const., 0 ≤ � ≤ 1, at the change of undamped
frequency �	 = (0, �	max). 
e parameter plane with its
stability limits is presented in Figure 3.

From Figure 3, three characteristic areas particularly
stand out for the following:

(i) � = 0, the system is at the stability limit and has
oscillatory character, the area below the curve � = 0 is
the stability area, and the area above the curve is the
nonstability area;

(ii) � = 1, the system has critical damping, and the area
below the curve � = 1 is the area in which the system
has monotonous (aperiodic) character. 
e critically
damped response is desired in a lot of applications
because it represents the fastest aperiodic response
possible;

(iii) � = const., the curve for the required degree of system
damping from which the variable parameters of the
controller (��, ��) can be chosen.

Figure 3 allows reading themaximumvalue of integral gain at
the point5,�� = ��max, and the corresponding proportional

0 < � < 1

��

��
� = 1

� = 0

�� = 0

Nonstability

Stability

A (���, �� max)

Figure 3: Parameter plane with the stability limit.

gain ���. Selection of the maximum integral gain will
not always yield good results regarding robustness de�ned
by phase margin (6�), gain margin (7�), and robustness
measure 	� [27]. 
is problem is particularly noticeable in
systems of high order. In the character of response of the
closed loop, it is re�ected in the increased overshoot (8) and
the increased settling time ��.

In order to solve this problem, the area of selection of
parameters of the controller (��, ��) has been narrowed by
taking out the area in which the system will possess good
settling time (��) on the corresponding curve � = const.

In order to have a system with good settling time, it
is necessary that all real parts of the poles of the transfer
function of the closed loop should have a location to the le�
of the straight line 9� = const. (from Figure 2). 
e area
from the “	” plane to the le� of the straight line 9� = const.
(Figure 2) is thus mapped in the area of the corresponding
settling time 9min = const., in the parameter plane of tuning
parameters of the controller (��, ��) as follows:

	 = −9 + ��. (27)

Based on (12) and (27), it is clear that

9 = � ⋅ �	, � = �	√1 − �2. (28)

Here it is necessary to �nd the minimum value of
undamped frequency that will satisfy the condition:

::::9min

:::: ≥ ::::9�:::: , ::::� ⋅ �	min

:::: ≥ ::::9�:::: . (29)

In order to have all real parts of the complex number 	 =−9 to the le� of the straight line 9�, it is necessary to �nd the
variable parameters (��, ��) that will satisfy those conditions.

is is realized by replacing the complex number 	 = −9min in
(9), so that the characteristic equation now obtains the form:

��min = 9min ⋅ �� − �1 (−9min)
 (−9min) , 9min = � ⋅ �	min. (30)


e value of undamped frequencies �	min and �	max,
whose location is identi�ed in Figure 2, is read from the
graphs ��(�, �	) = 0 and ��(�, �	) = 0, as it is shown in
Figure 4.
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Figure 4: Change of the proportional and integral gains of the controller as a function of undamped frequency for the required damping
coe�cient.
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Figure 5: Parameter plane with the boundaries of maximum and
minimum integral gains for the required damping degree of the
closed loop.


e graphical interpretation of (30), 9min = const., in the
parameter plane (��, ��) of the required damping coe�cient

� = const., is shown in Figure 5.

e straight line 9min = const. intersects the curve of the

required damping coe�cient � = const. in the parameter
plane at the point > with the coordinates >(���, ��min). At
the point >, the integral gain has a minimum value.
e point� with the desired coordinates�(���, ���) lies at the part
of the curve � = const. between the points 5 and >, at the
interval of undamped frequencies �	 = (�	min, �	max). 
e
lower the order of the process, the closer the point � to the
point 5(���, ��max), and the higher the order of the process,
the closer the point � to the point >(���, ��min). In this
narrow range, by selecting the appropriate step, it is very easy
to �nd the point � with the parameters of the controller
that will guarantee quality operation of the automatic control
system.

3. Control of a Process with a Long
Transmission Line

In order to show the e�ciency of the proposed method of
design of the PI controller, simulation in the programpackage

MATLAB for the transfer function of the process��1(	) has
been carried out as follows:

��1 (	) = 1× (5.2 ⋅ 10−25	10 + 9.23 ⋅ 10−22	9
+ 9.677 ⋅ 10−19	8 + 7.838 ⋅ 10−16	7
+ 4.592 ⋅ 10−13	6 + 2.072 ⋅ 10−10	5 + ⋅ ⋅ ⋅
+ 7.257 ⋅ 10−8	4 + 1.755 ⋅ 10−5	3
+ 2.962 ⋅ 10−3	2 + 0.243	 + 1.248)−1.

(31)


e transfer function described by (31) represents a
mathematical model of a real process used in industry. It is a
pump controlled hydromotor, where the variable �ow pump
and the hydromotor of constant �ow are connected bymeans
of a long transmission line. 
e complete identi�cation of
this transfer function was done in paper [13]. 
e motive
for taking exactly this transfer function of the process for
testing the proposed method is its high order—it is of the
tenth order. When the system is of high order, as in the case
of the transfer function ��1(	), then the poles which are
closest to the imaginary axis in the complex plane have the
decisive in�uence on the character of the transition process.

e proposed methodology allows location of such poles of
the transfer function at a safe distance from the imaginary
axis; that is, it allows the closed loop of the system to have all
its poles to the le� of the straight line 9�, which is presented
in Figure 2.

Based on the programme created in MATLAB and
according to the procedure proposed in the paper, the
parameters of the PI controller can be determined for any
transfer function of the process described by (4), so that the
closed loop of the system could possess the required damping
coe�cient and good settling time.


e �ow of the programme written in MATLAB is
represented by the algorithm shown in Figure 6.


e result of operation of the programme is the graphical
interpretation of parameters of the controller shown in
Figure 7, for di�erent values of the damping coe�cient 0 ≤� ≤ 1 of the closed loop of the automatic control system. 
e
stability limit is marked by the curve � = 0, from which it
is possible to read the value of the critical proportional gain
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��(�),��(�) ((22)–(26))

Figure 6: Algorithm for determination of parameters of the PI
controller.

���� = 30.39.
e values of themaximum integral gain��max

and the corresponding proportional gain ��� for di�erent

values of the damping coe�cient � are read fromFigure 7.
e
values of parameters of the controller obtained from Figure 7
are shown in Table 1.


e responses of the automatic control system presented
in Figure 8 are recorded for the designed values of parameters
of the PI controller fromTable 1 as well as for the critical value
of the proportional gain���� = 30.39 at � = 0. From Figure 8
it can be seen that high overshoots and high values of settling
time are obtained in the step response, even for higher values
of the damping coe�cient (� = 0.6, 0.8, and 1.0) of the closed
loop. 
e values of overshoot and settling time are shown in
Table 1.

Figure 9 shows how the designed controller, in accor-
dance with the minimum of the IE criterion, rejects the load
caused by the action of disturbance F = 1 at the value of
reference G� = 0. From Figure 9 it is possible to conclude
that good results from the aspect of load disturbance rejection
can be expected for the values of the damping coe�cient� ≥ 0.4. Figure 9 also shows that in an uncontrolled process
the load of the systemwhich is caused by disturbance will not
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for the damping coe�cient of the closed loop � = 0.6.

Table 1: Results of design of the PI controller with performances.

Damping � ��� ��max
Overshoot (%) Settling time (ms) Phase margin 6� (degrees) Gain margin 7�

0.2 14.38 544.4 91 265 15.8 1.56

0.4 11.83 347.6 61 169 27.2 2.1

0.6 10.02 235.4 43 143 35.9 2.6

0.8 8.665 166.9 31 140 42.8 3.1

1.0 7.77 122.9 23 178 48.8 3.57

be rejected. However, according to this criterion, satisfactory
values of overshoot, settling time, and stability margin will
not be obtained, which is best seen from Table 1.

In order to eliminate the undesired values of increased
overshoot and settling time, for the chosen damping coe�-
cient � = 0.6, the settling time has been estimated according
to 9min = ��	min. 
e values of the minimum undamped
frequency �	min and �	max are read from Figure 10.


e minimum value of the integral gain ��min = 29.75
and the corresponding proportional gain �� = 10.73 is
thus obtained in the parameter plane, as it can be seen
from Figure 11. Going along the part of the curve shown in
Figure 11, from the point of minimum integral gain toward
the point of maximum integral gain, with the appropriate
step (automatically generated by the program) and recording
the response, it is very easy to reach the point on the curve
with the parameters of the controller that will give best
performances for the given process.

Figure 12 shows the step response of the closed loop with
the parameters of the controller read from Figure 11. It can be
seen fromFigure 12 that for the designed values of parameters
of the controller �� = 10.78 and �� = 57.15, the closed loop
of the automatic control system possesses good performances
(the overshoot of 9.98% and the settling time of 72.8ms).

4. Comparison with Other Methods


e PI controller designed by means of the methodology
presented in this paper for the process described by (31) has
been comparedwith the Ziegler-Nichols (ZN) [1] andTyreus-
Luyben (TL) [28] methods for tuning of parameters of the
PI controller. 
ose are two very frequent methods of tuning

250
200
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0
−50
−2 0 2 4 6 8 10 12

�: 10.78
�: 57.15
�: 10.73
�: 29.75

�: 10.02
�: 235.4

� �

��

�min

� = 0.6

Figure 11: Parameter plane for the required damping degree and
required settling time.

of parameters of controllers in industrial practice.
e results
of comparison in the step response for the described process
are shown in Figure 13. 
e complete performances from
the aspect of response, relative stability and robustness are
presented in Table 2.

Based on the results presented in Table 2, it can be seen
that the Ziegler-Nichols method gives a very oscillatory
response characterized by the overshoot of 62.3% with the
settling time of 148ms and very bad robustness (phase
margin 28∘, gain margin 1.89, and stability margin 0.48).

e Tyreus-Luyben method gives a well-damped response
characterized by the overshoot of 13.6%, but with a very
high value of settling time of 195ms. From the aspect of
robustness, the Tyreus-Luyben method gives good results.

e method proposed in this paper gives a well-damped
response characterized by the overshoot of 9.98% with con-
siderably better settling time of 72ms in comparison with
the ZN and TL methods. From the aspect of robustness, the
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Table 2: Comparative presentation of the results of design of the PI controller with performances for three methods.

Method �� �� Overshoot (%) Settling time �� (ms)
Phase margin6� (degrees)

Gain margin 7� Stability margin 	�
Ziegler-Nichols
(ZN)

13.6775 341.8875 62.3 148 28 1.89 0.48

Tyreus-Luyben
(TL)

9.4379 89.3741 13.6 195 54.6 3.05 0.62

Proposed method
(PM)

10.78 57.15 9.98 72 56.5 2.74 0.64
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Figure 12: System response at the de�ned damping coe�cient � =0.6 and the required settling time.
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Figure 13: Comparative presentation of the system responses, to the
action of reference G� = 1, for the proposed method (PM), the
Ziegler-Nichols (ZN)method, and the Tyreus-Luyben (TL)method.

proposed method also gives a better result (phase margin
56.5∘, gain margin 2.74, and stability margin 0.64) too.


e results of comparison from the aspect of load distur-
bance rejection are presented in Figure 14. FromFigure 14 it is
possible to see that the proposed method for the values of the
damping coe�cient (� = 0.5 and � = 0.6) quite satisfactorily
rejects the load caused by the action of disturbance F = 1
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Figure 14: Comparative presentation of the system response to the
action of load disturbance F = 1, for the proposed method (PM),
the Ziegler-Nichols method (ZN) and the Tyreus-Luyben method
(TL).

in comparison with the Ziegler-Nichols method and does it
considerably better in relation to the Tyreus-Luybenmethod.

Remark. It is well known that the Ziegler-Nichols frequency
method cannot be applied to the processes of the �rst and
second orders because such processes cannot be brought to
the oscillatory stability limit by changing the proportional
gain. Also, the Ziegler-Nichols method and some other
similar methods cannot be applied to unstable processes.

e proposed methodology does not have any restrictions
referring to the order of the system. It can be very e�ciently
applied to low-order processes. Another advantage of this
method is that it can also be applied to unstable processes of
low order.

5. Conclusion


is paper has developed an e�cient and simple graphical
methods for design of the PI controller, which achieves high
performances for a broad range of linear processes. For
design, it is necessary to know the transfer functions of the
process. 
e processes of high order have been considered in
the paper. In comparison with the procedures for tuning of
the PI controller proposed in literature, themethod described
in this paper is characterized by great simplicity and clear
engineering speci�cations. 
e results of simulations show
good robustness in relation to unmodelled dynamics as
well as superiority over some other methods of tuning of
controllers. 
e proposed method is suitable for on line
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real-time implementation and for auto tuning of the PI
controller. 
e methodology of design of the PI controller
presented in this paper is simple and can easily be adopted by
industry. 
e extension of this method to design of the PID
controller is underway.

List of Symbols

��, �: Coe�cients of the transfer function
D: Load disturbance�(�): Control value error�(	): Characteristic polynomial�1(	): Part of the characteristic polynomial �(	)7�: Gain margin
IE: Integrated error��: Integral gain of the controller��: Proportional gain of the controller
(	),�(	): Polynomial of the numerator and

denominator of the transfer function
O (%): Overshoot
s: Complex number	�: Stability margin#�(�), $�(�): Chebyshev functions of the �rst and

second kinds� (s): Time�� (s): Settling time
U(s): Control signal��,��: Transfer functions of the process and the

controller
X(s): Controlled variableG�(	): Reference value.

Greek Letters

!(�, �	): Real part of the polynomial �1(	)"(�, �	): Imaginary part of the polynomial �1(	)%(�, �	): Real part of the polynomial
(	)&(�, �	): Imaginary part of the polynomial
(	)�: Damping coe�cient9: Real part of the complex number 	6� rad: Phase margin� rads−1: Damped frequency�	 rads−1: Undamped frequency!(�, �	): Real part of the polynomial �1(	)"(�, �	): Imaginary part of the polynomial �1(	).
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[10] K. J. Åström, H. Panagopoulos, and T. Hägglund, “Design of
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Nyquist,” Doklady Akademii Nauk SSSR, vol. 59, pp. 853–856,
1948 (Russian).
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