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ABSTRACT The computing domain of today’s computer systems is moving very fast from arithmetic to data

processing as data volumes grow exponentially. As a result, processing-in-memory (PIM) studies have been

actively conducted to support the data processing in or near memory devices to address the limited bandwidth

and high power consumption due to data movement between CPU/GPU and memory. However, most PIM

studies so far have been conducted in a way that the processing units are designed only as an accelerator

on the base die of 3D-stacked DRAM, not involved inside memory while not servicing the standard DRAM

requests during the PIM execution. Therefore, in this paper, we show how to design and operate the PIM

computing units inside DRAM by effectively coordinating with standard DRAM operations while achieving

the full computing performance and minimizing the implementation cost. To make our goals, we extend a

standard DRAM state diagram to depict the PIM behaviors in the same way as standard DRAM commands

are scheduled and operated on the DRAM devices and exploit several levels of parallelism to overlap

memory and computing operations. Also, we present how the entire architecture layers from applications to

operating systems, memory controllers, and PIM devices should work together for the effective execution

by applying our approaches to our experiment platform. In our HBM2-based experimental platform to

include 16-cycle MAC (Multiply-and-Add) units and 8-cycle reducers for a matrix-vector multiplication,

we achieved 406% and 35.2% faster performance by the all-bank and the per-bank schedulings, respectively,

at (1024 × 1024) × (1024 × 1) 8-bit integer matrix-vector multiplication than the execution of only its

operand burst reads assuming the external full DRAM bandwidth. It should be noted that the performance

of the PIM on a base die of a 3D-stacked memory cannot be better than that provided by the full bandwidth

in any case.

INDEX TERMS Processing-in-memory, DRAM, parallelism, matrix-vector multiplication.

I. INTRODUCTION

The structure of the von Neumann has been followed by most

computers today since it was first proposed [1]. However,

as a computing unit such as CPU/GPU has more data to

handle, it is problematic that the cost of transferring data

between memory and the computing unit becomes rela-

tively higher than the cost required only for the data opera-

tions. Therefore, for a long time, the computing community

has improved the performance by efficiently utilizing

The associate editor coordinating the review of this manuscript and
approving it for publication was Yue Zhang.

caches [2]–[5], embedding larger caches [6], placing accel-

erators close to CPUs [7]–[9], and so on.

To further observe the performance problem due to the

data movement, we measured the performance of untiled and

tiled matrix-vector multiplications [10] on 16 multicores of

the Dell PowerEdge R720 server [11]. Each core has private

64KBL1 and 256KBL2 caches, and eight cores in one socket

share a 20MB LLC. Also, the server has 128GB DRAM,

and its maximum bandwidth is 59.7GB/s. For the execution,

we disabled hyperthreading [12] and assigned half of the used

cores into each socket. The OpenCL’s GEMM library [13]

was used, and the multiplications were experimented by
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FIGURE 1. (a) Memory bound ratio. (b) Speedup at p = 8192.
We measured the performance of an 8-bit integer (p × p) × (p × 1)
matrix-vector multiplication without and with tiling by increasing p to
1024, 2048, 4096 and 8192.

increasing p to 1024, 2048, 4096 and 8192 at 8-bit integer

(p× p) × (p× 1). We initialized all the data and invalidated

all the cache lines before starting the multiplication; thus,

all the data was available in DRAM at the start. All the

performance was measured by using VTune performance

analyzer [14].

Figure 1(a) shows that the memory bound ratio increases

as the matrix size increases, regardless of the tiled and untiled

codes. Also, even if the number of cores is changed, it is

shown that the memory bound ratio hardly changes because

the matrix-vector multiplications used in this experiment

have very regular execution characteristics. In experimental

results, the speedup of the tiled code execution was higher

than that of the untiled code. However, as shown in Fig-

ure 1(b), although the number of cores is increased and

the execution of the matrix-vector multiplication exploits

complete thread-parallelism, the ideal speedup cannot be

achieved because the memory bound does not decrease as

shown in Figure 1(a). In conclusion, the tiling technique

can help reduce memory performance bottlenecks in appli-

cations that use large work memory but cannot eliminate

them.

Many technologies have been proposed to alleviate these

problems by placing computing and memory units closer,

and the most representative of which is called Processing-in-

Memory (PIM) technology [15]–[24]. Until the early 2000s,

PIM studies such as IRAM [15] had not received much atten-

tion from industry, and one of the biggest reasons was that sci-

entific applications, which were formerly major computing

domains, were able to utilize cache locality fully. However,

in recent years, the computing domain rapidly changes from

the computation to data processing such as deep learning

[25], [26], in-memory DB [27]–[29], graph computing

[30]–[33] and so on. The amount of data to be processed

and stored has increased explosively every day, and most of

them are very rarely reused. As a result, the bandwidth and

power consumption of the data transfer between computing

units and memory significantly determine the performance

of the entire system [34]–[37], so it has become crucial to

minimize the data transfer without compromising computing

performance. Besides, along with the development of DRAM

process technology, academia and industry are actively con-

ducting PIM research to overcome these problems.

We predicted the performance of PIM in the experimental

environment used in Figure 1 for our research motivation.

The execution time of PIM could be calculated by multi-

plying the average memory access latency of the processor

(58ns) [38] and the number of memory requests required

for data read/write and MAC operations in the matrix-vector

multiplication. The PIM execution time was calculated to be

very small compared to the CPU execution time in all the

cases. PIM can achieve the speedup of 141.1 over the 16-core

execution at p = 8192. PIM utilizes the internal bandwidth

of the DRAM, whereas the CPU performance is bound to

the external memory bandwidth. This makes the performance

difference.

Most previous PIM studies have focused on designing

the application-specific accelerators in the logic die of the

3D-stacked memory, such as HMC [39] or HBM/HBM2

[40], [41], and few studies have implemented the accelera-

tor within DRAM [42]. However, all of them assumed that

they did not service the standard DRAM requests during

their computation even though handling a standard memory

request during the PIM operation is essential for PIM to act

as both a memory and an accelerator. Besides, they did not

present how the entire architecture layers from applications

to operating systems, memory controllers, and PIM devices

should work together for achieving significant performance

with minimal implementation cost. For example, they did not

consider the PIM programming, data mapping from OS page

to DRAM banks, a memory controller to schedule both the

standard memory and PIM requests, and so on, together for

the efficient system development.

We used the following approaches for resolving several

critical design issues of PIM development: The address map-

ping from physical addresses into device addresses in the

DRAM memory controller makes the data that consists of

one OS page stored and distributed across all the banks in

the DRAM. The data layout will not only complicate the

PIM design itself but also make the PIM programming very

difficult. To facilitate the issues, we develop the PIM frame-

work to match PIM programming and execution concepts

with those of parallel programs in multi-core environments.

By mapping one bank in the memory to a single core, a mem-

ory containing multiple banks functions like a multi-core

system. To support this, we make a decision that we design

one computing unit per bank. We use the existing bus used to

move data between banks and DQ for data exchange or syn-

chronization between banks, and the operation is performed

upon memory read/write requests like an explicit message

passing cache-coherence. Also, for convenient programming,

we use an operator overloading function for the PIM opera-

tions, and its interface is provided through the PIM library.

As a result, many existing parallel programs can be easily

converted into PIM programs.
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FIGURE 2. Exploiting various levels of parallelism by different schedulings at (p × 1024) × (1024 × 1) multiplication. (a) All-bank scheduling. (b) Per-bank
scheduling. (C) Burst operand reads by standard memory requests from assuming the accelerator usage outside DRAM. We assume 2-cycle MAC and
1-cycle reducer.

Also, for their seamless co-operation with the standard

memory requests and the PIM execution, we add PIM com-

mands to the standard DRAM state diagram for depicting the

PIM behaviors in the same way as standard DRAM com-

mands are scheduled and operated on the DRAM devices.

The approach allows the PIM execution to be easily adapted

and optimized with the standard DRAM behaviors and also

makes it possible to service the standard memory requests

during the PIM requests.

For maximizing the performance, our PIM architecture

exploits several levels of parallelisms by software and hard-

ware as shown in Figure 2 by assuming 2-cycle MAC and

1-cycle reducer: 1) multi-way vector operations by a com-

puting unit per bank (data-level parallelism), 2) independent

bank-level execution to use full internal bandwidth in read

and write operations (bank-level parallelism), 3) overlap-

ping memory behaviors with computing ones (overlapping

memory and compute operations), and 4) exploiting inde-

pendent PIM operations informed by software (task-level

parallelism). To maximize the parallelism exploitation, our

memory controller supports all-bank, per-bank, and bank-

group command schedulings; thus, the controller wouldmake

the PIM computation hide the DRAMbehaviors. By using the

methods, Figure 2 shows how much performance benefit we

can achieve compared to the execution of only its operand

burst reads assuming the full DRAM bandwidth. It should be

noted that all the read operands to the outside the DRAM are

serialized due to the limited memory bandwidth.

To the best of our knowledge, our work is the first study

to develop PIM optimized for the DRAM behaviors and

describe the entire PIM architecture layers for resolving the

critical issues at system-level design. For the verification

of our system-level design, we modeled the PIM memory

controller and the HBM2-based PIM to include 16-cycle

MAC (Multiply-and-Add) units and 8-cycle reducers for a

matrix-vector multiplication. Also, we developed the PIM

software library for supporting the PIM parallel program-

ming and the OS driver to interact with a host and the PIM

device. On our experimental platform, we achieved 406% and

35.2% faster performance by the all-bank and the per-bank

schedulings, respectively, at (1024 × 1024) × (1024 × 1)

8-bit integer matrix-vector multiplication than the execution

of only its operand burst reads assuming the external full

DRAM bandwidth with one channel, i.e., 32GB/s [41]. The

performance of the previous studies implementing PIM on a

base die of a 3D-stacked memory [19]–[21] cannot be better

than that provided by the external full memory bandwidth

in any case. The reason is that the previous studies cannot

hide the overhead associated with intrinsic memory behaviors

such as row activate and precharge, and should wait for

completing the operations. Therefore, we did a performance

analysis on the baseline of the full bandwidth performance of
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the memory rather than directly comparing with the previous

researches.

This paper consists of the followings: Section II describes

PIM design issues and their solution approaches, Section III

shows our extension of the DRAM state diagram, Section IV

presents our experimental design in detail, Section V shows

the performance evaluation, and Section VI discusses the

related work. Then, we present the discussion in Section VII

and conclude in Section VIII.

II. DESIGN ISSUES AND OUR APPROACHES

In this section, we examine major design issues when sup-

porting computations inside the DRAM.

A. DATA LAYOUT AND EXECUTION MODEL

One of the most challenging issues when implementing PIM,

in general, is to minimize the overhead associated with PIM

operations while still keeping the existing address mapping

and management methods. In other words, memory manage-

ment for PIM use should not be different from that used in

the existing OS.

FIGURE 3. Mapping between the physical address of OS page and DRAM
internals on our research platform: 4KB OS page and DRAM with
16 banks. One OS page is interleaved with 64 bytes in all 16 banks.

Figure 3 illustrates the relationship between the physi-

cal address of the OS page (4KB) and the DRAM device

address on our research platform. As shown in the figure,

continuous data within one OS page is distributed evenly

among 16 banks, with only four interleaved 64 bytes in one

bank consisting of one page. In our PIM design, we preserve

this address mapping and convert the maximum internal

bandwidth for read/write operations of the DRAM into a

computing bandwidth by assigning one computing unit to one

bank; thus, the assignment allows all the banks to perform

their computations independently and synchronize between

themselves using explicit PIM read/write operations. This

model concept provides a great intuition to the design of PIM

hardware and software.

The data movement between the banks must be explicitly

expressed because our PIM architecture does not support

hardware-based data coherence between banks. The overhead

of the data movement is the same as the memory copy over-

head, i.e., the sum of the latency of data read and write, and

their movement between banks. Therefore, the programming

and execution concepts of the PIM are the same as the parallel

ones to be applied on software-coherent multicores [43].

Also, the occurrence of the DRAM row miss prevents

the PIM from computing without idle or stalls because data

cannot be retrieved to the computing unit during the next

row activation. For example, suppose that the DRAM row

miss penalty is 37-cycle (sum of precharge and activation

penalties in HBM2 [41]). Whenever the DRAM row miss

occurs and the next row becomes active, all the computations

are entirely stopped. Therefore, the row miss would result in

the significant degradation in performance, so it is essential

to ensure that all data is located in one DRAM row as much as

possible. In any case, however, when the data size increases,

the row miss is unavoidable. In our design, we minimize

the associated overhead by overlapping the computation and

memory operations, such as activation and precharge.

B. COOPERATING WITH STANDARD MEMORY REQUESTS

If a memory controller receives the standard DRAM mem-

ory requests while a PIM operation is in progress, the con-

troller should service the requests as soon as possible to

satisfy their performance requirement. However, the previous

PIM research did not provide the solutions, and instead,

the standard memory requests are assumed to be not received

when the PIM operation is in progress [19], [21]–[23], [42].

However, their cooperation should be studied.

For this purpose,we extend the DRAM state diagramwhere

PIM commands are also expressed with the standard DRAM

commands. It implies that the standard DRAM commands

can be processed whenever possible during PIM operations.

As a result, we not only generate the PIM requests in the

same way as the standard memory requests but also schedule

the PIM commands in the same way as the standard DRAM

commands. This approach also can minimize implementation

and operational overhead for managing the PIM requests and

commands.

The PIM instruction generated within the PIM library

(discussed in Section IV-E.1) is loaded into a standard write

request with 1-bit extension to distinguish itself from a

standard memory instruction and passed to a memory con-

troller (MC). The MC decodes the PIM instruction into the

PIM command and sends the command to DRAM using the

extension of 1 bit to distinguish it from the standard memory

commands.

C. PARALLELISM EXPLOITATION

When implementing computing units within the DRAM,

the space for the implementation within the DRAM is very

limited and thus important to adequately represent the various

levels of parallelism in a tight space.

In our research environment, DRAM consists of 16 banks,

and one read memory request reads 128-bit data from the

bank at one time, and a total of 512-bit in sequence by

its burst operation. Thus, since we design an 8-bit inte-

ger matrix-vector multiplication, a computing unit per bank
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supports 16 8-bit integer vector operations at one time,

thus exploiting data-level parallelism. Also, since the data

is interleaved across all the banks as shown in Figure 3 and

the banks operate independently, we can achieve a total of

16× 16 data-level parallelisms at one time. In our processing-

inside-memory approach, the bank-by-bank parallelism is

one of the most fundamental causes of our PIM’s superior

performance over accelerators to use external interfaces with

the limited bandwidth. Also, we can get higher parallelism

through software. For example, for a matrix-vector multipli-

cation, since each resulting matrix element is independent,

task-level parallelism can be obtained by making the software

express independent/dependent PIM operations. Similarly,

if we calculate using more than 256 operations to obtain one

matrix element result, we can get more parallelism in the

same way because our model can continue the MAC compu-

tations without doing the reduce after every 256 operations.

The dependence information about the operations embedded

inside the PIM instruction is passed to the memory controller

to perform the scheduling.We also exploit parallelism even in

the pipeline of the computing unit by overlapping the DRAM-

related operations and the PIM computations on MACs and

reducers. For example, as soon as the DRAM operation

completes and their calculations start, the subsequent DRAM

operation begins to hide its related overhead.

III. DRAM STATE DIAGRAM EXTENSION

A memory controller converts the standard read/write mem-

ory requests generated by a processor into the DRAM com-

mands, which define the DRAM behaviors such as read,

write, activation, precharge, and refresh commands. The

behaviors are defined as a DRAM state diagram [44], and

the state diagram exists per bank in general. To depict PIM

behavior in the same way as the standard DRAM commands

are scheduled and operated on DRAM devices, we slightly

modified the standard DRAM state diagram, and it is shown

in Figure 4.

There were two considerations for the extension. PIM

always starts to compute by issuing the memory read com-

mands, so we can consider the PIM compute commands as

standard read commands with a longer latency. The other

consideration is that the standard memory commands use DQ

to send and receive data. Instead, the PIM commands send

data to the computing unit and receive its results from the

unit. The only difference is the source and destination in the

commands. Therefore, we can use the same PIM RD andWR

command edges as the standard ones without having to define

new states.

There are two crucial advantages to expressing the PIM and

the standard memory commands in the single state diagram.

First, the standard memory commands need to be neither

blocked nor handled differently during the PIM execution;

thus, at any time during the PIM computation, we can service

high priority standard memory requests and naturally satisfy

their performance requirement, which was not presented in

the previous PIM studies [19], [21]–[23]. Second, the single

FIGURE 4. The state diagram for both the standard DRAM and the PIM
commands. The bold italic commands are extended for the PIM
commands.

state diagram allows us to design only one queue for both

kinds of the commands; thus, we significantly simplify the

memory controller design for supporting the PIM operations.

IV. EXPERIMENTAL DESIGN: PIM FOR

MATRIX-VECTOR MULTIPLICATION

In this section, we present the detailed implementation of our

PIM by using the matrix-vector multiplication which is a core

operation for many types of emerging applications such as

neural network executions, AR/VR, and so on.

A. OVERALL ARCHITECTURE

Figure 5 shows our PIM overall architecture, which is pri-

marily divided into three components: 1) a software stack to

consist of the PIM application, the PIM library, and the PIM

device driver, 2) a memory controller, and 3) the PIM device.

The role of the software stack is to map an application’s

PIM data onto the PIM device, to create PIM instructions

using the PIM library and to enable the PIM device driver

to offload them into the memory controller. We modified the

mmap function to perform the PIM data mapping. In order

to deliver PIM instructions from a host processor to the PIM

device, we can store the PIM instructions in the standard write

requests and pass them to the memory controller by adding

one-bit representing the PIM request as previously described

in Section II-B. However, due to the difficulty of such modifi-

cation, we used the PIM device driver in our experiment PCIe

memory platform to transfer the PIM instructions to the PIM

device through the system call interface. If we perform the

modification and attach the PIM device directly to the mem-

ory bus, the mmap and the PIM device driver are removed.

We modeled the memory controller and the PIM device

using Verilog HDL in Kintex-7 FPGA attached to PCIe. The

memory controller generates the PIM commands from the
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FIGURE 5. An overall architecture of PIM.

received PIM instructions, and schedules and sends them to

the PIM device with the standard memory commands. Our

PIM device consists of 16 banks along with the model of

HBM2, and each bank is composed of 256 rows, with each

row being 2KB. From each row, one read command reads

128-bit data at one time. Also, all the banks share a 128-bit

bus, which is connected with DQ. We designed a computing

unit in each bank. The address mapping from MC to the PIM

device follows Figure 3.

B. MEMORY DEVICE FOR PIM

HBM2 supports high bandwidth [41], which is approximately

10 times larger than most commonly used DDR devices

(DDR4: 25.6GB/s, HBM2: 256GB/s) due to the high number

of off-chip pins. The amount of data that can be computed per

unit time is proportional to the amount of data that can be read

in memory. Also, the banks in one die of HBM2 send data to

the DQ pin through a shared bus. In other words, the PIM data

coherence between banks can be resolved through the shared

bus with the PIM commands without additional overhead in

hardware.

We have adopted only one die of HBM2 memory as the

underlying memory platform for our PIM research, not 3D

stacked HBM/HBM2 as our design goal, primarily due to

the following considerations: There are many channels of

HBM2 to provide high bandwidth and places channel bits

directly above the offset in the address mapping. The place-

ment would eventually scatter one OS page through all the

channels, i.e., storing one-page data onto all banks on all

the dies, which could cause a significant communication

overhead. If computation data is assumed to be placed on

one channel by changing address mapping, i.e., moving the

channel bits to higher bits, the communication overhead for

the communication may not occur. However, the channel-

level parallelism for the standard memory requests would dis-

appear, and the performance would be degraded. Therefore,

many channels are somewhat toxic to the performance of the

PIM architecture. We took the issue into account and based

on the memory of one die that uses only one channel in the

HBM2. One channel configuration also eliminates TSVs for

connecting the dies and reduces the burden on developers

by implementing computing logic in the corresponding TSV

area. Thus, we can store all data in one chip, neither across

channels. This consideration can also be taken to a multi-chip

(DDR series). However, the synchronization should always

be minimized to achieve high performance like parallel exe-

cution in multicores.

FIGURE 6. PIM datapath for our matrix-vector multiplication.

C. PIM DATAPATH AND COMMANDS

Figure 6 shows the PIM datapath design for our 8-bit inte-

ger matrix-vector multiplication. In our design, we assign

one PIM computing unit to each bank; thus, we have

a total of 16 units connected with the already available

128-bit shared bus. Each unit consists of the followings:

1) 128-bit vBUF0 and vBUF1 registers, each of which holds
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TABLE 1. PIM commands and their operations.

128-bit data (16 8-bit operands) from DRAM or the shared

bus from other banks. 2) One delay latch to hold the first read

128-bit operand since only one memory request is serviced

at a time. 3) 16-way vector MACs and each way uses two

8-bit inputs and produces an 8-bit result. 4) 128-bit vector

accumulator register (vACC). 5) a 16-to-1 reducer to perform

reduction(+) from data in vACC. 6) one 8-bit scalar adder

to sum rACC and the reducer result transferred through the

shared bus from other banks. Also, 7) a 512-bit rACC register

to store the reduced results and to be used for burst writes to

DRAM.

The basic PIM operations are performed as follows.

1© Initialize the vector accumulator register, vACC.

2© Read two 128-bit vector operands one by one from

DRAM or the shared bus and storing them in the

vBUF0 and vBUF1 registers.

3© Perform vector MAC operations with vACC and store

the results in vACC.

4© Repeat Steps 2) and 3) for exploiting higher vector

parallelism.

5© At the end of the vector operations, perform a reduce

operation using the vector values stored in the vACC

register, and store the reduced result in the rACC indexed

by an offset of the store address.

6© If the reduction operation is required with other banks,

send the reduce result to other banks or receive the value

of rACC from other banks through the shared bus and

reduce the values.

7© Store the rACC into DRAM by burst writes.

Table 1 illustrates the PIM commands that drive the PIM

device. We currently support commands only for the 8-bit

integer matrix-vector multiplication. In order to perform var-

ious application programs in the PIM, it is sufficient to add

more ALU units in the datapath and their associated PIM

instructions and commands. We support read and write com-

mands to use DRAM and the shared bus with the registers.

Also, we support a clear command to initialize the registers.

For the calculation, we develop vector MAC and reduce

commands.

One of the most critical issues in implementing PIM is the

area overhead of MAC ALUs. McDRAM [42] analyzed the

overhead when designing MAC ALUs for BLSAs, column

decoders, and I/O drivers in DRAM. Also, [42] showed that

the design of 256 8-bitMACs at the column decoder positions

incurs the area overhead of about 4.7% of the total DRAM

area. Because McDRAM and we used the same MAC con-

figuration, both methods would suffer from similar area over-

head. However, the significant difference betweenMcDRAM

and our study is that the McDRAM paper envisioned a PIM

architecture from the perspective of an accelerator, whereas

our work has envisioned a PIM architecture from the perspec-

tive of the entire system.

D. MEMORY CONTROLLER

Before designing the PIM memory controller, we modeled

and verified thememory controller that generates the standard

DRAMcommandswith VerilogHDL. In the design, we refer-

enced two well-known DRAM simulators, DRAMSim2 [45]

and Ramulator [46]. The modeled standard memory con-

troller consists of three parts: 1) a request queue to receive the

memory requests, and store and schedule them, 2) a command

generator logic to convert the requests into commands, and 3)

a command queue per bank to issue the commands.

FIGURE 7. A memory controller for PIM.

Figure 7 shows our PIM memory controller design, and

the gray-colored ones are either added or modified. The

added 8-entry PIM queue and logic for decoding 12 PIM
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instructions receive the PIM instructions via the PIM device

driver, convert them into the PIMmemory requests, and store

the converted PIM requests in the request queue. A slight

addition and modification to the memory controller were

required, so the area overhead would be minimal. The great-

est strength of our PIM architecture is scheduling the PIM

memory requests and commands with the standard DRAM

ones together. Therefore, we use only one request queue and

only one command queue per bank for both operations with

the same queue management scheme. We slightly modified

the memory request scheduler to recognize the PIM memory

requests and the command generator to translate the PIM

memory requests into the PIM memory commands.

In the PIM architecture, however, we need to consider

the order of issued commands between the PIM commands

and between the PIM commands and the standard DRAM

commands. In the schedule between the PIM commands,

the memory controller should not change the order of com-

mands if there is a dependence between them. The PIM

library generates dependency information inside the PIM

instruction. In the schedule between the PIM commands and

the standard DRAM commands, we need to take only their

priority into account since there is no dependence between

them. Our command scheduler uses a round-robin as a pri-

ority scheme between banks. Also, we support three kinds

of commands for exploiting bank-level parallelism inside

the DRAM device: all-bank, per-bank, and bank-group com-

mands. Since there is no limitation in internal bandwidth

except for the reduction, we can maximize the bank-level

parallelism for the computation inside the memory.

E. PIM SOFTWARE STACK

The software stack for our PIM architecture consists of three

parts: the PIM application, the PIM library, and the PIM

device driver. In our current research platform, a host proces-

sor and the PIM modeled FPGA are connected using PCIe,

and we separated the PIM memory region from the system

memory region. The only reason for separating the PIM

region and the system memory region is that we could not

modify the system memory and the memory controller on the

real machine for our PIM study. The two memory regions are

flat in virtual and physical memory spaces, and the physical

address of DRAMmodeled as PIM in FPGA is allocated from

0x200000000 to 0x2007FFFFF. The data movement between

the two regions must be explicitly expressed by software.

Also, there is no coherence problem between the PCIe

memory and caches by assigning the PCIe memory as

uncacheable. If the PIM memory is assumed to be cached,

the coherence problem can be solved by flushing cached

dirty source operands and invalidating the cached destina-

tion operands before starting the PIM execution. However,

the straightforward method may have a significant influence

on the overall system performance [47]; thus, the deep-dived

study is needed. In our architecture, a usermust access all data

with a virtual address, so he cannot know the corresponding

physical address. That is, no memory region can be used

FIGURE 8. An example of the PIM application for the matrix-vector
multiplication of (2 × 1024) × (1024 × 1).

only by PIM other than the OS-managed memory regions,

so there is no new security issue that arises from using our

architecture.

1) APPLICATION AND LIBRARY

An example of the PIM application is shown in Figure 8,

where a programmer uses the PIM matrix declaration and

operator overloading (Lines 7∼8 and Line 13), similar to a

vector of the C++ standard library for declaring the matrix

and vector operands, through the PIM templates available in

the PIM library.

Figure 9 shows our PIM instruction format and library

code. We modified the mmap function to assign the PIM

data onto the PCIe memory by defining PCIE_FLAG (Lines

12∼15). The data are assumed to be initialized without loss

of generality. We also provide convenience to program devel-

opers by supporting operator overloading functions (Lines

30∼57). The matrix-vector multiplication using the vector

operator ‘‘*’’ requires a typical two-nested loop structure, and

there is a difference only in the innermost loop. Because we

support 1024 MAC vector operations at one time (16 vector

MACs per bank × 16 banks × 4 burst reads), we define

the value as VECTOR_SIZE. We can eliminate the mmap

function if 1) all memory devices include PIM computing

units, or 2) OS manages the PIM data only when some of

the devices include the PIM units.

Also, the initial_ordering in Lines 50∼51 repre-

sents the dependence across one-time computation, i.e., a

chunk of 1024 vector operands. One element of the result

vector may need more than one chunk computations to be

calculated. The value 2’b10 means the first chunk execution,

and the value 2’b01 does the last chunk computation. If the

sizes of the matrix and the vector are large, then we need to

compute the chunk calculation several times (Line 43). The

value 2’b00 represents the dependence across the chunk com-

putations. In the case of 11, there is no dependence between

any PIM instructions. The memory controller schedules the

PIM commands by using the information for providing the

program correctness. The generated PIM instruction is passed

to the PIM device driver via the system call interface on

Line 53.

If multiple cores issue two or more PIM executions at the

same time, which could lead to data inconsistency. To solve

the data consistency, one group of PIM instructions to be
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FIGURE 9. PIM instruction format and an example of the PIM library for
the matrix-vector multiplication.

processed at a time should be expressed within 64 bytes,

which is a general cache block size. If so, it is possible to

prevent the commands from being mixed among multiple

cores.

2) DRIVER

When delivering PIM instructions from a conventional sys-

tem to the PIM HW, the PIM instructions must be recognized

by a host processor and a memory controller. However, due to

the difficulty of such modification, we used the PIM device

driver in our experiment PCIe memory platform to transfer

the PIM instructions to the PIM device through the system

call interface.

Our PIM device driver plays the following two roles: The

first is to translate virtual addresses of operands into their

physical ones. Since only virtual addresses can be seen in the

user space, wemake the PIM device driver operating in kernel

mode convert the virtual addresses to their physical ones via a

page table walk. Second, the PIM device driver sends the PIM

instructions to the PIM queue inside our modeled memory

controller. We used the writeq (WR_DATA, DST_ADDR)

function of the OS to use the general memory write request as

it is. Therefore, the PIM instructions can be forwarded to the

memory controller by avoiding the modification difficulty.

If there is a data dependency between the PIM instructions

FIGURE 10. An example of the PIM device driver.

sent by the driver and the memory request sent by another

application, the request queue scheduler inside the memory

controller naturally preserved the dependence at command

scheduling.

The implementation of the software we have described so

far is a way to operate in our development environment. The

PIM device driver is not required if the PIM requests can

be sent directly from a memory controller without using the

PCIe interface. Also, during the PIM execution, an exception

can occur when decoding unsupported PIM instructions and

performing the PIM calculations in the arithmetic unit. The

PIM instructions executed by the offloading method cannot

support precise exceptions. If the exception occurs, PIM noti-

fies an error state to a host process and aborts the execution,

in the same way as when an exception occurs in the existing

I/O device.

V. PERFORMANCE EVALUATION

In this section, after describing the experimental method,

we evaluate the performance of the proposed PIM architec-

ture in terms of the execution cycles, speedup, and overhead

in time, and energy consumption through RTL simulation

under various execution environment. We present a perfor-

mance analysis on the baseline of the external full bandwidth

performance of the memory rather than directly comparing

with the previous researches since the performance of PIM

on a base die of a 3D-stacked memory [19]–[21] cannot be

better than that provided by the full bandwidth in any case.

A. EXPERIMENTAL SETUP

As described in the experimental platform of Section 5,

we modeled the memory controller and the PIM device in

FPGA for our research. At this time, one die of HBM2 was

modeled as the memory device, and our experiment config-

urations are shown in Table 2. We assumed the execution

time ratio of MAC and reducer is 2:1 by the reason that an

8-bit MAC consists of 9 adder stages and a 16 8-bit operands

reducer consists of 4 adder stages. We implemented both

the PIM memory controller and the PIM memory in Verilog
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TABLE 2. Experiment configurations.

RTL and obtained accurate execution cycle results through

the RTL simulation. The (p × 1024) matrix and (1024 × 1)

vector do not require data movement for the matrix-

vector multiplication other than the data movement for the

reduction operation when using the data layout described

in Section II-A.

We made two assumptions for measuring the performance:

1) All the data required for the matrix-vector multiplication

(8-bit×8-bit=16-bit) regardless of the matrix operand sizes

were row-aligned in DRAM. After experimenting with the

assumption, we analyzed the execution overhead by drawing

up a scenario in which a certain probability of row miss

occurred during the execution. 2) Also, we assumed that the

delays of the modeled memory controller and the instruction

transfer from the host processor to the memory controller

were ignored.

We have also applied three methods of command

scheduling for the PIM execution: 1) all-bank scheduling,

2) per-bank scheduling, and 3) bank-group scheduling. The

all-bank scheduling makes all banks operate simultaneously

by receiving one command, so it results in the fastest

PIM operations. However, the scheduling may suffer from

high power consumption. It should be noted that under the

scheduling, the standard DRAM operations such as read and

write need the change of the existing DRAM structure, but

the PIM does not need the change due to no data move-

ment between the PIM device and the memory controller.

The per-bank scheduling leverages the current DRAM com-

mand interface, which defines the behavior of each bank

as a command and commands all banks independently. The

reason why each bank receives and processes the standard

DRAM commands independently is that each bank performs

the different data accesses. However, for the PIM opera-

tions, the per-bank scheduling may be considered inefficient

because all the banks do the same. However, the high latency

of the computing unit would hide the DRAM activity as much

as it does. The bank-group scheduling uses the bank group

technology added to DDR4 [48] and HBM/HBM2 [40], [41]

generations to suggest that a single command operates all

FIGURE 11. Speedup on different compute cycles (M, R) depending on p,
where M cycles for the MAC operation, R cycles for the reduce operation,
and (p × 1024) × (1024 × 1) matrix-vector multiplication.

the banks in the same bank group, and each group operates

independently. We assigned 4 banks to each bank group.

B. SPEEDUP AND EXECUTION TIME

Figure 11 shows the speedup of the various sizes of the

matrix-vector multiplications with different latency of the

MAC and the reduce operations. The speed was based on

the execution time to read all the matrix operands assuming

the full DRAM bandwidth (32GB/s) without any calculation

divided by the PIM execution time. The experimental results

show that we achieved significant speedup by all the schedul-

ings, of which the all-bank scheduling achieved the most

speedup over the others. As the latency of the computing unit

increases, the speedup decreases, but still very high due to

utilizing the full internal bandwidth of DRAM using various

levels of parallelism in the PIM execution.

In the ideal design of the computing unit, i.e., (2,1),

the ideal speedup of the all-bank scheduling is 16, but the

performance measurement result was about 12.2. The per-

formance gap is the same as the overhead caused by inter-

bank communication for summation reduction. The speedup

of the all-bank scheduling decreases linearly with the latency

increment due to that the computing latency gradually dom-

inates the overall execution time. In the case of the bank-

group scheduling, we achieved the speedup of 5.7, and in

the case of the per-bank scheduling, we achieved 35.4%

higher speedup by the burst command to make the bank

operations overlapped. In contrast to the all-bank scheduling,

the speedup of the per-bank scheduling almost maintains the

constant with the computing unit latency increment due to

operation overlapped. When increasing the p value, there is

no speedup variation since we use both full computing and

memory bandwidth by exploiting the task-level parallelism.

Therefore, we can conclude that our PIM provides the perfor-

mance scalability according to the matrix sizes.

Figure 12 shows the ratio of cycle breakdown at the bank

execution with p = 1024 depending on three scheduling

methods in terms of cycles in memory + compute (over-

lapping), memory-only, compute-only, and idle states. In the
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FIGURE 12. Cycle breakdown of the bank execution with p = 1024.
(a) All-bank. (b) Bank-group. (c) Per-bank.

all-bank scheduling, when the computing latency is (2,1),

memory read and computing operations overlap over 70% of

the total execution cycle. However, as the computing latency

increases, the overlap time decreases and the computing time

becomes to dominate the overall execution time. In the per-

bank scheduling with the latency (2,1), the idle time occupies

more than 80% of the total execution. The reason is that the

shared command bus by all the banks prevents the ready

commands from being issued, so the overlap execution of

computing and memory is minimal. When the computing

latency increases, the idle time becomes to the compute-only

time. We found that we could not achieve the acceptable

performance by the per-bank scheduling due to the limited

command bandwidth, but we could reduce the burden of the

high-performance ALU design.

The maximum performance of a system using CPU +

HBM2 is limited to the external bandwidth, 256GB/s [41].

As discussed in the experiment of Figure 1, it is challenging

to expect higher performance gain by CPU+HBM2 than the

PIM architecture using the DRAM internal bandwidth. For

example, using one die and 16 banks, which are our exper-

imental specification, the internal bandwidth is 512GB/s,

which is twice as high as the HBM2 maximum external

bandwidth. Therefore, in the case of massively parallel exe-

cution in DRAM formemory-bound applications, PIMwould

achieve significant performance gain.

C. ENERGY CONSUMPTION

Figure 13 shows the log-scaled energy consumption by vary-

ing the computing latency and matrix size, p, and the data

are normalized by the energy consumption with p = 1 exe-

cution. We assumed that the read/write operation consumed

168.6mW , the idle state consumed 52.8mW [49] and the

MAC and the Reducer units did 28.8mW and 4mW, respec-

tively [50]. Also, we calculated the scale-point bymultiplying

the energy consumption of p = 1 with p, which represents

the energy scalability if the energy consumption of each p

approaches to the point. The figure shows that the energy

consumption increases linearly with the p value, and all the

consumption is very close to the scale-point. Therefore, our

system provides excellent scalability in energy consumption.

D. PERFORMANCE VARIANT

We show performance analysis in the following two environ-

ments: One is when not all data are aligned to one row, and

the other is to perform PIM while servicing other standard

memory requests. We found that the per-bank scheduling

could tolerate the changes of the execution environment such

as row misses and other standard memory requests.

1) OCCURRING ROW MISSES

The study of the execution time by row misses is necessary

because there is a limit to DRAM page size and the row miss

cannot always be unavoidable. Therefore, the overhead from

precharge and activation was measured, assuming that the

probability of row misses at every two read accesses were

25%, 50%, and 75%. Figure 14 shows the speedup of the

PIM to calculate (1024 × 1024) × (1024 × 1) with the row

misses, whose baseline was the execution time by performing

operand burst reads at the full memory bandwidth with the

corresponding the row miss overhead.

In all the cases, the PIM performance was still higher than

one, even at high row miss rate. The performance by the all-

bank and the bank-group schedulings with high-performance

computing unit was very sensitive to the row misses, i.e., a

large number of rowmisses significantly degraded the perfor-

mance, since the smaller computing cycle had less scheduling

opportunity to hide the overhead. However, in the practical

computing unit design, for example, at the (16,8) latency,

their performance drops were insignificant even with 75%

miss ratio, and more precisely, by 23.3% in the all-bank and

14.5% in the bank-group schedulings.

In the per-bank scheduling, even if the row misses

increased, the performance with the row misses was almost

the same as that without any row miss, and the speedup

variation was only 5.4% at the (16,8) latency with 75% row

miss. The row miss overhead was hidden by reducing the

idle cycle and increasing the overlap between memory and

computing operations. For more detailed performance study,

we show the cycle breakdown of the execution at the delay

of (8,4), (16,8), and (32,16) in Figure 15. The performance

tolerance from the row misses in our all schedulings is one of

the significant advantages of our design.

2) EXECUTING WITH THE STANDARD MEMORY REQUESTS

We measured the PIM performance variants while servic-

ing the standard memory requests. The experiment was car-

ried out assuming that one standard memory command is

requested per every two PIM memory commands during the

PIM execution; thus, one-third of the total memory requests

are the standard memory commands. Figure 16(a) shows its

speedup, whose baseline was the execution time by perform-

ing operand burst reads at full memory bandwidth.

The speedup was degraded in all the cases due to the other

memory operations, and more precisely, the performance was

dropped by 29.7% in the all-bank, 23.1% in the bank-group,

23.6% in the per-bank schedulings at the (16,8) latency when
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FIGURE 13. Energy consumption by varying the value p. The energy consumption was normalized by the energy consumption with
p = 1. The ‘‘x’’ symbols represent the scale-points, i.e., the value of multiplying the energy consumption of p = 1 execution with p.

FIGURE 14. Speedup with row misses at p = 1024. (a) 25%. (b) 50%.
(c) 75%.

FIGURE 15. Cycle breakdown of Figure 14 at the (8,4), (16,8), and (32,16)
latency. (a) 25%. (b) 50%. (c) 75%.

compared with Figure 11. However, the performance degra-

dation was quite surprising when it was estimated that the

degradation would be about 33% given that one-third of the

total number of memory requests were the standard memory

requests. In the cases of the all-bank and the bank-group

schedulings, when serving the standard memory requests,

all banks must stop; thus, the idle time increased as shown

in Figure 16(b). On the other hand, there was no noticeable

variant of the cycle breakdown in the per-bank scheduling

because a bank could read and compute when other banks

FIGURE 16. Performance when one-third of all the memory requests are
the standard memory requests at p = 1024. (a) Speedup. (b) Cycle
breakdown.

are serving other memory requests. The cycle breakdown of

the per-bank scheduling is very similar to Figure 12 that did

not service any standard memory request. Also, intuitively,

the faster computing unit incurred the higher performance

drop; 74.6% by the all-bank, 47.6% by the bank-group, and

24.1% by the per-bank schedulings at the (2,1) delay.

VI. RELATED WORK

Recent PIM studies have been extensively researched

as Near-Data Processing (NDP) and customized memory

devices. The NDP places the hardware logic like general

cores and accelerators very near memory devices, in general,

on the logic die of the 3D-stacked memory that supports high

capacity and high bandwidth. Also, the customized devices

use memristors inside the memory to improve the perfor-

mance of a specific target. In this section, we discuss their

research by comparing with our work.
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Most PIMs using 3D-stacked memory studies [19]–[23]

assigned a task to each general PIM core which is connected

with one vault of the 3D-stacked memory in order to perform

an offloaded PIM tasks in parallel like multi-core processing.

Reference [20] focused on hardware and software interface

at the NDP runtime when performing data partitioning, PIM

core communication, and task management. Also, this paper

proposed memory models between PIM core and a host core.

Tesseract [21] focused on the scalability of PIM memory for

large-scale graph analysis [32], [33], [51]. It could obtain

the scalability through HMC network by proposing a non-

blocking message passing algorithm for the communication

between intra-cube or inter-cube. GraphPIM [23] supported a

software framework, which provided a transparent offloading

to a programmer in order to reduce the burden of the program

modification. PEI [22] used hardware logic, which profiled

data locality according to the cache behavior, to determine

the best possible offloaded operations.

PIM research using the existing 3D-stacked memory with

general cores incurs several design concerns because a host

core and PIM cores exist separately. The first concern is

related to address mapping. Since the address mapping

between the host core and the PIM cores may be differ-

ent, overhead from the address translation or re-mapping

would occur. Conversely, if the address mapping is the

same, the communication overhead between the PIM cores

would increase due to the multi-channel interleaving of the

3D-stacked memory. NDP [20] reduced the overhead by

moving the channel bits from the existing address mapping.

However, this does not guarantee the overall memory per-

formance requirement because standard memory requests

cannot utilize the channel-level parallelism. The overhead

would become significant in real andmulti-workload, but tiny

in small memory footprint of applications like in the SPEC

2006 benchmark [52]. The second concern is the high hard-

ware logic overhead for the PIM core, where thermal issues

would occur, and the constraints of power dissipation would

become greater [53]. NDA [54] proposed the architecture for

connecting accelerators with the 3D-stacked DRAM device

via TSVs. In this case, the low-power accelerator should be

used to resolve the thermal impact, which is an essential prob-

lem of the existing 3D-stacked memory. The third concern is

ISA. We need to add ISAs to the host processor or extend the

existing HMC ISAs for the PIM cores. However, any modifi-

cation or extension is significant overhead in implementation.

McDRAM [42], very rare but the latest work placed

multiply-accumulate (MAC) units in the region of the DRAM

column decoder, i.e., inside DRAM, and presented the trade-

off in terms of energy consumption, area overhead, and

performance. However, McDRAM also neither considered

the data layout, serving the standard memory request while

executing PIM operations, nor architecture layers.

In the case of the PIM accelerators [54]–[58] for spe-

cific targets, both low power and high-performance can be

obtained. However, the data movement from the host mem-

ory into the accelerator, whose performance is limited by

bandwidth. In order to resolve the limitation, several types

of research have been proposed [55]–[57], [59]. DaDian-

Nao [56] replaced on-chip memory with a large-capacity

eDRAM. TOM [24] changed the on-chip memory of GPU

to multiple 3D-stacked memory, but there was an overhead

to find the best address mapping through training before the

GPU kernel launch to map. [57], [59] suggested the schedul-

ing of CNN operations to increase the reuse of the on-chip

memory data.

The customized device PIM is an in-situ analog-based

PIM using memristors [60]–[62], where memory cells store

not only values but also operations, and most of them used

ReRAM [63] as a memory platform. PIM using memristors

would simplify the computing the data by the analog opera-

tion, so the data need to be handled by ADC/DAC. Therefore,

the ADC/DAC area overhead would be significant in mem-

ory, and ISAAC [61] proposed new data encoding techniques

that can reduce this ADC overhead. Also, there would not

be guaranteed that the result of the operation through the

ADC always had the same result. In order to reduce the loss

of accuracy, PRIME [60] applied the dynamic fixed points

[64]. [65] presented a 12 × 12 memristor and used it as a

linear classifier for DNN. However, PIM using a memristor

is not feasible at present because the size of the memristor

array is sufficiently large to utilize the parallelism [60]–[62].

As a pure software method, the EMU technology [66] is

one of the representatives near-data processing techniques

in a conventional cluster environment, which migrates and

processes threads to nodes where the data is located, rather

than moving data to CPU or GPU that needs them.

Our research shows that the PIM can be applied to the real-

world computing environment, i.e., would come true shortly

by designing a simple computing unit in the most widely used

DRAM device and operating it within the range of standard

memory behaviors.

VII. DISCUSSION AND FUTURE WORK

When a computing unit is designed to be placed within

DRAM, there are so many developmental issues as we dis-

cussed before. However, one of the most challenging issues is

that the computing unit must be fabricated using the DRAM

process. Since the DRAM process different from the logic

process, there are several issues. At the implementation,

the first process is to make the standard cells using a DRAM

process. After the various sizes of the standard cells such as

NAND, AND, XOR, NOR, flip-flops, a full-adder, and so on

are designed and laid out, the computing unit is Verilog-coded

and synthesized with the standard cell library. The designed

cells would suffer from considerable delays due to larger Vth

of the DRAM process than that of the logic process [67].

With the performance degradation, to support fast read/write

access time of memory banks, the computing unit should be

deeply pipelined. As the setup time and clock-to-Q delays of

flip-flops take a considerable portion of clock cycles in deeply

pipelined circuits, reducing those flip-flop delays are one of

the main design issues.
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When the gate-level netlist is placed and routed after

synthesis, large wiring capacitance from a memory bank to

the computing unit and the limited number of metal lay-

ers are another difficulties encountered when designing the

computing unit in DRAM. Long wiring delay path should

be pipelined as well with the risks of setup or hold time

violations depending on different wire lengths. The wiring

congestion incurred by the limited number of metal layers

would increase the layout area of computing units after plac-

ing and routing (P&R). To satisfy the tight timing closure,

the synthesis and P&R tools would employ large standard

cells having strong driving strength, which is another reason

for significant area overhead in designing computing unit.

VIII. CONCLUSION

In this paper, we proposed the PIM architecture optimized

for DRAM behaviors, so we could effectively coordinate

the PIM operations with the standard DRAM operations by

extending the standard DRAM state diagram for the PIM

commands. The extension allowed us to handle the PIM

behaviors in the same way as the standard DRAM com-

mands are scheduled and operated on the DRAM devices;

thus, PIM can service the standard memory requests during

the computation. Also, we proposed the PIM programming

and its execution model for quickly applying the conven-

tional parallel execution ones on multi-cores to PIM. We also

exploited several levels of parallelism for achieving the full

computing performance with minimizing the implementation

cost.

By applying our approaches to our HBM2-based exper-

imental platform, we presented how the entire architecture

layers from applications to operating systems, memory con-

trollers, and PIM devices worked together for the effective

execution. We showed the detailed performance analysis in

terms of speedup and energy consumption with varying the

computing unit design parameters, row misses, and con-

sidering the standard memory requests at the matrix-vector

multiplication. By using the 16-cycle MAC and the 8-cycle

reducer, we could achieve that the PIM execution was 35.2%

and 406% times faster by the per-bank and the all-bank

schedulings, respectively, at (1024 × 1024) × (1024 × 1)

8-bit integer matrix-vector multiplication than reading

operands at the external full DRAM bandwidth. We are sure

that this work provides great insight about real PIM design for

energy-efficient data-intensive computing for research and

development in our community.
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