
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2004 

Design of quadrature mirror filter banks with canonical signed Design of quadrature mirror filter banks with canonical signed 

digit coefficients using genetic algorithms. digit coefficients using genetic algorithms. 

Haritha Uppalapati 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 

Uppalapati, Haritha, "Design of quadrature mirror filter banks with canonical signed digit coefficients using 

genetic algorithms." (2004). Electronic Theses and Dissertations. 1667. 

https://scholar.uwindsor.ca/etd/1667 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1667?utm_source=scholar.uwindsor.ca%2Fetd%2F1667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


DESIGN OF QUADRATURE MIRROR FILTER BANKS WITH 
CANONICAL SIGNED DIGIT COEFFICIENTS USING 

GENETIC ALGORITHMS

BY

Haritha Uppalapati

A Thesis

Submitted to the Faculty o f  Graduate Studies and Research 

Through Electrical Engineering 

in Partial Fulfillment o f  the Requirements for the Degree o f  

Master o f  Applied Science at the 

University o f  Windsor

Windsor, Ontario, Canada 

©  2004 Haritha Uppalapati

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 * 1
Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-494-00135-6 
Our file Notre reference 
ISBN: 0-494-00135-6

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



11> XO 5 if '•j-

Design of QMF Bank with CSD Coefficients using Genetic Algorithms

by

Haritha Uppalapati 

APPROVED BY:

Engineering

Dr. B. Shahrrava
Electrical and Computer Engineering

/ Dk^IvtrA. Sid-Ahmed, Co-Advisor
/ Electrical and Computer Engineering

Dr. M. Ahmadi, Co-Advisor
Electrical and Compute^ Engineering

Dr. C. Chei^Cl^r of Defense 
Electrical and Computer Engineering

October 1, 2004

Mechanical, Automotiv^apd Materials

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ABSTRACT

This thesis is about the use o f a genetic algorithm to design QMF bank with 

canonical signed digit coefficients. A filter bank has applications in areas like 

video and audio coding, data communication, etc.

Filter bank design is a multiobjective optimization problem. The performance 

depends on the reconstruction error of the overall filter bank and the individual 

performance of the composing lowpass filter. In this thesis we have used 

reconstruction error of the overall filter bank as our main objective and passband 

error, stopband error, stopband and passband ripples and transition width of the 

individual lowpass filter as constraints. Therefore filter bank design can be 

formulated as single objective multiple constraint optimization problem.

A unique genetic algorithm is developed to optimize filer bank coefficients such 

that the corresponding system’s response matches that of an ideal system with an 

additional constraint that all coefficients are in canonical signed digit (CSD) 

format. A special restoration technique is used to restore the CSD format of the 

coefficients after crossover and mutation operators in Genetic algorithm. The 

proposed restoration technique maintains the specified word length and the 

maximum number of nonzero digits in filter banks coefficients.

Experimental results are presented at the end. It is demonstrated that the designed 

genetic algorithm is reliable, and efficient for designing QMF banks.
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CHAPTER 1 

INTRODUCTION 

Digital filters ,Multirate signal processing and Filter banks

DSP, or Digital Signal Processing, as the term suggests, is the processing of 

signals by digital means. Digital signal processing is one of the most powerful 

technologies. DSP technology, with its own algorithms, mathematics, and 

specialized techniques, revolutionized many areas in science and technology. 

Digital filters are a very important part o f DSP. In fact, their extraordinary 

performance is one of the key reasons that DSP has become so popular.

DSP technology is nowadays commonplace in such devices as mobile phones, 

multimedia computers, video recorders, CD players, hard disc drive controllers 

and modems, and will soon replace analog circuitry in TV sets and telephones. An 

important application o f DSP is in signal compression and decompression. In CD 

systems, for example, the music recorded on the CD is in a compressed form (to 

increase storage capacity) and must be decompressed for the recorded signal to be 

reproduced. Signal compression is used in digital cellular phones to allow a 

greater number of calls to be handled simultaneously within each local "cell". DSP 

signal compression technology allows people not only to talk to one another by 

telephone but also to see one another on the screens of their PCs, using small 

video cameras mounted on the computer monitors, with only a conventional 

telephone line linking them together.

1
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1.1 DIGITAL FILTERS

Digital filters are used for two general purposes: Separation of signals that have 

been combined, and Restoration of signals that have been distorted in some 

way. Signal separation is needed when a signal is contaminated with interference, 

noise, or other signals. Signal restoration is needed when signal has been distorted 

in some way. For example, an audio recording made with poor equipment may be 

filtered to better represent the sound as it is actually occurred. Analog (electronic) 

filters can be used for these same tasks; however, digital filters can achieve far 

superior results.

The impulse response of a digital filter is the output sequence from the filter when 

a unit impulse is applied at its input. (A unit impulse is a very simple input 

sequence consisting of a single value of 1 at time n = 0, followed by zeros at all 

subsequent sampling instants). The impulse signal is defined as

Traditionally, digital filters have been classified into two large families: recursive 

filters and nonrecursive filters. A nonrecursive filter is one in which the current 

output ,y(n), is calculated solely from the current and previous input values (x(n), 

x(n-l), x(n-2),...). The output signal y(n) is therefore

y(n)= b0x(ri)+ bxx ( n - 1)+ b2x ( n - 2)+  ...+ bMx { n - M ) ^

1.1.1 FIR and HR filters

( 1.1)

2
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The transfer function is given by the z transform of the impulse response and it is a 

polynomial in the powers o f z. For FIR filters, we have,

= Z V - " (1.3)
n= 0

A recursive filter is one, which in addition to input values also uses previous 

output values. These, like the previous input values, are stored in the processor's 

memory. The word recursive literally means "running back", and refers to the fact 

that previously calculated output values go back into the calculation of the latest 

output. The expression for a recursive filter therefore contains not only terms 

involving the input values (x(n), x(n-l), x (n-2),...) but also terms in y(n-l), y(n-2), 

...The basic equation is shown below:

y(n)= bQx(n)+ bxx ( n - 1)+ b2x { n -  2 )+  ........ + bMx ( n -  M )

-  axy(n  -1 ) -  ........-  aNy ( n - N ) .

M  N
= Y ,b mx ( n - m )  -  (1.4)
m=0 m=1

Z transform is a mere substitution of each translation by m samples with a 

multiplication by z.

H (z ) =  = b0 + b'z  * + ............+ bMz ~M A B(z) (1.5)
X(z )  1 + axz~x+  + aNz~N = A(z)

An alternative terminology in which a non-recursive filter is known as an FIR (or 

Finite Impulse Response) filter, and a recursive filter as an HR (or Infinite Impulse
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Response) filter is often used. These terms refer to the differing "impulse 

responses" of the two types o f filter.

An FIR filter is one whose impulse response is o f finite duration. An HR filter is 

one whose impulse response (theoretically) continues forever, because the 

recursive (previous output) terms feed back energy into the filter input and keep it 

going.

1.1.2 Frequency response:

Every linear filter has an impulse response, a step response and a frequency 

response. Each of these responses contains complete information about the filter, 

but in a different form. If  one of the three is specified, the other two are fixed and 

can be directly calculated. The frequency response can be found by taking the 

DFT(discrete fourier transform) of the impuse response.

The Fourier transform of a continuous-time signal x(t) may be defined as

The DFT, on the other hand, replaces the infinite integral with a finite sum:

00

(1.6a)
00

N - 1
X(cok ) A J ]  x(tn)e~j(°ktn , k  = 0,1,2, N - 1 (1.6b)

w=0

4
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x{tn) A

G A

T A

X{cok ) A

(Ok A

Q A

f s A

N —

input signal amplitude (real or complex)at time t n (sec) 
nT = sampling insatant (sec), n an integer > 0 
sampling interaval (sec) 

spectrum of x(complex valued), at frequency co  ̂

kQ, = kth frequency sample (radians per second)

- —  = radian - frequency sampling interval(ray  )
NT /  sec

= sampling rate(samples per sec, or Hertz) 
number o f time samples = no. frequency samples

Figure 1.1 shows the four basic frequency responses. The purpose of these filters 

is to allow some frequencies to pass unaltered, while completely blocking other 

frequencies. The passband refers to those frequencies that are passed, while the 

stopband contains those frequencies that are blocked. The transition band is 

between. A fast roll-off means that the transition band is very narrow. The division 

between the passband and transition band is called the cutoff frequency.

1.2 MULTIRATE SIGNAL PROCESSING

All of the systems we have talked about so far are single-rate since the sampling 

rate does not change. Yet, there are many cases where multirate signal processing 

is either necessary or highly advantageous for example in audio, a CD is sampled 

at 44.1 kHz but DAT (Digital Audio Tape) is sampled at 48kHz; since studio 

recordings are mostly made on DAT, there needs to be a way to convert from one 

rate to the other. In video, PAL and NTSC run at different sampling rates, so to 

watch an American video in Europe, one needs a sample rate converter.

5
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FIGURE 1.1: The four basic frequency responses

Multi-rate signal processing was designed to reduce the number o f computations 

needed to convert a signal with an initial sampling rate to different sampling rates. 

Instead of going straight away from the initial sampling rate to the final one, 

which sometimes can be very computationally expensive, the rate conversion is 

accomplished by dividing the process into several steps (block sets), with each 

step producing a different sampling rate from the initial one. The process is 

resumed until the intended sampling rate is achieved.

Sampling rate conversion is often defined as the process o f converting a signal 

from one rate to a different rate, either it is lower or higher than the original. The 

systems that use multiple sampling rates in processing digital signals are called 

multirate digital signal processing systems.

6
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Changing a sampling rate o f a signal has always been a part o f DSP application. 

For example, in many telecommunication systems that transmit and receive 

various signals (facsimile, speech, video, etc), the sampling rate of the system has 

to be adjusted to suit the bandwidth of the signals in order to avoid signal 

degradation such as aliasing and imaging.

The most current example of multirate system is the “tri-band” cellular phone, 

which can be used over analog and two digital systems. When the phone 

“switches” its mode, the sampling rate is also changed in order to accommodate 

the different modulation scheme. Unfortunately, because of current DSP 

processing power (clock speed) limitation, most o f this feature is probably done 

through hardware by employing different master clocks. Another example is the 

multimedia application, where data conversion is needed, e.g. from WAV (96.6 

Kbps) to MP3 files (128 Kbps), and each format runs on different sampling rate.

1.3 FILTER BANKS

A digital filter bank is a set o f band pass filters with either common input or 

summed output, each of which covers a band in the frequency spectrum. Other 

possible components o f a filter bank include down samplers, up samplers and 

delay elements. In fig 1.2 maximally decimated filter bank is shown. At the 

analysis state, the input signal x[n] is passed through a bank of M analysis filters 

Hj(z),each of which preserves a frequency band of uniform band width 7r/M. These 

M filtered signals are then decimated by M to preserve the system’s overall 

sampling rate (thus this system is commonly labeled as maximally decimated or 

critically sampled filter bank). The resulting sub band signals can be encoded, 

processed, transmitted and decoded independently or jointly. All o f these activities 

are grouped together in the processing block, which is typically not considered as 

a component of the filter bank. At the synthesis stage the sub bands are combined

7
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by a set o f up samplers and M synthesis filters G,(z) to form the reconstructed 

signal x'(n).

X(Z)

tM

fM

I M tM

H,(z)

Analysis filter bank Synthesis filter bank

FIGURE 1.2: A typical M-Channel maximally decimated uniform filter bank

If the filters are ideal, no aliasing error occurs and perfect reconstruction is 

obtained. Perfect reconstruction is a very attractive property since it provides a 

loss-less signal representation.

1.3.1 Applications

There has been tremendous growth in the field of filter banks (FB) and multi rate 

systems in the last fifteen years. These systems provide new and effective tools to 

represent signals for processing, understanding, and compression purposes. It is 

quiet accurate to say that filter banks find applications virtually in every signal 

processing and closely related field: speech, audio and video compression, signal 

filtering, communication, time frequency representation and analysis; statistical 

signal processing; computer graphics, etc. Obviously, o f extreme importance is the

8
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ability to design a filter bank (FB) that can fully exploit the properties and nature 

of a particular signal or application.

One particular application that filter banks have found tremendous success in is 

the compression of images. Image compression or image coding is the technology 

of image data reduction to save storage space and transmission bandwidth. With 

the recent explosion of internet. The search for better image compression 

techniques is becoming even more pressing. It is evidently to present images by 

the minimum number of binary digits given a fixed level o f distortion, or for a 

given budget, to retain as much visual information as possible. Two dominant 

techniques in existing image compression standards and implementations are 

block transform coding [24] and sub band coding [34]. Both methods exhibit 

many similarities: operating in frequency domain, utilizing the same building 

blocks such as bit allocation, quantization, and entropy coding to achieve 

compression. In the coder both techniques rely heavily on filter banks to generate 

the frequency coefficients that can be quantized and the entropy coded. In the 

decoder, filter banks are again employed to combine and reconstruct signal [34]. 

Therefore, designing good filter banks plays an important role in the advancement 

of image coding technology.

One example is the quantization tables used in JPEG. JPEG is an image 

compression standard. Images encoded in JPEG format have much less storage 

than the original ones, so bandwidth, transmission time, and storage could be 

saved. In JPEG encoding, a still image is first partitioned into blocks, and in each 

block there are 8*8 Luminance components and 16*8 Chrominance components 

which are subsampled by two in horizontal frequency. Each block is then applied 

with an 8*8 DCT transform to remove the correlation among pixel values. After 

the DCT transform, the image is converted from spatial domain to frequency

9
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domain, and each DCT coefficient is quantized by the nearest quantization value 

and coded using Huffman coding or Arithmetic coding.

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 74 78 87 103 121 120 101

72 92 95 98 112 100 103 99

(a)Chrominance (b)Luminance

Table 1.1: JPEG Luminance and Chrominance quantization tables

Studies show that Human Visual System (HVS) response is highly dependent on 

spatial frequency. We know human eyes are more sensitive to low frequencies 

than to high frequencies. Better compression can be achieved by exploiting this 

feature. We need to decompose the image into different frequency space, and 

apply appropriate processing to the image structure that eyes can see and the 

structure that eyes are insensitive to. Hence, the quantization values used in JPEG, 

which are shown in Table 1.1, are visually weighted and frequency-dependant 

[30]. It is clear from Table 1.1 that quantization values of high frequencies are 

much larger than those of low frequencies, as human eyes are insensitive to high 

frequencies.

10
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1.4QMF BANKS

In many applications a discrete time signal is first split into a number of subband 

signals by means of analysis filter bank,the subband signals are then processed and 

finally combined by a synthesis filter bank resulting in output signal. If  the 

subband signals are band limited to frequency ranges much smaller than that o f the 

origial input signal,they can be down sampled before processing.Beacause of 

lower sampling rate ,the processing of the downsampled signals can be carried out 

more efficiently.After processing these signals are upsampled before being 

combined by the synthesis bank into ahigher rate signal. The combined structure is 

called a QMF (quadrature mirror filter) bank [20].

A 2-channel filter bank is shown in Fig. 1.3. This filter bank consist o f an analysis 

filter bank, formed by the analysis filters H0(z) and H,(z), and a synthesis bank 

formed by the synthesis filters G0(z), and Gi(z), H0(z) and G0(z) in the upper 

channel are low-pass (LP) filters, and H,(z) and Gi(z) in the lower channel are 

high-pass (HP) filters. Two decimators and interpolators are used for down 

sampling and up sampling.

Uo(z

V,(z)
U,(z)H,(z) G,(z)

Analysis filter bank Synthesis filter bank

FIGURE 1.3: Two Channel QMF filter bank

11
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When an incoming signal passes through the analysis filter bank, it is decomposed 

into low and high sub channels, and applied with the desired processing. The 

reconstructed signal x(z) is obtained after it passes through the synthesis filter 

bank.

1.4.1 Previous research:

QMF FIR filter banks By setting high-pass (HP) filter hj(n) in Figure 1.3 to be 

the quadrature mirror filter (QMF) o f the low-pass (LP) filter ho(n), the filter bank 

design problem is simplified to be a single prototype (h0(n)) filter design. Various 

researches were made for the design of QMF bank. Optimization based and non­

optimization based algorithms can be used to design filter banks. Constraint based 

methods were applied for the design in both frequency domain [10,43,3,13,4, 

7,46,36,24,28] and time domain [22,35,9]. Johnston [10] has designed a large class 

o f low pass filters meeting a variety of specifications. This method of design uses 

a procedure based on Hooks and Jeevs algorithm, which requires a very high 

computational complexity. Nayebi[22] gave a time domain formulation with 

constraints in the frequency domain. Lagrange multiplier methods [46,8] were 

also used to design QMF banks. Novel [21,47,49] uses a continuous trace function 

to bring a search out o f local minima rather than starting the search from a new 

starting point when the search finds a feasible design. While these methods result 

in good performance they use continuous coefficients in their design and becomes 

costly when realized in hardware. An elegant way of reducing the complexity of 

processing is to use powers of two coefficients instead of continuous coefficients. 

DLM-98[46]gave a new discrete Lagrange method for designing a multiplier less 

QMF ban k .

Non-QMF filter banks Methods for designing non-QMF FIR filter banks include 

unconstrained optimization methods, similar to those for designing QMF FIR filter 

banks except that the former has more dimensions [28], and constrained
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optimization methods [1], including Lagrange multiplier [1, 46] and time domain 

methods [22].

HR filter banks A very efficient way of representing the analysis filter bank 

canbe obtained by using polyphase components. In polyphase form, filter H(z) is
9 I 9expressed as A0(z ) + z' Ai(z ), where A0(z) and Aj(z) are polyphase filters. If 

H](z) is the quadrature mirror image of low-pass filter H0 (z), then

H,(z) = A0(z ) - z - ' A,(z2). (1.7)

If the polyphase components consists o f all pass transfer functions aliasing can be 

cancelled.

*G>
y(n)

A,z)

FIGURE 1.4: A magnitude preserving two channel QMF bank.

Usually HR filter banks have shorter time delay and require fewer computations 

that FIR filter banks. However, HR filters are generally more difficult to design 

than FIR filters because of their strong non-linearity and stability problem. There 

exit many methods for designing HR filter banks [5, 33, 21, 42, 38, 27, 12, 50], 

including polyphase all-pass filter banks [33, 21, 42], unitary and non-unitary filter 

banks with all pass subfilters [26,27], cosine modulated filter banks [12,27], and
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direct optimization methods [32,41]. The main problem of using HR filters in filter 

bank design in phase distortion.

Multiband and multirate filter banks Multiband and multirate filter banks use 

different sampling rates in different channels. They have been actively studied, 

due to their flexibility and tolerance to errors [40].

To restrict the search space, many properties, such as linear phase, paraunitary, 

and cosine modulation, are imposed. To further simplify the problem, most studies 

only consider aliasing errors in adjacent channels by assuming that stopbank 

attenuation in non-adjacent subbands is small. Existing design methods are based 

on either the frequency domain or the time domain. In the frequency domain, both 

unconstrained formulations [17, 12, 31, 29] and constrained formulations have 

been proposed. Other strategies include spectral factorization [45] and hybrid 

methods [25].

1.5 MOTIVATION AND THEISIS ORGANIZATION:

FIR QMF bank design can be specified as a problem that searches for prototype 

filter coefficients which improves

• The overall performance of the filter bank by minimizing the amplitude 

distortion.

•  The individual performance o f the composing filter by satisfying the 

magnitude response of H0(z) with H0(z) s i  in its pass band H0(z) s  0 in its 

stop band.

The QMF bank design is an multiobjective optimization problem, with objectives 

of a design are to:
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1. Minimize reconstruction error (Er)

2. Minimize stopband energy (Es),

3. Minimize passband energy (Ep),

4. Minimize stop band ripple (5S),

5. Minimize passband ripple (8P), and

6. Minimize transition bandwidth (Acd).

Where

( 1.8) 

(1.9) 

( 1.10)

This multi objective optimization can be changed to single objective constrained 

optimization by keeping reconstruction error as our objective and converting other 

objectives into constraints with the help o f best known solution as our reference. 

By doing so the QMF bank design is transformed as,

Minimize Er

Subject to Es < cEs

Ep < cEp

bs ^  Cgs 

§p < c5p

15

A
Er = J'(|Ho(e>‘”) |2 + |H 0( e ^ ) ! 2 - l ) 2<to

ry=0

n

e s = J ( | / / 0 ( ^ ' i,) i2y ®
a>-a>s 

(0 = (0S
Ep = J ( | / / 0 ( ^ (o' “ ’r)) |2 - l ) 2rf©

o)=0
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A cd< cA(0

This is single-objective, constrained nonlinear optimization problem. By using 

penalty method all constraints are absorbed into the objective function and 

weighed by penalty coefficients. This converts a constrained problem into an 

unconstrained problem.Minimize function ‘f  which is formulated as

f  = Er +w1(Es-cEs)+w2(Ep-cEp)+W3(8s-c6s)+W4(5p- cSp )+w5( Aco-cAffl) (1.12)

Where Wj, w2 ,w3 ,w4 and w5 are penalty coefficients. Selected ahead of time these 

penalty coefficients are used to penalize a constraint when it is violated.

Algorithms for designing filter banks can be classified into two categories: 

optimization based and non-optimization based. Optimization based methods 

formulate the design problem as a multi-objective optimization problem [38], 

whose form may depend on the application and the composing filter type. The 

multi-objective optimization problem is then converted into single objective 

optimization using different methods [10,50,13,47,49]. The problem is solved by 

existing optimization methods, gradient descent, Lagrange multiplier [1,8,46], 

Novel [21,49]. Novel uses a continuous trace function to bring a search out of 

local minima rather than restarting the search from a new starting point when the 

search finds a feasible design. Filter bank design problems have also been 

designed by non-optimization algorithms [31]. These methods generally do not 

continue to find better designs once sub optimal design has been found [41]. Note 

that all these designs have continuous coefficients. Multiplication of such long 

floating-point numbers generally limits the speed of filtering. To overcome this 

limitation, filters with canonical signed digit coefficients have been proposed. A 

limited sequence o f shifts and adds are usually much faster than full 

multiplication. The number of required arithmetic operations, ignoring shifts
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(which come free), can be reduced by expressing coefficients in canonical-signed- 

digit (CSD) form. In this thesis to reduce the computational complexity the filter 

bank is constrained to have canonical signed digit coefficients. A genetic 

algorithm is used as an optimization technique to minimize equation (1.12). 

Genetic algorithms are used to design FIR and HR digital filters [11,15,16,18]. In 

general, genetic algorithms (GAs) rely upon the law of fittest member survival to 

optimize a set of possible outcomes or results. Loosely based on the laws of 

Darwinian genetics, GAs has many unique characteristics that make them ideal for 

many optimization problems. As Goldberg states (1989),

“They [GAs] combine survival o f  the fittest among string structures with a 

structured, yet randomized information exchange to form a search algorithm 

with some o f  the innovative fla ir o f  human search. ”

Our motivation is to design FIR Quadrature mirror filter bank with canonical 

signed digit coefficients using genetic algorithm as the optimization technique.

Design methods of analog filters, FIR and HR digital filters and design of QMF 

Fir filter banks are explained in chapter 2.1n chapter 3 representation of canonical 

signed digit numbers, the properties, advantages and application of CSD numbers 

[14] and multiplication arithmetic of QMF filter banks are discussed. Chapter 4 

discusses the theory of genetic algorithms, the GA terminology, and the genetic 

operators. Chapter 5 discusses the proposed genetic algorithm for the design of 

QMF filter bank with CSD coefficients, its deviation from the traditional GA and 

its parameters. The new CSD restoration technique and its efficiency are 

presented. At the end the performance of the genetic algorithm with CSD 

coefficients is proved by the designing 12,24B, 24C and 32 order filter banks. The 

resulting CSD coefficients are presented.
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CHAPTER 2 

DESIGN METHODS 

FIR and HR digital filters, FIR QMF banks

In signal processing, the function of a filter is to remove unwanted parts of the 

signal, such as random noise, or to extract useful parts o f the signal, such as the 

components lying within a certain frequency range. FIR filters are particularly 

useful for applications where exact linear phase response is required. The FIR 

filter is generally implemented in a non-recursive way, which guarantees a stable 

filter. Where as HR filters can achieve a given filtering characteristic using less 

memory and calculations than a similar FIR filter. The HR filter design procedure 

is carried out as follows:

1. Convert the tolerance specs to the analog domain

2. Design the analog filter

3. Convert the analog filter transfer function Hc(s) back to the discrete-time 

domain to obtain H(z).

The second step, the design of the analog filter, is done using a filter prototype. 

The analog prototypes ,Chebyshev, Butterworth and elliptic,are the most popular. 

The FIR filter is generally implemented in a non-recursive way, which guarantees 

a stable filter. There are essentially three well-known methods for FIR filter design 

namely:

1. The window method

2. The frequency sampling technique
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3. Optimal Equiripple Design

2.1 ANALOG FILTERS

Butterworth filter:A Butterworth filter is described by the magnitude squared of 

its frequency response:

lowpass filter response at analog frequencies 12=0 and Q=oo, for any order A, the 

magnitude squared response has 2N-\ zero derivatives at these locations 

{maximally fla t at 12=0 and fl=oo). The best property of the Butterworth filter is 

that its magnitude response is monotonic, i.e. it has no ripples. The penalty we pay 

for that is that the roll off from the passband to the stopband is very gentle, i.e. we 

need to use a very high filter order to achieve either large stopband attenuation or 

a narrow transition band.

Chebyshev filter: There are two types o f Chebyshev filters: type I and type II. 

Chebyshev I filters have ripple in the passband, but no ripple in the stopband. 

Chebyshev II filters have ripple in the stopband, but no ripple in the passband. The 

magnitude squared of the frequency response of the Chebyshev I filter is

H c(jO ) |2
1

(2.1)

u Q c;

The Butterworth filter provides the best Taylor Series approximation to the ideal

\n cu n f
1 (2 .2)
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Where 0  p  is the frequency of the passband edge, 5 1 is the maximum passband 

ripple, and N  is the filter order. VN (x) is the N  th order Chebyshev polynomial 

defined as,

cos(Ncos x), I x | < 1

cosh(jVcosh-1 x), 1*1 > 1

(2.3)

The magnitude squared of the frequency response of the Chebyshev II filter is the 

same as that for Chebyshev I, except that we replace some terms with their 

reciprocals:

Elliptic Filter: Elliptic filters are optimal in the sense that for a given filter order 

N, and for fixed values o f Op, 51 and d2 they achieve the smallest possible 

transition band. The penalty we pay for this is that we now have ripples both in the 

passband and in the stopband the magnitude squared of the frequency response is 

now

\n cu n f
1

-1 (2.4)

\Hcu n f
1

(2.5)

Here Un(X) is a Jacobian elliptic function of order N, given by
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(2 .6)

2.2 FIR FILTER DESIGN

Windowing method: Consider the ideal, or "brick wall," digital lowpass filter 

with a cutoff frequency of w0 rad/s. This filter has magnitude 1 at all frequencies

This filter is not implemental since its impulse response is infinite and noncausal. 

We can make an FIR filter by taking only a finite number of impulse response 

samples. If  a causal filter is desired, we can then shift the truncated impulse 

response to the right until the samples are all indexed by a non-negative integer. 

These two operations are known as windowing and delaying.For example: design 

an FIR lengthW  (where N  is odd) causal lowpass filter with cutoff frequency wc. 

Desired frequency response is

with magnitude less than u  o> and magnitude 0 at frequencies with magnitude 

between 0) o and x  Its impulse response sequence h(n) is

/>(»)=—  fH (m )e im dco = —  f e iondio = ^  
2n J 2tc j n

n

n  n
-®o

1, \co\ < coc 
0, otherwise

(2 .8)

Desired impulse response is,
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hd [n\ =
sin (cocn)

m
(2.9)

Truncated impulse response is

h[n\
sin(ft>c«) | | TV -1  

otherwise
m
0

(2.10)

Truncated and delayed impulse response is

h[n] = h
N - l

n -

sin
N - l \ \

n -
v v

n N - ln -

0,

, 0 < n < A / ’- l

otherwise
(2 .11)

The windowing operation can be expressed in the time domain via

h[n] = hj[n]co[n]
(2 .12)

Where w[n] is the rectangular window

a>[n\ = 1, \n\ <
N - l

0, otherwise

(2.13)

Some common windows are
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Rectangular co[n] 

Hanning co [n] =

Hamming w[n] =

Blackmann w[n] =

\ 1, 0 < n < M  

0, otherwise

f0 .5-0.5cos(2 m / M ) ,  0 < n < M  
[ 0, otherwise

f0.54-0.46cos(2 m / M ) ,  0 < n < M

0,

0 .42-0 .5cos
2 m

W - i  
o,

+ 0.08cos

otherwise 

Am
N - l

i i N - l  \n\ < -------
1 1 2 
otherwise

(2.14)

The problem with the standard window design method is that it's difficult to 

tradeoff between attenuation and transition bandwidth and provide us with a fixed  

approximation error, our only control variable so far has been the window length, 

which only allows us to control the transition bandwidth. Kaiser window allows 

having lower approximation error. The window is given by,

K[n]

0,

, 0 < n < M  

othterwise

(2.15)

I0(x) is the zeroth order modified Bessel function

M  is the filter order and, as usual, it controls the transition bandwidth

0 is the parameter that changes the shape of the window and it controls the

window's side lobe attenuation

Kaiser provided some empirical design formulas:
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2.285A«
0.1102(^4-8.7), if  A >50 dB 

if 21dB< A < 5 0 d B  
otherwise

P *  \ 0 .5842(^-21)0.4  + 0 .07886(^-21), 

0, (2.16)

Where Aco=|cos-wp |is the transition bandwidth and A = -20 loglO max {51, 52} is 

the attenuation.

The Frequency Sampling Technique:In this method the desired frequency 

response is sampled at a set of equally spaced frequencies to obtain N  samples. 

The basic approach is to specify the desired magnitude of the frequency response, 

|Hd(w)|, at a set o f frequencies w k = k * dw = k * 2*pi/N. uniform sampling of the 

frequency response is represented by

Thus by using the IDFT formula, the filter coefficients can be calculated using the 

following formula

Now using the above Appoint filter response, the continuous frequency response is 

calculated as an interpolation of the sampled frequency response. The 

approximation error would then be exactly zero at the sampling frequencies and 

would be finite in frequencies between them. The smoother the frequency

H d (k) (2.17a)
n = 0

k
(2.17b)
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response being approximated, the smaller will be the error o f interpolation 

between the sample points.

Optimal Equiripple Design: In the window design method the ripples are not 

distributed evenly over the passband and the stopband that is, the peak ripple 

occurs near the band edges and decreases away from the band edges. If  the ripples 

were more evenly distributed, we would be able to do a better job o f 

approximating the ideal desired response. In fact, the best thing would be to have 

an equiripple filter, i.e. one where the ripple alternates in sign between two equal 

amplitude levels. Consider an error function E(o)) that measures the (weighted) 

deviation between the desired response and the filter's actual response:

E(cj) = W(a)[Hd(ju) - H(e>u)] (2-18)

The weighting function W (co) allows us to control the relative approximation 

error between different bands, i.e. if  W (w) is large for some co0 relative to other 

frequencies, it means that we would like the error at that frequency to be small 

(relative to the approximation errors at other frequencies).an equiripple filter can 

be achieved by minimizing the maximum weighted error, |£((*))|, in both the 

passband and stopband. Mathematically, this can be expressed as

min [max |E(co)|] (2.19)

over the passbands and stopbands.The objective then becomes to find an FIR 

linear phase filter that minimizes the above cost function. Parks & McClellan [19] 

solved it in the early 1970's based on an algorithm from the 1950's called Remez 

Exchange. In MATLAB the remez function implements the Parks-McClellan 

algorithm.
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2.3 HR FILTER DESIGN

After designing analog filters we transform them to discrete-time HR filters. There 

are many different possible transformations that we can employ, but for a 

transformation to be legal, it must satisfy the following criteria:

Poles on the j  axis in the 5-plane must map to poles on the unit circle in the z-plane 

Poles in the left half o f the 5-plane must map to poles inside the unit circle in the z- 

plane.Now let's look at some o f the most popular transformations: Impulse 

invariance and the bilinear transform.

Impulse Invariant Transformation:The impulse invariant transformation 

converts the analog filter to a discrete-time one by sampling the impulse response 

of the analog filter.The impulse invariant transformation is:

■Wii

Mc(s) «-» H(z)

1 1 (2 .20)________   ̂ y _____________
(s + di )  \ - z ~le~diT
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The impulse invariant design requires H(s) in partial fraction form, and yields H(z) 

in the same form. Poles of H(s) in the left half plane map into poles o f H(z) inside 

the unit circle, since |exp(-pT)|<l, thus, a stable H(s) transforms to a stable H(z).

Matched z-transform: The matched z-transform is

s + a< ~> l-z~le~at (2.21)

The zeros and poles of the filter in the s-domain were obtained then the 

transformation was performed. The matched z-transform converts an all pole 

analog system to an all pole digital system but may not preserve the frequency 

response of the analog system, it also suffers from aliasing errors.

Bilinear Transformation: Aliasing is a major problem with impulse invariance. 

Bilinear transformation avoids aliasing by performing a one-to-one mapping from 

the 5-plane to the z-plane. To obtain the transfer function H(z) we apply the 

following transformation

2
5 =  —

T
z - 1 
z + 1

(2 .22)

It is the mapping most often employed for digital filter design, it is simple to 

apply, provides a one to one mapping between the s-plane and z-plane, and avoids 

aliasing problems. It can thus be used for all types of systems (including high pass 

and band stop). It always maps a stable analog system into a stable digital system. 

It does suffer from warping effects that could be fixed by using a simple relation. 

It maps H(s) described in either cascaded or partial fraction forms.

2.4 DESIGN OF FILTER BANKS
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A digital filter bank is a set of band pass filters with either common input or 

summed out put, each of which covers a band in the frequency spectrum. Other 

possible components of a filter bank include down samplers, up samplers and 

delay elements.

Decimation by a Factor D:Decimation is defined as the process of reducing the 

sampling rate by a factor of D, or in other words, downsampling by D. If a signal,
tVix(n), were to be decimated by an integer factor D by selecting every D value of 

it, the result will be an aliased version of x(n), with a folding frequency of FX/2D. 

Following Nyquist criterion, to avoid the aliasing, the bandwidth of x(n) must be 

reduced to Fmax = Fx / 2D or comax = n / D. Then, we can downsample by D and 

avoid aliasing.

v,(z)
U,(z) Gi(z)

Analysis filter bank Synthesis filter bank

Figure 2.1: Two channel QMF filter bank

The decimation process can be seen in Figure 2.2. The input is filtered by a 

lowpass filter, with impulse response h(n) and a frequency response HD(a)):

H D{m) = \ X’ M - * ' D ( 2 '23)[0, otherwise
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This will only pass the frequency components o f x(n) in the range | co| < it / D 

which is what we need in further process.

x(n)
------------- h. h(n)

v(«) Downs ampler 1
y(m)

1 ' .....  w W
V — .... F - -  Fx

FIGURE 2.2: Decimation by a factor D

00

v(n) = ^ ^ h (k ) x ( n -  k) (2.24)
k=0

v(n) is the output o f the filter h(n) which is downsampled by D to get y (m ):

y(m) = v(mD)

00

=> y(m) = ^  h(k)x(mD  -  k ) (2.25)
k =0

y(m) is the downsampled sequence with sampling rate of Fy = Fx / D, derived from 

x(n), which is what we expected to get from the decimation process.

Interpolation by a Factor I interpolation is the process of increasing the 

sampling rate by an integer factor of I. It is accomplished by adding 1-1 zeros 

between successive values o f the signal (in our case, x(n)), resulting in a new 

sequence v(m) with a rate Fy = I Fx :

(2.26)
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f x(m / I) ,  m = 0,±I,±2I,
v(m) = <

[ 0, otherwise

The spectrum of V(o)y) is an /-fold periodic repetition of X{u>x) the input signal 

spectrum.

Next, we have to reject all the images of X(o)) above o)y = n I  /, thus preserving the 

unique frequency components of x{ri) in the range 0 < coy < ft / I. This is 

accomplished by passing v(m) through a lowpass filter with frequency response

where is a scaling factor for normalizing the output sequence y(m).y(m) is the 

result of convoluting v(ri) with h(n), the impulse response of the lowpass filter, 

thus resulting in :

But, having the fact that v(k) = 0 except at multiples o f /, where v(kl) = x{k), gave 

us :

H lu y) :

C, 0  <\a>\< 7t / 1  

0, otherwise
(2.27)

00

(2.28)

00

y{m ) = ^  h{m -  k l)x (k ) (2.29)
k - -  oo

30

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



2.5 FIR  QM F BANK

There are different types o f filter banks depending on the number o f chanels, types 

o f analysis and synthesis filter (FIR or HR) etc. Our research focuses on 2-channel 

QMF FIR filter-bank design.. As shown in Fig. 1.2, a 2-channel analysis filter 

bank splits the frequency space into two parts, with the low frequency bank

71 71ranging from 0 to — and the high frequency bank from — to 7t. The amplitude 
2 2

response o f Hj is the mirror image of the amplitude response of H0 with respect to

71the quadrature frequency — hence the name quadrature mirror filter (QMF). The 

expressions for various intermediate signals in fig 2.1 are given as

U k (z) = H k (z)X(z) (2.30)

Vk (z) = l/2{U k (z,/2) + U k (-z1/2)} (231)

Uk (z) = Vk (z2) (2.32)

Where,

H k(z ) = Z  ho(n)z  " (2-33)
n= 0

The ouput o f the filter bank is given as

Y(z)  = i  {G0 (z)H„ (z) + G , (z)Hj (z )K (z ) + i  {G o (z)H0 (-z) + G , (z)H j (-z)}X(-z)

(2.34)

The above can be written in a simplified form as
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Y (z)=T (z)X(z)+A(z)X(-z) (2.35)

Perfect Reconstruction (PR), which is a desirable property for filter-bank design, 

is obtained when the reconstructed signal x(n) is exactly the same as the input 

signal. In case o f FIR QMF bank an aliasing caused due to the second term in the 

equation (2.34) and can be eliminated by choosing,

G0(z) = H,(-z) (2.36)

-Go(-z) = G,(z) (2.37)

H,(z) = H0(-z) (2.38)

After above settings only one prototype filter H0(z) exists in the system.T(z) in 

equation (2.35) is called as distortion transfer function

T(z) = { G0(z) H0(z) + G f z )  H,(z)}. (2.39)

As T(z) exhibits linear phase characteristic QMF bank of fig 2.1 has no phase 

distortion. QMF bank will exhibit amplitude distortion until |T(e*w)| is constant for 

all values o f w.One way to minimize amplitude distortion is to adjust the filter 

coefficients o f H0(z) such as

|H0(e*w)|2 +|Hi(eiw)|2 =1 for all values of w. (2.40)

To this end with zero aliasing and phase distortions the FIR QMF bank design can 

be specified as a problem that searches for h0(n) which improves ,The overall 

performance of the filter bank by minimizing the amplitude distortion ,The 

individual performance of the composing filter by satisfying the magnitude 

response of Ho(z) with H0(z) =1 in its pass band H0(z) = 0 in its stop band.
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CHAPTER 3 

Canonical Signed Digit (CSD) Numbers 

Properties,Conversion algorithm and Applications

Canonic Signed Digit (CSD) number representation is the representation o f a 

given number as a sum and difference of powers of two. Multiplication to a CSD 

number is cheap since it requires fewer sums of shifted versions o f the 

multiplicand when compared with multiplication to a binary number.

CSD implementation of FIR filter taps results in a realization of fast multiplication 

[14,18,48]. This dedicated arithmetic reduces the hardware complexity of the FIR 

QMF bank. The CSD arithmetic is the basis for efficient implementation of the 

modulator and demodulator filters and this chapter provides a general overview of 

CSD numbers and their properties.

3.1 DEFINITION

For a given M-bit o f a number x C [-2M1, 2MA ], the signed digit representation can 

be related to its 2 ’s-complement version through :

M -2  M - 1

x =  - x M_t2u - '+  2 > t 2‘ A 2* (3.1)
k-0 k=0

Where xk C {0,1}, sk C {-l,0,l}.The Canonical Signed Digit (CSD) representation 

is the signed digit representation in which
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SkSk-1 ~  0 (3.2)

for k = 1... M -  1.Signed digits are ternary, in contrast with 2’s-complement 

digits which are binary. The value of a CSD number can be obtained by summing 

the Sk * 0 terms. Also, FIR filter coefficients are always normalized in the range x 

C [-l,l). Therefore, an alternative representation of CSD numbers that has been 

used in the literature is,

M-1
* = (3.3)

k=0

where L is the number o f nonzero digits and pk C (0 , M -l}

3.2 PROPERTIES

Uniqueness'. There could be more than one signed digit representations for a given 

binary number. For example, 00010 F and 0011 01 both represent 3. Among these 

representations, the CSD representation is unique.

Minimality'. CSD numbers are minimal in the sense that, among all signed digit 

representations; the CSD representation has the minimum number of nonzero 

digits (L). it is known that the probability of a canonical digit Sk to be nonzero is 

1/3 for large M. This compares to a value of 2/3 for 2 ’s -  complement numbers. In

general, there are (M odd) or ^  (M even) M-bit CSD numbers which have

the maximum number of nonzero digits, compared to the total o f 2M possible M- 

digit binary numbers. This ratio is 25%, 6.25%, and 0.39% for M=5, 8, 16, 

respectively.
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Nonuniform Distribution: The set of all representable CSD numbers with a fixed 

L is non-uniformly distributed. In other words, there are non -  equal gaps between 

consecutive CSD numbers with the same number of nonzero digits. Furthermore, 

this distribution is denser for smaller numbers.

2̂2L+ J  ^
M aximum L: A Positive number less than or equal to ---- —— requires at most L

power-of-two terms to present. The number that can be represented by at most L 

power-of-two terms increases as 22L whereas the number that can be represented 

by an L-bit word increase as 2L. This property is consistent with the sparse and 

nonuniform nature of the CSD numbers discussed above.

Reduced Exponent Set'. Equation 3.3 states that in general, there are M possible 

values for Pk. It has been shown that this number can be reduced. Let Sm,l be the

set o f all CSD number which can be generated by Equation 3.3 for a given M and

L. Let Z m , l  (k) c  {0,... ,L}, 1 < k < L be a set of successive integers given by

ZM,L(k) = {2(k -  1) + 1 ,..,(M -  1) -  2 (L -  k)}. (3.4)

Then S m , l  can be generated from Equation 3.3 with Pk C Z m , l  (k). The number of 

elements in Z m , l  (k) is M -  2L + 2 which is less than M.

3.3CONVERSION ALGORITHM

The conversion for recording an M-bit 2 ’s -  complement number x to its CSD 

representation y is as follows :

1. Let xM = xM-i and Co = 0.

2. For i = 0 ,..., M -  1 Let Q+i = XjXj+1 + XjQ + Xj+iQ.
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3. For i = 0,..., M -  1 Let y; = Xj + Q  - 2Q+\.

Notice that the “+” in step 2 is a logical OR,while the “+” step is an arithmetic 

sum. As an example, consider -  5/8 = (1.011)2’S - complement = (0.T0T)Csd- The

conversion algorithm for this example is shown in Table 3.1.

A unique CSD number can exactly represent every binary number. A fractional 

decimal number, however, may not have an exact CSD equivalent, since, it may 

not have a finite binary representation. Therefore, the number o f bits of the CSD 

representation of a fractional decimal number depends on the tolerable truncation 

error.

i N Xi+l Ci Ci+l Yi

0 1 1 0 1 T

1 1 0 1 1 0

2 0 1 1 1 T

3 1 1 1 1 0

TABLE 3.1: CSD conversion example 

3.4 APPLICATIONS

The CSD number properties discussed in the previous make it appealing in high 

speed DSP applications. The key idea in such applications is the ease of 

multiplying a number in a power of two. Multiplication of a given number by a 

CSD number can be achieved by adding/subtracting some shifted versions of the 

input. This eliminates the need for multipliers which are both slow and impose 

some other limitations such as space requirement and high power consumption.
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As discussed before, CSD representation introduces truncation errors when used 

for fractional numbers. This truncation error must be acceptable in a given 

application. In the case of FIR filters, it has been shown that proper CSD 

representation of filter coefficients could result to a negligible distortion in filter 

frequency response.

Fiter bank Multiplication arithmetics:Traditional FIR filters in QMF banks uses 

real or fixed-point numbers as filter coefficients. Multiplication of such long 

floating-point numbers generally limits the speed of filtering. To overcome this 

limitation, filters with canonical signed digit coefficients have been proposed. 

Before describing the multiplierless concept, we first note how a single arithmetic 

shift left (ASL) corresponds to a multiplication by two. Similarly, an n-bit shift 

left or right (ASR) corresponds to a multiplication or division by 2", respectively.

A binary multiplication represents a computationally intensive and relatively 

complex operation in any processor. Binary multiplications consist of a series of 

shifts and additions, which in turn require additional carry and overflow-handling 

logic. This additional complexity and delay can greatly hamper the performance 

of processors that are required to perform arithmetically intensive computations 

When multiplying a filter input (multiplicand) with one such coefficient 

(multiplier), the product can be founded by adding and shifting the number of 

times corresponding to the number of ONE bits in the multiplier.

As observed above multiplication involves two basic operations: generation of 

partial products and their accumulation. Smaller number o f partial products 

reduces the complexity, reduces the time needed to accumulate and hence speed 

up the multiplication. A limited sequence of shifts and adds are usually much 

faster than full multiplication. The number o f required arithmetic operations, 

ignoring shifts (which come free), can be reduced by expressing coefficients in
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canonical-signed-digit (CSD) form. CSD is a radix-two number system with 

ternary coefficient set {I; 0; 1} and having the “canonical” property that I  and 1 

are always followed by 0 in CSD strings. CSD string 1 0 0 . TO 1, for example, 

represents 3.625. So a CSD coefficient specifies which input-signal shifts to add to 

the output, which to subtract from it, and which to ignore.

Application of CSD number representation in the design of multiplierless 

realization[18] o f FIR filters has been widely investigated in the literature The 

minimality property o f CSD numbers implies that a minimum number of shifter 

are needed for the CSD number representation. The number of zeros in a CSD 

number only affects the number of shifts. Below, in Figure 3.1, we trace results 

through the required steps of a sample binary multiplication.

R eal m u ltip lica tio n CSD m u ltip lica tio n

13 00001101 13 00001101
xl5 00001111 xl5  0001000T

00001101 add 00001101 subtract
00001101 add 00001101 (shift 3 times add)

00001101 add 11000011=(104)10
00001101 add
00011000011 =(104)io

FIGURE 3.1: Standard multiplication and CSD multiplication

Note how the standard multiplication by a binary number in the above example 

involves four additions and five carries, where as with multiplication with CSD 

numbers involve one addition and one subtraction. Note that the required numbers 

o f shift operation are same for both methods.
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CHAPTER 4 

GENETIC ALGORITHMS 

Introduction to GA terminology,Genetic operators and Design

Genetic algorithms are search algorithms based on the mechanics of natural 

selection, genetics, and evolution. It is widely accepted that the evolution of living 

beings is a process that operates on chromosomes -  organic devices for encoding 

the structure o f living beings. Natural selection is the link between chromosomes 

and the performance o f the decoded structures. Processes o f natural selection 

cause chromosomes that encode successful structures to reproduce more often than 

those that do not. In addition to reproductions, mutations may cause the 

chromosomes.of children to be different from those of their biological parents, and 

recombination process may create quite different chromosomes in children by 

combining from the chromosomes of their two parents.

These features of natural evolution inspired the development of GAs. Roughly 

speaking, through a proper encoding mechanism GAs manipulate strings of binary 

digits (Is and Os) called chromosomes, which represent multiple points in the 

search space. Each bit in string is called allele. They carry out simulated evolution 

on populations o f chromosomes. Like nature, GAs solve the problem o f finding 

good chromosomes by manipulating the material in the chromosomes blindly with 

out any knowledge about the type of problem they are solving. The only 

information they are given is an evaluation of each chromosome they produce. 

This evaluation is used to bias the selection of chromosomes so that those with the 

best evaluations tend to reproduce more often than those with bad evaluations. 

Genetic algorithms, using simple manipulations of chromosomes such as simple
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encoding and reproduction mechanisms, can display complicated behavior and 

solve some extremely difficult problems with out knowledge of the decoded 

world.

4.1 GA TERM INOLOGY

All genetic algorithms work on a population, or a collection of several alternative 

solutions to the given problem, each individual in the population is called a string 

or chromosome. Often these individuals are coded as binary strings, and the 

individual characters or symbols in the stings are referred to as genes. In each 

iteration of the GA, a new generation is evolved from the existing population in an 

attempt to obtain better solutions.

The population size determines the amount of information stored by the GA. the 

GA population is evolved over a number o f generations.

An evaluation function (or the fitness function) is used to determine the fitness of 

each candidate solution. The fitness is the opposite o f what is generally known as 

the cost in the optimization problems.

Individuals are selected from the population for reproduction, with the selection 

biased toward more highly fit individuals. Selection is one of the key operators on 

the GA that ensure the survival o f the fittest. The selected individuals form pairs, 

called parents.

Crossover is the main operator used for reproduction, it combines portions o f two 

parents to create two new individuals, called offspring, which inherit a 

combination of the features of the parents. For each pair of parents, crossover is 

performed with a high crossover probability Pc, which is called crossover
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probability. With the probability 1-PC, crossover is not performed, and the 

offspring pair is same as the parent pair.

Mutation is an incremental change made to each member o f the population, with a 

very small probability. Mutation enabled new features to be introduced into a 

population. It is performed probabilistically such that the probability o f a change 

in each gene is defined as the mutation probability, Pm.

Inversion is a genetic operator, which does not change the solution represented by 

the chromosome, but rather changes the chromosome itself, or the representation 

o f the solution. The inversion probability is denoted by Pj.

The generation gap is the fraction of individuals in the population that are replaced 

from one generation to the next and is equal to one for the simple GA.

4.2 GENETIC OPERATORS

The simple GA flowchart shown in figure 4.1. A GA in its simplest form uses 

three operators: reproduction, crossover and mutation.

4.2.1 Reproduction:

Reproduction is a process in which individual strings are copied according to their 

fitness values. This operator is an artificial version of natural selection. A fitness is 

assigned to each individual in the population, where high numbers denote good fit. 

Fitness is defined as being inversely proportional to the squared sum of difference 

between ideal and desired magnitude response. The reproduction (parent selection) 

process is conducted by spinning a simulated biased roulette wheel whose slots 

have different sizes proportional to the fitness values of the individuals. This
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technique is called roulette wheel parent selection. Each time an offspring is 

needed a simple spin of weighed roulette wheel yields

START

Max.iteration 
or target met?

END

Fitness Evaluation

Crossover

Fitness Evaluation

Mutation

Initialization

FIGURE 4.1: Basic flowchart

the reproduction candidate. This technique can be implemented algorithmically as 

in the following steps:
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1. Sum the fitness o f all the population members and call this result the total 

fitness.

2. Generate n, random number between zero and total fitness.

3. Return the first population member whose fitness, added to the fitness o f 

the preceding population members (running total) is greater than or equal to 

n.

FIGURE 4.2:Roulette wheel parent selection

For example in Fig 4.2 the circumference of the roulette wheel is the sum of all six 

individuals fitness values. Individual five is the fittest individual and occupies 

largest interval where as individuals six and four are the least fit and have 

correspondingly smaller intervals with in the roulette wheel. To select an 

individual, a random number is generated in the interval [0,Sum] and individual 

whose segment spans the random number is selected. This process is repeated 

until the desired numbers of individuals have been selected.

4.2.2 Crossover:

Reproduction directs the search toward the best existing individuals but doesn’t 

create any new individuals. In nature an offspring has two parents and inherits
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jeans from both. The main operator working on the parents is crossover, which 

happens for a selected pair with a crossover probability Pc. At first two strings 

from the reproduced population are mated at random, and crossover site is 

randomly selected. Then the strings are crossed and separated at the site. This 

process produces two new strings each of which takes after both parents. This type 

of crossover is known as single point crossover as there is one crossover site.

M ultipoint crossover:For multipoint crossover, various crossover positions are 

chosen at random. Then, the bits between successive crossover points are 

exchanged between the two parents to produce two new offspring. This process is 

illustrated in fig 4.3. The idea behind multi point is that parts of the chromosome 

representation that contribute to the most o f the performance of a particular 

individual may not necessarily be contained in adjacent sub strings. Multipoint 

crossover appears to encourage the exploration of the search space, rather than 

favoring the convergence to highly fit individuals, thus making the search more 

robust.

FIGURE 4.3: Multipoint Crossover

The idea behind multi point is that parts of the chromosome representation that 

contribute to the most o f the performance of a particular individual may not 

necessarily be contained in adjacent sub strings. Multipoint crossover appears to
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encourage the exploration of the search space, rather than favoring the 

convergence to highly fit individuals, thus making the search more robust.

Uniform crossover: Single and multi point crossover define cross points as places 

between loci where a chromosome can be split. Uniform crossover generalizes this 

scheme to make every locus a potential crossover point. A crossover mask, the 

same length as the chromosome structure is created at random and the parity o f the 

bits in the mask indicated which parent would supply the offspring with which 

bite. Consider the following example, crossover mask and the resulting off spring:

Parent 1 = 1 0 1 1 0 0 0 1 1 1

Parent2 = 0 0 0 1 1 1 1 0 0 0

Mask = 0 0 1 1 0 0 1 1 0 0

Offspring 1 = 0 0 1 1 1 1 0 1 0 0

Offspring2 = 1 0 0 1 0 0 1 0 1 1

FIGURE 4.4: Uniform Crossover

Here, the offspring 1 is produced by taking the bit from parent 1 if  the 

corresponding mask bit is 1 or the bit from parent2 if  the corresponding mask bit 

is 0. Offspring2 is created using the inverse of the mask.

4.2.3 Mutation:

Although reproduction and crossover produce many new strings they do not 

introduce any new information into the population at the bit level. As a source of 

new bits, mutation is introduced and is applied with low probability Pm. It inverts
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randomly chosen bit on a string. Mutation should be used sparingly because with 

high mutation rates the algorithm will become little more than a random search.

Mutation point 
Original string - 0 0 0  1 1 0 0 0 1 0
Mutated string - 0 0  1 1 1 0 0 0 1 0

FIGURE 4.5:Mutation

In general, genetic algorithms (GAs) rely upon the law of fittest member survival 

to optimize a set o f possible outcomes or results. Loosely based on the laws of 

Darwinian genetics, GAs has many unique characteristics that make them ideal for 

many optimization problems. As Goldberg states (1989),“They [GAs] combine 

survival o f the fittest among string structures with a structured, yet randomized 

information exchange to form a search algorithm with some of the innovative flair 

o f human search.” Since our goal is to optimize FIR filter bank to contain CSD 

coefficients, traditional design techniques are unsuitable for the construction of 

such filters. Restricting coefficients to CSD numbers forces us to explore other 

methods. The proposed technique, the deviations from the basic design and the 

experimental results are discussed in the following chapter.
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CHAPTER 5 

Proposed Design method and Experimental results

Design of FIR QMF bank with CSD coefficients using genetic algorithms is 

focused in this thesis. Since our goal is to optimize FIR filter bank to contain CSD 

coefficients, traditional design techniques are unsuitable for the construction of 

such filters. Restricting coefficients to CSD numbers forces us to explore other 

methods. The proposed technique employs a genetic algorithm to search for CSD 

filter coefficients.

In this chapter we present a genetic algorithm based design method followed by 

several experimental results o f the proposed design. We can observe the 

performance of genetic algorithm in designing the QMF bank with respect to 

reconstruction error o f the overall filter bank and individual error, sum of pass 

band error ,stopband error,passband and stopband ripplesand transition width, of 

the composing prototype filter.

5.1 DESCRIPTION OF DESIGNED GENTIC ALGORITHM

The genetic algorithm designed for this project is based upon conventional GA 

principles and framework: the algorithm starts with a random population, 

evaluates member fitnesses, breeds randomly selected fittest members, 

occasionally mutates and then repeats. It should be noted that since the 

optimization performed in this case is quite specific (CSD criterion), the designed 

GA must be accurately and explicitly defined. At the same time, the GA is 

designed in a modular fashion through the use o f variable inputs in order to make 

important changes regarding the operation of the algorithm in a relatively
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straightforward manner.The designed algorithm makes several rapid departures 

from conventional GA design. These different approaches in design are due to the 

precise nature of multiplier less optimization and the notion of representing FIR 

QMF bank in terms of coefficient sets. The flowchart detailing the designed GA is 

shown in Figure 5.1

5.1.1 Parent Selection

In order to reproduce offspring, parents need to be selected. The most commonly 

used method, roulette wheel selection, is used in this paper. The idea behind the 

Roulette wheel selection technique is that each individual is given a chance to 

become a parent in proportion to its fitness. It is called roulette wheel selection as 

the chances of selecting a parent can be seen as spinning a roulette wheel with the 

size of the slot for each parent being proportional to its fitness. Obviously those 

with the largest fitness (slot sizes) have more chance of being chosen. Thus, it is 

possible for one member to dominate all the others and get selected a high 

proportion of the time.

5.1.2 Crossover and Mutation

Crossover and mutation are two basic operators o f GA. Performance of GA 

depends on them very much. Single point crossover is used in this paper. The 

crossover operator performs the exchange of information between the individuals 

selected for breeding. One cutpoint is randomly selected from both parents, and 

the tails o f the strings are swapped. This causes that the resulting individual to be 

different from either o f its parents.This can be seen from results shown in figure 

5.2.
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START

FailCSD Check

Pass

Max.iteration 
or target met?

No

Y e s

END

CSD Number 
Restoration

Fitness Evaluation

Elitist Operation

Initialization

Mutation

Fitness Evaluation

Crossover

FIGURE 5.1: Flowchart o f Designed Genetic Algorithm
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Parent 1 Parent2

0 0 1 I 0 1 1 0 1 1

Offspring 1 Offspring2

11 1 n o t e

FIGURE 5.2: Single point crossover technique

As source of new bits mutation is introduced, which inverts a randomly chosen bit 

on a string and is applied with lower probability ,Pm,otherwise the algorithm will 

be little more than random search. After crossover and mutattion each newly 

created bit stream(offspring) is examined to see if  the individual coefficients 

satisfy the CSD constraints .Any violated coefficient will be restored to its nearest 

CSD number.

5.1.3 CSD Restoration

After crossover and mutattion each newly created bit stream(offspring) is 

examined to see if  the individual coefficients satisfy the csd constraints.Any 

violated coefficient will be restored to its nearest CSD number.Several techniques 

have been used before such as using special encoding scheme in GA such as in 

[15] or use CSD number restoration technique such as in [2] and[6]. The former 

method can limit the maximum number of non-zero digits while the can solve the 

problem of consecutive nonzero digits,but cannot limit the maximum number of 

non-zero digits.CSD restoration can be obtained by decoding any coefficient 

which has violated the CSD format to its decimal number and converting this 

number to its nearest CSD reprentation.By using this new restoration technique,
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Decimal Decimal o f the CSD Conversion
numberl conversion result o f Decimal error

0.1509 0.1484 1.6143%
0.6970 0.6953 0.3705%
0.3784 0.3760 0.6334%
0.8600 0.8594 0.0740%
0.8537 0.8516 0.2451%
0.5936 0.5928 0.1330%
0.4966 0.4980 0.3010%
0.8988 0.8984 0.1480%
0.8216 0.8203 0.1603%
0.6449 0.6484 0.5469%
0.8180 0.8203 0.2858%
0.6602 0.6641 0.5809%
0.3420 0.3418 0.0508%
0.2897 0.2891 0.2290%
0.3412 0.3428 0.4630%
0.5341 0.5313 0.5297%
0.7271 0.7266 0.0757%
0.3093 0.3105 0.4063%
0.8385 0.8359 0.3051%
0.5681 0.5693 0.2224%
0.3704 0.3682 0.6073%
0.7027 0.7031 0.0548%
0.5466 0.5459 0.1231%
0.4449 0.4443 0.1223%
0.6946 0.6953 0.1073%
0.6213 0.6230 0.2795%
0.7948 0.7969 0.2584%
0.9568 0.9541 0.2866%
0.5226 0.5225 0.0248%
0.8801 0.8818 0.1924%

TABLE 5.1:Results of conversion technique

which is used in this paper, the consecutive nonzero zero digits and the limit on 

themaximum number of nonzero digits can be achieved.The conversion algorithm 

for recording to CSD representation is presented in chapter 3. The conversion
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result and their corresponding errors are shown in table 5.1. The average error o f 

the above test result is 0.329%, which shows the conversion is very efficient.

5.1.4 Fitness Evaluation

Fitness evaluation is based on the set o f coefficients as a whole. This is a 

departure from conventional GA design in that each member o f the population is 

traditionally represented as a single binary string. In design of QMF bank the 

performance of filter depends on minimizing the reconstruction error o f the overall 

filter bank and pass band energy, stopband energy, passband ripple, stopband 

ripple and transition band width of the individual filter response. To calculate the 

fitness the total error is calculated first. The error in the designed genetic algorithm 

compares the candidate multiplier less coefficient system responses from the 

population to a specified ideal filter’s response in this paper total error is 

calculated as,

Terr=Er+wl(Es-cEs)+w2(Ep-cEp)+w3(8s-c8s)+w4(Sp-c8p)+w5(Aw-cAw) (5.1)

Where Er, the reconstruction error of the overall filter bank, is considered as the 

main objective in this optimization techniques and pass band energy (Ep), stop 

band energy (Es), pass band ripple (Sp), stop band ripple (8s) and transition band 

width (Aw) of the individual filter response as considered as constraints. cEs, 

cEp,c8s,c8p,cAw are constraint values given by reference area and we choose 

Johnston’s design the best known as our reference. Fitness is defined as being 

inversely proportional to total error

fitness = ----------    (5.2)
totalerror(Terr)
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Probability o f selection to each member is based on the relative fitness amongst 

one another. The highly fit individuals have more probability o f being chosen into 

next generation.

5.1.5 Elitist Operation

The designed GA also incorporates a form of elitism. Elitism is a technique 

implemented in our algorithm to prevent the fitness regression of the population. 

Since even a crossing of the two fittest members could result in offspring that are 

highly unfit. The performance of GA may get worse as it progress. Elitism is 

employed to prevent the loss of the fittest members due to crossover and mutation. 

This guarantees that even when parents do not successfully yield fitter offspring, 

they are held over to the next generation to try again. The best chromosome o f the 

parent population is copied into the worst chromosome of the offspring population 

if  its fitness is less than the best o f parent population. Elitism ensures that creating 

a copy of them before crossover and using them to replace the least fit members in 

the subsequent generation do not lose the fittest members.

5.1.6 GA Parameters

The genetic algorithm is designed to be able to optimize several different types of 

filters as well as to adapt and modify its population in different ways. To do this, 

the GA incorporates a variety o f different variables and parameters that can be 

altered depending on the application.

The first parameter is the number of genetic iterations. This is an important 

variable as it determines how long the population breeds in an attempt to improve
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the fittest member. Generally it can be said that the higher the number of 

iterations chosen, the fitter the members o f the population become.

A second and equally important input variable to the GA is the filter order. The 

filter order determines not only how many coefficients make up each member o f 

the population, but also the filter’s ability to approximate its ideal specified 

counterpart. Generally, it can be said that higher order filters are necessary in 

order to realize sharper responses. To accommodate for this factor, it is necessary 

to vary the filter order depending on the application.

Wordlength and weight are important factors in the designed GA,a wordlength 

determines the the number o f genes can be used to represent CSD coefficient and 

weight determines the number of nonzero digits in CSD number representation. 

They can be set to any desired value.

5.2 PERFORMANCE OF GENETIC ALGORITHM

In our experiment we have used GA to design FIR QMF bank. The customized 

genetic algorithm starts with a randomly chosen initial population which is in CSD 

format, goes through roulette wheel parent selection, single point crossover and 

mutation. After crossover and mutation the members of population may not be in 

CSD format. Each coefficient is checked for the CSD format if  failed they are 

restored back to its form by proposed CSD restoration technique. These operations 

are carried out until the desired results are met. The multi objective QMF bank 

design is converted to single objective constrained problem by means of penalty 

method the total error o f each individual is evaluated as

Terr=Er+wl(Es-cEs)+w2(Ep-cEp)+w3(Ss-c8s)+w4(Sp-c8p)+w5(Aw-cAw) (5.3)
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Where Er, the reconstruction error o f the overall filter bank, is considered as the 

main objective in this optimization techniques and pass band energy (Ep), stop 

band energy (Es), pass band ripple (8p), stop band ripple (8s) and transition band 

width (Aw) o f the individual filter response as considered as constraints. cEs, cEp, 

c8s,c5p,cAw are constraint values given by reference area and we choose 

Johnston’s design the best known as our reference and are given in table 5.2. 

Fitness is defined as being inversely proportional to total error.

5.3 EXPERIMENTAL RESULTS

The design method described above has been used to design FIR QMF Banks of 

different order. The filter banks of order 12,24B, 24C, and 32 are designed. Note 

that 24 B and 24 C filter are o f same order, 24, hut have different transition 

bandwidths.

The individual filter error (Ei) o f the prototype lowpass filter, sum of pass band 

energy (Ep) and stopband energy (Es), and the reconstruction error o f the overall 

filter bank(Er)for all the designed filter banks are presented. The magnitude 

responses of the overall filter bank and the designed CSD coefficients are given.

In the first example a 12th order lowpass filter is designed. The results o f using
thgenetic algorithm for 12 order filter bank are presented in fig 5.3. In fig 5.3a the 

magnitude response of the initially chosen population is shown whose 

reconstmction error is 37.6806 and stopband error and passband error of the 

individual a re l5.8041 and 6.8255 respectively. The genetic algorithm operations, 

crossover, mutation, CSD restoration and elitist operations are carried out for 

some generations. Magnitude response of the filter bank after fifty generations is 

shown in fig 5.3b.In fig 5.3c the response of the filter bank after 100 generations is
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presented. The reconstruction error is 0.5058 and the passband and stopband errors 

are 0.5859 and 3.8119 respectively. We can see as the iterations increase the 

performance of the filter bank increases. The operations are carried out until the 

desired values of performance metrices are met or until the maximum number of 

iterations is done. The larger the number of the iterations the greater will be the 

performance. The resulting CSD coefficients of the designed 12th order filter bank 

are presented in table 5.3.

Fig 5.4,5.5,5.6 represents the magnitude responses of the 24 C, 24B and 32 order 

filter banks. The initial population properties and improvement in the filters 

performance after few iteration, its reconstruction error and the stopband and 

passband errors of the individual filter are presented in these figures. The resulting 

CSD coefficients of the designed order 24 C, 24B and 32-filter bank are presented 

in tables 5.3,5.4,5.5.
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Er =0.9344
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(c) M agnitude response after 100 generations

FIGURE 5.3: Performance of GA in designing order 12 QMF bank
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24B 24C 32C

Es 4.454029E-8 2.203661E-5 1.017746E-6

Ep 4.816752E-8 2.778178E-7 5.303133E-8

5s 6.313640E-4 9.922592E-3 2.486957E-3

5p 3.663081E-4 1.105189E-3 5.123051E-4

Aw 1.135977 0.7348368 0.6993391

TABLE 5.2:Performance parameters o f Johnstons design

Coefficients CSD representation

h[0]=h[ll] 2-i5

h[l]=h[10] -2‘3 -2"7 -2'15

h[2]=h[9] 2~3-2‘7 +2'y +2"13

h[3]=h[8] 2'j-2'3 +2'7 +2"1U

h[4]=h[7] -2‘J +2‘7 +2‘10 +2"13

h[5]=h[6] -2"1 +2‘3 +2‘y +2'13

TABLE 5.3:CSD coefficients of 12th order filter bank

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.
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FIGURE 5.4: Performance of GA in designing 24B order QMF bank
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Coefficients N=24B

h(0) T w =h(12)

h(l) 2"10 =h(13)

h(2) -T1 +2'1U +2'14 =h(14)

h(3) 2'i+2’y =h(15)

h(4) -2°+ 2"10 =h(16)

h(5) -2"i+2‘8-2"lu+2"14=h(17)

h(6) 2'5 +2‘7 +2"9 =h(18)

h(7) 2-s-2'v +2'lu-2'15-h(19)

h(8) T w =h(20)

h(9) -2^+2‘/ =h(21)

h(10) 2"'3+2"/+2‘iU+2‘i:> =h(22)

h (ll) 2"1-2'i +2'li =h(23)

TABLE 5.4:CSD coefficients of 24C order filter bank
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FIGURE 5.5: Performance of GA in designing 24C order QMF bank
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Coefficients N=24C

h(0) 2 =h(12)

h(l) 2'1U =h(13)

h(2) T ' -2'10 =h( 14)

h(3) 2’7-2"!> =h(15)

h(4) -2~7+2'y =h( 16)

h(5) -Zb+2~*-2'w =h(17)

h(6) 2-w -h(18)

h(7) T^+Z1 =h(19)

h(8) -2"5+2~7 +2’1U =h(20)

h(9) -Z^+Z* +2’1U =¥21)
h(10) Z i-Z l +2"y =h(22)

h (ll) 2 '1-2'5 +2'/ -2"1U =¥23)

TABLE 5.5:CSD coefficients of 24C order filter bank
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Er =10.0317 
Ei =2.6776
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FIGURE 5.6: Performance of GA in designing 32 order QMF bank
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Coefficients N=32

h(0) 2 =h(16)

h(l) _2 - io ~h( 17)

h(2) 2"iU =h(18)

h(3) 2"v -2"y =h(19)

h(4) 2 - io =h(20)

h(5) -2"v -2’10 =h(21)

h(6) 2-y =h(22)

h(7) 2 - 6 - 2 - iu =h(23)

h(8) -2'7 +2’y =h(24)

h(9) -2_:> +2"k-2'1(j =¥25)

h(10) 2'b-2'lu =h(26)

h (ll) 2'4-2"/ -2'1U =h(27)

h(12) -2"5 -2"v =h(28)

h(13) -2"J + 2~5-2'*-2' l0=h(29)

h(14) 2 -3+ 2 - iu =h(30)

HIS) 2 - i - 2 -5 _2 - iu =h(31)

TABLE 5.6: CSD coefficients of designed 32-order filter bank.
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CONCLUSION

In this thesis we have used genetic algorithms to design a FIR QMF bank. The 

performance of the design depends on the reconstruction error o f the overall filter 

bank and the individual performance of the lowpass filter. Filter bank design is 

formulated as single objective multiple constraint optimization problem with 

reconstruction error o f the overall filter bank as our main objective and passband 

error, stopband error, stopband and pass band ripples and transition width of the 

composing filter as constraints. The coefficients in the designed filter bank are in 

canonical signed digit format.

A genetic algorithm is used as an optimization technique. In general, genetic 

algorithms (GAs) rely upon the law of fittest member survival to optimize a set of 

possible outcomes or results. A new CSD restoration technique is presented to 

ensure that the algorithm generates CSD coefficients with the specified word 

length and nonzero digits.

The proposed design of using genetic algorithm for QMF bank design has been 

demonstrated by 12,24 and 32 order filters banks. The proposed genetic approach 

to design FIR QMF bank is general and can be extended to design other types of 

filter banks like HR filter banks, multi channel filter banks etc with CSD 

coefficients.
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APPENDIX 

Source code files in Matlab

% main

%nb is length of CSD number
%pop_size is the size o f the population. Gen is the generation of the genetic 
algorithm
%rec_err and in d e r r  are the reconstruction error of the overall filter bank and 
in d e r r  is %the individual error o f the filter.

order=input('order o f filter =');
N=order/2;
nb=15;
pop_size=l 0,000;
Gen=l;

%to generate random coefficients and convert them to CSD format. 
[old_dec,old_csd]=hinitialize(N,nb, pop_size);

% to calculate fitness o f the filter bank
[ re c e r r l ,fitness 1 ,ind_err 1 ,t_csd]=hfit(old_csd,N,pop_size,nb);

%plot the results 
figure(l);
[ini_rec_err, ini_ind_err,A]=hplot(fitness 1 ,rec_errl ,ind_err 1 ,t_csd);

for Gen=l:10
fprintf( 1 ,'gen in %1.0f \n',Gen); 
datestr(now)

if  min(rec_errl)>7.4586e-7 

%roulletee wheel parent selection
[snew_dec,snew_csd]= hroulette_wheel(t_csd,fitness 1 , N , n t > , p o p _ s i z e ) ;

%single point crossover 
[xnewcsd,sites] = hxover(snew_csd,nb);

%muatation
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[mnew_csd]=hmutate(xnew_csd,N,nb,pop_size);

%csd restoration
[rm_csd]=hcsd_rest(mnew_csd,N,nb,pop_size);

[recerr2,fitness2,ind_err2,t_csd2]:=:hfit(rm_csd,N,pop_size,nb);

%elitist strategy 
if  max(fitness2)<max(fitnessl) 

for i=l :pop_size
if  fitness2(i)==min(fitness2) 

a=i;
end
if  fitness l(i)==max(fitness 1) 

b=i;
end

end

t_csd2(a,:)=t_csd(b,:); 
fitness2(a)=fitness 1 (b); 
rec_err2(a)=rec_errl (b); 
ind_err2 (a)=ind_err 1 (b); 

end 
t_csd=t_csd2; 
fitness l=fitness2; 

re c e r r  1 =rec_err2; 
in d e rr  1 =ind_err2;

end
end
figure(2);
[fin rec err, fin_ind_err,A]=hplot(fitness 1 ,rec_errl ,ind_err 1 ,t_csd2);
[csd]=gen_csd(A,N,nb, 1);
in i r e c e r r
in i in d e r r
f in r e c e r r
fin ind err
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%  hinitialize.m  
% To generate random coefficients and convert them to csd format.

% o ld d ec  is random population,
%old_csd is csd conversion

function [old_dec,old_csd]=hinitialize(N,nb, pop size);
o ld d ec  =[];
old_csd=[];
o ld d ec  =randn(pop_size,N); 
[old_csd]=gen_csd(old_dec,N,nb,pop_size);

75

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



% gen_csd.m  
% CSD generation
% dec is random population, d f is binary conversion, csd is CSD conversion, 
% w is no of non zero digits 
% nb is length of CSD number 
% df is binary conversion,

function [csd]=gen_csd(dec,N,nb,pop_size) 

csd=[];
for i= l :pop_size 
A=dec(i,l:N); 
for i= l:N  

if  A(i)> 11 A(i)<-1 
A(i)=A(i)-fix(A(i)); 

end 
end
%convert to binary
df-[];
for i= l:N  
d=A(i); 
da=abs(d); 
t=da; 

for j= l:nb 
t=t*2;

df(ij+2)=floor(t);
t=t-floor(t);

end
end
for i=l:N  

df(i,nb+1 )=df(i,nb); 
end

%generate 2's complement to negative numbers 
for i=l:N  

d=A(i); 
if  d<0 

for j=l:size(df,2)
df(ij)=abs(df(i,j)-l);

end
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c=l;
for j=size(df,2):-1:1 

if  df(i,j)==l & c==l 
df(ij)=0; 
c=l;

elseif df(i,j)==0 & c = l
df(ij)= l;
c=0;

elseif df(i,j)==l & c==0
df(ij)= i;

c=0;

else
df(i,j)-0;
c=0;

end
end

end
end

%convert binary to csd

r_csd=[]; 
ci=0; 
for i=l:N  
for j=nb+2:-l:2

cil=(ci & df(ij))|(ci & df(ij-l))|(df(i,j) & df(i,j-l));
r_csd(i,j)=df(ij)+ci-2*cil;
ci=cil;
end
end
r_csd=r_csd(l :N,2:nb+2);
for i=l:N
w=0;

for j= l:nb+ l

if  r_csd(i,j) ~= 0 
w=w+l; 

end
if  w>4

r_csd(i,j) =0 ;
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end

end
end

r_csd=r_csd( 1 :N, 1 :nb+1); 
csd =[csd;r_csd]; 
end
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% fitness.m

% to calculate the fitness of the filter bank
% Reconstruction error ( r e c e r r ) , the individual error(ind_err),the sum of 
%passband error and stop band error,pass band ripple(pr)stopband 
%ripple(sr),transition width(wt) are calculated .
%jstop_err ,jpas_err jpr,jsr,jwt are the results o f the johnstons design. 
%total_err=rec_err+10*(( stop err-jstop_err)+( pas_err-jpas_err)+( pr-jpr)+(sr- 
jsr)+ (wt-jwt)).
%fitness is the reciprocal o f total error.

function [rec err,fitness,ind_err]=hfit(old_csd,N,pop_size,nb)

t=zeros(l ,N*pop_size); 
for i=l:N*pop_size 

for j=2:nb+l
t(l,i)=t(l,i)+old_csd(ij)*2A(-j+l);

end
t( 1 ,i)=t( 1 ,i)+old_csd(i, 1); 

end 
a=0;
for k=l :pop_size 

for i=l:N  
t_csd(k,i)=t( 1 ,a+i); 

end 
a=i*k; 

end

t_csd=[t_csd fliplr(t csd)];

f =[];
sr=[];
ws=[];
wp=[];
wt=[];

for i=l :pop_size 
A=t_csd(i,l :2*N); 
wpl=0:0.01:pi/2;
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zp= exp(-sqrt(-l)*wpl); 
hp=abs(polyval(A,zp)); 
pr=[pr max(hp)-1 ]; 
wsl=pi/2:0.01:pi; 

zs= exp(-sqrt(-l)*wsl); 
hs=abs(polyval(A,zs));

sr=[sr max(hs)];

j=o;
k=0;
for i= 1 :length(wp 1) 

if  max(hp)==hp(i)&j==0 
wp=[wp wpl(i)];

j= j+ i;
end

if  max(hs)==hs(i)&k==0 
ws=[ws wsl(i)]; 
k=k+l; 

end 
end 

end

wt=ws-wp; 
rec_err=[]; 
pas_err=[]; 
stop_err=[]; 
for i=l :pop_size 

A=t_csd(i,l :2*N); 
r_err=0; 
p_err=0; 

s_err=0; 
for w=0:0.01:pi

[h,g] =mag_res(w, A); 
r_err=r_err+(((hA2)+(gA2)- 1)A2); 

end
rec_err=[rec_err r err]; 

for w=0:0.01:pi/2 
[h,g]=mag_res(w,A); 
p e r r  = p_err + (h-l)A2; 

end
pas_err=[pas_err p_err];
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for w=pi/2:0.01:pi 
[h,g] =mag_res( w , A); 
s_err = s_err + (h)A2; 

end
stop_err=[stop_err s err]; 

end
ind_err=pas_err+stop_err; 

order=N*2; 

if  order==24
jstop_err= 2.20366616e-5; 
jpas_err= 2.77817874e-7; 
jpr=9.92259253e-3; 
jsr=1.10518942e-3; 

jwt=7.34836847e-l; 
end

fitness=[];
total_err=rec_err+10*(( stoperr-jstop_err)+( pas_err-jpas_err)+ ( pr-jpr)+(sr- 
jsr)+ (wt-jwt));

for i=l :length(total_err) 
fitness(i)= 1 /total_err(i); 

end
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% hroulette_w heel.m  
% roulette wheel parent Selection

% list=fitness
% returns a randomly selected list o f elements 
% according to the "probability" values in the 
% input list.
% e.g., if  you input a list [2 1 3 54] then 
% the 4th element o f that list would have the 
% highest chance of selection in the output list.

function [snew_dec,snew_csd]=hroulette_wheel(old_csd,list,N,nb,pop_size) 

[m n] = size(list); 

if (m~=l)
error('ERROR! a list must have only one row.'); 

end

s = sum(list); 
for i=l :N*pop_size 

t(l,i)=0; 
end

for i=l :N*pop_size 
for j=2:nb+l 
t( 1 ,i)=t( 1 ,i)+old_csd(i j )  *2 A(-j+1); 

end
t( 1 ,i)=t( 1 ,i)+old_csd(i, 1);

end
a=0;
for k=l :pop_size 

for i=l:N  
t_csd(k,i)=t(l ,a+i); 

end 
a=i*k; 

end

for i=l:n
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roulette = 0; 
lucky = rand(l) * s; 
go tone  = 0;
j = 0;
while (jcn) & (got_one==0)

j = j+ i ;
roulette = roulette + lis t(lj); 
if  (roulette > lucky) 

go tone  = j; 
end 

end
select(l ,i)=got_one; 

end
snew_dec=t_csd(select,:); 
[snew_csd]=gen_csd(snew_dec,N,nb,pop_size);
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% crossover.m  
% single point crossover

% XOVER Creates a new generation from old generation using crossover. 
% [xnewcsd,SITES] = hxover(snew_csd,nb) performs crossover 
% Creation on pairs o f snew_csd with probability Pc.
% Crossover SITES are chosen at random (re: there will be 
% half as many SITES as there are individuals.

function [xnew csd,sites] = hxover(snew_csd,nb);

Pc=0.7;
lchrom = size(snew_csd,2);
sites = ceil(rand(size(snew_csd,l)/2,l)*(lchrom-l));
sites = sites. *(rand(size(sites))<Pc);
x=nb+l;

for i = l:length(sites);
xnew_csd([2*i-l 2*i],:) = [snew_csd([2*i-l 2*i],l:sites(i))...

snew_csd([2*i 2*i-l],sites(i)+l:lchrom)];
end
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% hm utate.m  
%  m utation

%changes the randomly selected bit from 0 to l ,1 and -1 to 0 
%pm is the mutation probability .

function [mnew_dec,mnew_csd]=hmutate(xnew_csd,N,nb,pop_size) 

Pm=0.001;
mutated = find(rand(size(xnew_csd))<Pm); 
mnew csd  = xnewcsd;
mnew_csd(mutated) = l-abs(xnew_csd(mutated));

%togenerate the decimals

for i=l :N*pop_size
t(l,i)=0;
end

for i= l :N*pop_size 
for j=2:nb+l
t(l ,i)=t(l ,i)+mnew_csd(ij)*2A(-j+l); 

end
t(l,i)=t(l,i)+mnew_csd(i,l);

end
a=0;
for k=l :pop_size 
for i=l:N
mnew_dec(k,i)=t( 1 ,a+i);
end
a=i*k;
end
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% hcsd_rest.m  
% CSD restoration technique

% after crossover and mutation the CSD coefficients are checked for any 
% Violation in its CSD format, if  so they are restored back to its CSD format

function [rm_dec,rm_csd]=hcsd_rest(mnew_dec,N,nb,pop_size)

r m d e c  =[]; 
rm_csd=[];

[rm_csd]=gen_csd(mnew_dec,N,nb,pop_size);

t=zeros( 1 ,N*pop_size);

for i= l :N*pop_size 
for j=2:nb+l
t(l ,i)=t( 1 ,i)+rm_csd(i,j)*2A(-j+1); 
end
t( 1 ,i)=t( 1 ,i)+rm_csd(i, 1);
end
a=0;
for k=l :pop_size 
for i—1 :N
rm_dec(k,i)=t( 1 ,a+i);
end
a=i*k;
end
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% hplot.m  
% plot the results

function [fin rec err, fin_ind_err,A]=hplot( fitness,rec_err,ind_err,dec);

j=0;
for i=l :length( fitness) 
if  max(fitness)==fitness(i)&j==0
a=i;
j=j+ i;
end
end
A=dec(a,:);
A=[A fliplr(A)]; 
w=0:0.02:pi;
[h,g]=mag_res(w,A); 
plot(w,h,'-',w,g,':'); 
fin_rec_err=rec_err(a); 
fin_ind_err=ind_err(a);
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