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Abstract: We propose a new approach to quasi-phasematching (QPM)

design based on convex optimization. We show that with this approach,

globally optimum solutions to several important QPM design problems can

be determined. The optimization framework is highly versatile, enabling

the user to trade-off different objectives and constraints according to the

particular application. The convex problems presented consist of simple

objective and constraint functions involving a few thousand variables,

and can therefore be solved quite straightforwardly. We consider three

examples: (1) synthesis of a target pulse profile via difference frequency

generation (DFG) from two ultrashort input pulses, (2) the design of

a custom DFG transfer function, and (3) a new approach enabling the

suppression of spectral gain narrowing in chirped-QPM-based optical para-

metric chirped pulse amplification (OPCPA). These examples illustrate the

power and versatility of convex optimization in the context of QPM devices.
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1. Introduction

Quasi-phasematching (QPM) gratings have received much attention for numerous applications

in photonics. An advantage of QPM gratings is that almost arbitrary structures can be obtained

by lithographic fabrication techniques. This high degree of design flexibility has enabled a

wide variety of QPM devices, including chirped QPM gratings to support broad bandwidths

and adiabatic frequency conversion [1–8], phase-modulated gratings to support discrete optical

channels [9], Fourier-synthetic gratings to support multiple phasematching processes [10–14],

custom pulse generation [2, 15–18], quantum frequency conversion [19–21], supercontinuum

generation and pulse compression [22–27], and many other devices [28, 29].

The primary constraints on the QPM grating structures implemented in materials like 180◦

ferroelectrics are (1) a nonlinear coefficient satisfying d̄(z) ≡ d(z)/d0 = ±1, where d(z) and

d0 are the relevant nonlinear coefficients in the grating and in the unperturbed material, respec-

tively, (2) the maximum grating length available (typically based on size of the wafer), and (3)

the minimum QPM period (typically around 5 µm in MgO:LiNbO3, although much shorter

periods have been implemented [30]).

The d̄ = ±1 constraint inherent in QPM gratings, combined with the fact that thousands

of QPM domains are typically present in a single device, means that optimal QPM design of

three-wave mixing interactions is challenging, even if one can assume only one envelope (e.g.

a generated idler wave) is changing within the device. To overcome this issue, one can work in
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the first-order-QPM approximation: the grating is written in terms of an arbitrary but smooth

phase function φ(z) and duty cycle function D(z) as

d̄(z) = sgn [cos(φ(z))− cos(πD(z))] (1a)

= (2D(z)−1)+
∞

∑
m=−∞
m �=0

2sin(πmD(z))

πm
exp(imφ(z)) (1b)

≡
∞

∑
m=−∞

d̄m(z), (1c)

where Eq. (1a) implies d̄ =±1, and Eq. (1b) follows from Eq. (1a) as an identity. This identity

could be derived, for example, by assuming a constant duty cycle D and linear phase φ(z),
expressing the resulting periodic grating as a Fourier series, and then noting the point-wise

convergence of that series to Eq. (1a) for arbitrary phase and duty cycle. Equation (1c) defines

the Fourier coefficients d̄m, and in particular d̄1, which is given by

d̄1(z) =
2sin(πD(z))

πm
exp(iφ(z)). (2)

Rather than dealing with d̄, terms other than d̄1 and d̄−1 are neglected, and d̄ =±1 is replaced

by the constraint |d̄±1| ≤ 2/π (or, with a constant 50% duty cycle, |d̄±1| = 2/π) [31]. In this

first-order-QPM approach, terms of the nonlinear polarization driving the high-frequency pump

wave involve d̄−1, while those driving the lower-frequency signal and idler waves involve d̄+1

(or vice versa, depending on the envelope convention used). Since d̄ is real, d̄−1 = d̄∗
1 . For

chirped gratings, it is useful to express the grating phase function φ(z) in terms of the (contin-

uous) grating k-vector Kg(z),

φ(z) =
∫ z

0
Kg(z

′)dz′. (3)

The first-order-QPM approach is particularly effective since, in many devices of practical

interest, gratings with only a narrow spatial frequency bandwidth (narrow range of Kg), relative

to their center or carrier spatial frequency, are required. Even if few-cycle pulses are involved,

this narrow-grating-bandwidth condition can still hold very well (as discussed in section 4). For

chirped gratings, this condition means that the range of periods required is small compared to

the average period; for periodic gratings, it means that many periods are present in the device.

As a result of these and similar narrow-bandwidth conditions, there is typically negligible

overlap between the spatial frequency spectra of d̄i and d̄ j for i �= j, and hence only a single

term d̄i must be considered for a particular nonlinear-optical interaction. It should be noted

that this non-overlapping-spectra property may not hold when the grating structure has errors

arising from the fabrication process [31–33], or when considering high orders of the grating (d̄ j

with | j| ≫ 1); we do not consider these issues here. The first-order QPM approximation has

been utilized extensively in both modeling and design of QPM devices.

In this paper, we develop new approaches for the design of optimal first-order-QPM devices.

We show that for quite a broad range of configurations, QPM device design can be solved

via convex optimization techniques [34], meaning that globally optimum designs can be de-

termined rapidly and reliably. Furthermore, we significantly extend the QPM transfer function

approach for generating target pulse profiles developed in [15]. Previously, this approach in-

volved making severe assumptions on the dispersion of one or more of the input waves (for

example, neglecting group velocity mismatch (GVM) or group velocity dispersion (GVD) ef-

fects). Here, we show how all orders of dispersion can be accounted for exactly for all of the

waves, while also maintaining a convex optimization framework.
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We also consider optical parametric chirped pulse amplification (OPCPA), and show how

a convex optimization approach can be used to design chirped-QPM OPCPA devices which

suppress gain narrowing effects (that is, changes in the gain spectrum due to the use of a

pump pulse with a non-uniform temporal profile). Another, complementary benefit of a convex-

optimization-based approach is that the infeasibility of design problems can be determined:

designs goals (for example, target pulse or gain profiles) which are infeasible can be clearly

identified as such.

The paper is arranged as follows. In section 2, we extend the transfer function approach

of Ref. [15] to include dispersion to all orders while still maintaining a linear mathematical

relationship between the generated wave and the QPM grating profile. In section 3, we use

the formalism established in section 2 to solve a number of optimal QPM design problems.

In section 4, we consider optical parametric chirped pulse amplification (OPCPA) involving

chirped QPM gratings, and show how to suppress spectral gain narrowing via an approximate

model of the OPCPA process. Lastly, discussion and conclusions are given in sections 5 and 6,

respectively.

2. Coupled wave equations

In this section we develop the well-known coupled-wave equation for difference frequency

generation (DFG) into a form suitable for optimization. The approach we develop is completely

applicable to other QPM processes involving the generation of a wave from one or more waves

which are unperturbed by the nonlinear process, including sum frequency generation (SFG),

second-harmonic generation (SHG), and optical rectification (OR) with undepleted pump(s).

2.1. Difference frequency generation

We assume that a signal and pump wave are incident on a QPM grating, and assume a plane-

wave interaction. The spatial evolution of the generated idler wave is given by [15],

dÃi(ω)

dz
=−id̄(z)κi(ω)

∫ ∞

0
Ã∗

s (ω
′)Ãp(ω +ω ′)exp(−iΔk(ω,ω ′)z)

dω ′

2π
. (4)

In this equation, κ j(ω) = ωd0/(n j(ω)c), d̄(z) = d(z)/d0 is the normalized nonlinear coeffi-

cient discussed in section 1, and n j(ω) is the refractive index of wave j. Subscripts i, s, and

p represent the idler, signal, and pump, respectively. Tilde denotes a frequency-domain field

quantity. The frequency-dependent phase mismatch Δk(ω,ω ′) is given by

Δk(ω,ω ′) = kp(ω +ω ′)− ks(ω
′)− ki(ω), (5)

where k j(ω)= n j(ω)ω/c is the wavevector associated with the polarization of envelope j, eval-

uated at frequency ω . The envelopes A j are defined to contain only positive optical frequency

components, and are such that the total electric field satisfies

Ẽ(z,ω)u(ω) =
1

2
∑

j

Ã j(z,ω)e−ik j(ω)z (6a)

=
1

2
∑

j

B̃ j(z,ω), (6b)

where u(ω) is the Heaviside step function, and Eq. (6b) implicitly defines envelopes B j. This

analytic signal approach leads to the [0,∞) integration limits in Eq. (4). Note that analytic sig-

nals were not used in Ref. [15]: we use them here to make our approach more easily compatible

with recent approaches to modeling χ(2) devices [25, 35]. We define the Fourier transform as
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Ã(ω) =F [A(t)](ω) =
∫ ∞
−∞ A(t)exp(−iωt)dt. The envelopes Ã j are constant under linear prop-

agation. We assume that the signal and pump waves are unperturbed by the nonlinear process,

and hence Ã j(z,ω) = Ã j(0,ω) for j = s and j = p. We have also introduced the envelopes B j:

these envelopes are more conventional time-domain envelopes, i.e. envelopes whose inverse

Fourier transform directly yields a component of the electric field at position z and time t. For

notational simplicity, the definition of these envelopes [Eq. (6b)] does not include a z-dependent

phase factor; note that this is in contrast to the “B” envelopes in [15], whose definition involved

phases exp(−ik j(ω j)z) for carrier frequency ω j of wave j [compare Eqs. (5) and (6) of [15] to

Eqs (6a) and (6b) here].

For a DFG process, we assume that there is no input idler. The output idler envelope is found

by integrating Eq. (4), which gives

Ãi(L,ω) =−iκi(ω)
∫ ∞

0
g(Δk(ω,ω ′))Ã∗

s (ω
′)Ãp(ω +ω ′)

dω ′

2π
, (7)

where g(k) is the spatial Fourier transform of the normalized nonlinear coefficient,

g(k) =
∫ ∞

−∞
d̄(z)e−ikzdz. (8)

Note that for a grating of length L, d̄ = 0 for z < 0 and z > L.

It is important to consider the linear-optical phase function k j(ω)L, which is not accounted

for explicitly in the envelopes Ã j but is included in the envelopes B̃ j. The full input-output

relation for the device is thus given by

B̃i(L,ω) =−iκi(ω)e−iki(ω)L
∫ ∞

0
g(Δk(ω,ω ′))Ã∗

s (ω
′)Ãp(ω +ω ′)

dω ′

2π
, (9)

with Ãs(ω) = B̃s(0,ω) and Ãp(ω) = B̃p(0,ω). Equation (9) shows that there is a linear re-

lationship between the spatial Fourier transform of the QPM grating, g(k), and the generated

idler wave B̃i(L,ω). To take advantage of this linearity, in subsection 2.2 we express Eq. (9) as

a linear system.

2.2. General matrix formulation of DFG

To develop a QPM design procedure, we discretize Eq. (9) using an output frequency grid

for the idler and a spatial frequency grid for the QPM grating. We define vector g =
[g(k1), ...,g(kN)]

T , i.e. g(k) evaluated on the spatial frequency grid. Similarly, we define an

idler vector Bω = [B̃i(L,ω1), ..., B̃i(L,ωN)] evaluated on its frequency grid (where subscript ω
is used here to indicate that Bω represents envelope Bi in the frequency domain). Over the range

of the spatial frequency grid, g(k) can be approximated as a linear function of g:

g(k) = v(k)T g, (10)

where the vector v(k) is related to the chosen type of interpolation (e.g. piecewise linear).

Substituting Eq. (10) into Eq. (9), the components B̃i(L,ωn) of the idler vector are given by

B̃i(L,ωn) =

[

− iκi(ωn)e
−iki(ωn)L

∫ ∞

0
v(Δk(ωn,ω

′))T Ã∗
s (ω

′)Ãp(ωn +ω ′)
dω ′

2π

]

g, (11)

This equation can be re-written into matrix form:

Bω = Tg, (12)
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where the matrix elements of the DFG coupling matrix T correspond to the terms in square

brackets in Eq. (11). Equation (12) is the starting point of our optimization procedure. If the

electric field profiles of the input pulses and the frequency-dependent phase mismatch are all

known, T can be evaluated; in an optimization procedure, T only needs to be evaluated once,

before starting the optimization algorithm. Note that while Δk can in some cases be well-

approximated over the bandwidths of interest by a low-order polynomial in its frequency ar-

guments, we have maintained its full functional form.

2.3. Form of the DFG coupling matrix

In this subsection, we show examples of the DFG coupling matrix T. The form of T is the

main factor that determines which pulse designs are possible. Its structure originates from the

functional forms of the phase mismatch and the nonlinear polarization. If the pump is narrow-

bandwidth, then for each output idler frequency there is only a small range of signal frequencies

that are able to contribute. There is thus a correspondingly small range of spatial frequencies

which contribute, governed by the excursions of Δk over this frequency range.
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Fig. 1. Magnitude of the DFG coupling matrix T for several experimental configurations.

(a) Narrow-bandwdith pump, nearly group velocity matched signal and idler waves, (b)

narrow-bandwidth pump, group velocity mismatched signal and idler, (c) broadband pump,

nearly group velocity matched signal and idler, (d) broadband pump and signal, with group

velocity mismatch. |T| is plotted in each case, and the parameters are given in the text.

The range of spatial frequency components that contribute also depends on the type of in-

teraction involved. If under the same narrow-bandwidth pump approximation there is no GVM

between the signal and idler waves at their center frequencies, then T will depend mostly on

group velocity dispersion and will have a “crescent” like shape. This shape in fact persists even

in the presence of GVM, but is tilted in ω −Kg space. These general properties are illustrated in

Fig. 1. The parameters for the figure are as follows. The pump center wavelength is 1064 nm.

The signal center wavelength is either 1550 nm [Figs. 1(a) and 1(c)] or 2000 nm [Figs. 1(b) and
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1(d)]. Both the signal and pump pulses are Gaussian with no chirp. The signal 1/e2 duration

is 40 fs, while the pump 1/e2 duration is either 2 ps [for Figs. 1(a) and 1(b)] or 200 fs [Figs.

1(c) and 1(d)]. We assume a MgO:LiNbO3 crystal at room temperature [36], and an all-e-wave

interaction.

We use piecewise-linear interpolation in Eq. (10) to perform the integrals in Eq. (11). Note

that each term can involve integrating over more than one interval in ω ′ (in particular, this is

necessary if Δk(ω,ω ′) passes through a minimum or maximum with respect to ω ′).

As can be seen from Figs. 1(c) and 1(d), when both of the input waves are broad bandwidth,

the matrix is smeared out with respect to spatial frequency: a large range of spatial frequencies

contribute to each spectral component, and any given spatial frequency drives a wide range

of spectral components. For this reason, imposing fine spectral features on the output wave

becomes more challenging. In contrast, for a narrowband pump [Figs. 1(a) and 1(b)], the matrix

becomes narrower with respect to Kg.

2.4. Transfer function limit

In the limiting case of a cw pump wave but broadband signal and idler waves (or alternatively

a cw signal and broadband pump), the nonlinear polarization driving the idler has only a single

phase mismatch at each frequency. Mathematically, for a cw pump of frequency ωp, we have

Ap(ω) = 2πAp0δ (ω −ωp). Therefore, Eq. (9) becomes

Bi(L,ω)

A∗
s (ωp −ω)

=−iκi(ω)e−iki(ω)LAp0g(Δk(ω,ωp −ω)),

≡ H(ω) (13)

where H(ω) is a transfer function. As discussed in [15], it is not necessary to have a truly cw

pump for Eq. (13) to be useful: the pump should simply have a narrow bandwidth compared to

the acceptance bandwidths associated with the nonlinear interaction.

Analogously to Eq. (13), the elements of T are given, in the case of a cw pump, by

Tnm =−iκi(ωn)e
−iki(ω)LA∗

s (ωp −ωn)Ap0vm(Δk(ωn,ωp −ωn)). (14)

If the optical frequency and spatial frequency grids coincide, i.e. if for all elements ωn of the

frequency grid, Δk(ωn,ωp −ωn) = km, where km is one of the elements of the spatial frequency

grid, then vm(Δk(ωn,ωp −ωn)) = 1 for such pairs of indices and is equal to zero for all other

pairs. In other cases, the general form of v(Δk(ωn,ωp−ωn)) defined in Eq. (8) can be used. Co-

inciding grids can be obtained in this transfer function case simply by choosing a non-uniformly

spaced spatial frequency grid.

3. Optimal QPM DFG design examples

In this section, we use a convex optimization framework for target pulse generation and transfer

function design, based on the formalism developed in section 2. This framework is developed

in subsection 3.1. In subsection 3.2, we illustrate the synthesis of target pulse profiles via DFG.

In subsection 3.3, we illustrate the design of target QPM DFG transfer functions.

3.1. Optimization framework

The general structure of convex optimization problems is given by Eq. (4.15) of [34]. This

mathematical framework supports convex inequality constraints, affine equality constraints, and

a convex objective function which is to be minimized. In this section, the variables are the

discrete elements of the grating (either on a space or spatial frequency grid), and the generated
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idler fields or the QPM DFG transfer function. Related quantities such as derivatives, evaluated

by finite differences, can also be included.

Under the first-order QPM approximation, g(k) in Eq. (8) can be accurately evaluated as a

spatial Fourier transform of d̄+1(z) rather than d̄(z). Importantly, the equality constraint |d̄|= 1

from Eq. (1a) is not affine, while the relaxed constraint |d̄1| < 2/π from Eq. (2) is a convex

inequality. Furthermore, as shown above, linear relationships can be established between all of

the important variables [for example, Eq. (11)]. Therefore, these quantities can be constrained

to have specific values (linear equality constraints), or substituted into convex functions (convex

inequality and objective functions). Additionally, d̄1 can typically be resolved with a grid having

of order a thousand points, which is convenient for optimization purposes.

Since the QPM grating must have a finite length, we treat the optimization variable as d̄1(z),
expressed on a grid of z points. d̄1(z) is assumed to be zero outside this grid. g(k) is found by

a Fourier transform. The equality constraint |d̄1|= 2/π is not affine (and hence not compatible

with our approach), and therefore solutions typically imply a spatially varying QPM duty cycle

[see Eq. (2)]. Nonetheless, we can impose the necessary constraint that |d̄1| < 2/π . We also

show in subsection 3.3 that designs having |d̄1|= 2/π can be obtained by an appropriate choice

of objective function. A smooth and slowly-varying d̄1(z) can be achieved straightforwardly by

expressing its spatial derivatives as matrix multiplications and imposing additional constraints.

Another possible constraint useful in some situations, but which we do not exploit here, is that

particular regions of the grating can be constrained to not deviate substantially from a particular

target spatial profile d̄T (z).
Since g(k) can be obtained from d̄1 by matrix multiplication, similar constraints can be

applied to it as well. In particular, g(k) can be constrained to be close to a target spectrum,

|g(k)− gT (k)| < ε (for some ε). The closeness to this target can be treated as an inequality

constraint (fixed ε) or as the optimization variable (minimize ε while satisfying the specified

constraints). Since B̃i(ω) and Bi(t) are also obtained by matrix multiplications, the same holds

for generating a pulse with a target temporal or spectral profile.

The design examples in the following subsections have been chosen to illustrate some of

these properties, but in general many different types of constraints can be imposed onto the

grating or the output pulse, beyond those we consider here, in order to suit the problem at hand.

To solve the convex optimization problems posed in this paper we use CVX, a package for

specifying and solving convex programs [37].

The following definitions are used in addition to Eqs. (11) and (13):

g = Fkd (15a)

Bt = FtBω (15b)

dn f

dzn
≈ Dnf (15c)

where Fk is a discrete spatial Fourier transform, Ft is a discrete inverse temporal Fourier trans-

form, Bt is a discrete approximation to Bi(L, t), d is a sampled version of d̄1(z), and Dn is a

square matrix which approximates the relevant nth derivative (e.g. a spatial derivative if applied

to d). The ln norm is denoted ‖.‖n, and |f| denotes the point-wise magnitude of the elements of

f.

3.2. Generation of target pulse profiles

In this subsection we show the design of a target temporal pulse profile, denoted Btarget. If a

particular pulse profile is needed for an experiment, generating that pulse via DFG provides a

particularly simple experimental approach, especially if the desired pulse is in a new wavelength
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range where pulse synthesis is not convenient, such as the mid-IR. Rather than employ compli-

cated optical arrangements such as pulse shapers, DFG-based pulse shaping can be employed

in a purely collinear geometry without spatially or temporally dispersing the input pulses [15].

The approach presented here is a key step forwards in the context of this approach, since it can

be used to directly design a finite-length grating which, given known input pulses, yields the

target output pulse, without approximating the dispersion of the medium.

Additionally, the optimization algorithm can be used to determine with some confidence if

generating a particular pulse is infeasible given the input pulses. It is also possible to test the

utility of chirping one of the input pulses. The QPM grating can then be designed according

to whichever input chirp profile is convenient (such as propagation through a piece of bulk

material); it is even possible to compensate higher order phases entirely by the QPM grating

design rather than by complicated dispersion compensation systems [5].

The simplest approach is to treat d as a complex variable, and minimize ‖Bt −Btarget‖2 with

no constraints. However, this approach is unlikely to yield a “clean” grating profile. Instead, we

solve the following convex optimization problem:

minimize ‖D2d‖2 (16a)

subject to:

‖Bt −Btarget‖2

‖Btarget‖2
≤ ε (16b)

|d| ≤ 2/π. (16c)

where d is the (complex-valued) optimization variable. Minimizing ‖D2d‖2 leads to a grating

profile which is as smooth as possible, without the need to specify an explicit upper bound (a

suitable value for which might not be known a priori). In this problem, ε is chosen according

to the tolerable deviations of the pulse from the target. Note that the energy of the target pulse,

i.e. ‖Btarget‖
2
2, can be varied in order to obtain a solution whose duty cycle profile is as close to

50% as possible (|d|= (2/π)1). Further details are given in Fig. 2.

The grating length L is determined implicitly by the z grid: while d can be constrained to

equal zero in the outer regions of the grid (or over any region of the grid), there is no com-

putational advantage to doing so. However, if designs involving duty cycle apodization are

favorable, then the first and last elements of d can be constrained to equal zero: this, in com-

bination with the objective function, will favor nonlinear coefficients which are turned on/off

smoothly at the edges of the grating. L can be chosen to equal a maximum length (determined

for example by fabrication constraints), or estimated based on the dispersion of the crystal.

To illustrate a solution to Eq. (16), we choose as inputs a 500-fs (1/e2) Gaussian pump pulse

centered at 1064 nm, and a 25-fs (1/e2) Gaussian signal pulse centered at 1550 nm. We allow

for a 10-mm MgO:LiNbO3 grating length, and assume that the pulses are temporally overlapped

at the center of the grating. Figure 2 shows an example mid-IR target pulse and corresponding

solution to problem (16).

To illustrate the generality of the technique, the target pulse in Fig. 2 was chosen randomly

with characteristic temporal features of durations bounded below by the input pulse durations

and above by the maximum delays associated with the distance over which the input pulses

remain temporally overlapped, and the resulting range of idler group delays. A target pulse

satisfying these bounds is calculated by applying Gaussian filters to an initial vector whose ele-

ments have random and uniformly distributed real and imaginary parts. We have found that the

optimization routine almost always finds a sensible (smooth grating) solution for such random

pulses provided that these bounds are imposed. Figure 2 therefore shows that generating arbi-

trary target pulse profiles is straightforward with our convex optimization approach, and could

hence be applied in many waveform synthesis problems.
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Fig. 2. Example solution to the optimization problem given in Eq. (16). (a) Output (solid

blue curve) and target (dashed red curve) amplitude profiles. (b) Corresponding grating

profile (amplitude and phase). Rather than specify the energy directly, we normalize the

energy U to that of the pulse which would be generated in a grating with a uniform QPM

profile, Kg = Δk(ωi,ωs) for carrier frequencies ωs, ωp, and ωi = ωp −ωs; this energy is

denoted U0. The black dashed line in the figure shows the amplitude profile of a pulse

generated by such a grating. The energy of the target pulse in this example is given by

U/U0 = 0.3. The ‖Bt −Btarget‖2 and ‖Btarget‖2 norms in Eq. (16) are evaluated over a 2-ps

temporal window, and ε = 0.1.

3.3. Design of custom transfer functions

In this subsection, we next consider the QPM transfer function limit discussed in section 2.4.

Such transfer functions can be utilized in various contexts, for example time lens systems [38],

pulse compression via SHG [39], pulse characterization [40], telecom applications [41], as well

as pulse synthesis [15]. We show the optimal design of a target transfer function with advan-

tageous properties not easily achievable by analytical or local-optimization design approaches.

In section 3.2 we showed target waveform synthesis, but did not constrain the QPM duty cycle

to be constant. However, constant duty cycle designs are often favorable in terms of QPM fab-

rication technology [42]. Therefore, for the example presented in this section, we show how a

constant 50% duty cycle QPM device can be designed by our approach.

Certain target transfer functions are more compatible with constant-duty-cycle gratings than

others. Therefore, to construct an illustrative example, we choose a target transfer function

having phase corresponding to the group delays predicted by a simple model for chirped QPM

gratings. Specifically, for a smoothly chirped QPM grating with a monotonic Kg(z) profile and

a cw (or narrowband) pump wave, the output idler group delay can be estimated as [5]

τi(ω) = τs(ωp −ω)+
zpm(ω)

vg,s(ωp −ω)
+

L− zpm(ω)

vg,i(ω)
(17)

where zpm(ω) is the phasematching point, satisfying Δk(ω,ωp −ω)−Kg(zpm(ω)) = 0, with

Δk(ω,ω ′) defined in Eq. (5). vg, j(ω) denotes the group velocity of wave j at frequency ω , and

L is the crystal length. τs(ω) is the group delay of the signal at the input of the QPM grating.

As discussed in [5], the idler group delay in Eq. (17) has a relatively simple origin: each

spectral component ω travels with the signal before its phasematching point, and hence accu-

mulates delay according to the signal group velocity at the corresponding signal frequency (i.e.

vg,s(ωp −ω)). However, for the rest of the crystal length after zpm(ω) (distance L− zpm(ω)), it

travels at the idler group velocity vg,i(ω).
It is possible to use Eq. (17) to construct an ordinary differential equation for the Kg(z)

profile which will yield a target idler group delay τi(ω) (or to determine if a target is not
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possible with a monotonically chirped QPM grating). However, since our goal here is to il-

lustrate an optimization method, we take a simpler approach to constructing the target trans-

fer function. We first select a crystal length and a target bandwidth, and then choose a cen-

ter spatial frequency and constant grating chirp rate sufficient to generate an idler across this

bandwidth. We then substitute this Kg(z) profile into Eq. (17) and assume a transform lim-

ited input signal (τs(ω) = 0) to determine τi(ω). τi(ω) is then integrated to obtain a spec-

tral phase φi(ω) (since τi = −∂φi/∂ω). The target transfer function is then chosen to be

HT (ω) = |HT (ω)|exp(iφi(ω)), where |HT (ω)| = H0 for ω within the chosen idler bandwidth

(H0 constant), and zero otherwise. The target amplitude and phases are shown in Fig. 3.

We wish to obtain a design which is close to the target within the passband (HT (ω) �= 0),

and whose errors within this region are both small and slowly varying. We give little emphasis

in the design to the regions outside the passband, since these regions are much less significant

provided that the input spectrum is bandwidth-limited (as is often the case).
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Fig. 3. Example solution to the optimization problem given in Eq. (18). The parameters

are given in the text. (a) Phase mismatch Δk(ω,ωp −ω) as a function of idler frequency in

THz. Vertical dashed black lines indicate the target passband. (b) Grating profile (amplitude

and phase of d(z)). The profile returned by the optimization algorithm exhibits a small

number of dips in |d(z)| as shown by the black curve. We remove these dips and assume a

constant |d(z)| in calculating the transfer function. (c) and (d): Transfer function amplitude

and phase.
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The optimization problem we solve is given by

minimize: max(|d|) (18a)

subject to:

‖H[PB]−HT [PB]‖2

‖HT‖2
≤ ε1 (18b)

|D1d| ≤ λD (18c)
∥

∥

∥

∥

D2

(

H[PB]−HT [PB]

max(HT )

)∥

∥

∥

∥

1

≤ ε2
τGVM

δω
(18d)

where δω is the spacing of the angular optical frequency grid, [PB] denotes the indices corre-

sponding to the passband (the components for which HT �= 0), and λD is a distance comparable

to the average QPM period. τGVM = |vg,s(ωs)− vg,i(ωi)|L is the group delay accumulated be-

tween the signal and idler over the length of the crystal. The parameters ε1 and ε2 are small and

chosen according to the design goals (described below).

We have chosen the above problem formulation for several reasons. First, the objective func-

tion (18a) favors solutions with constant or nearly-constant |d|. Such solutions can be approx-

imated as having constant duty cycle, and are hence easier to fabricate. Constraint (18b) en-

sures that the transfer function is close to the target. Constraint (18c) prevents d from vary-

ing rapidly over a single QPM period, since such features may not be captured by the ac-

tual grating or can result in small QPM domains. Constraint (18d) is chosen to ensure that

the deviations of the transfer function from the target are smooth. More specifically: the term

D2((H−HT )/max(HT )) yields a second derivative with respect to angular frequency; taking

the 1-norm of the magnitude of this vector and multiplying by δω corresponds to integration,

and hence yields an effective delay. We expect that in a high quality design having slowly-

varying deviations from the target transfer function, this ‘accumulated’ group delay should be

much less than the maximum delays supported by GVM within the crystal length, and hence

we select a small value for ε2.

A solution to problem (18) is shown in Fig. 3. We choose a target function with a passband

between 1450 nm and 1650 nm, and a cw 1064-nm pump. The corresponding idler passband

is from 3000-4000 nm. We assume a 10-mm MgO:LiNbO3 grating at 150 ◦C. To calculate the

group delay in Eq. (17) we assume a linear grating profile given by Kg(z) = Kg0 +Kg1(z−L/2)
for Kg0 = 208.1 mm−1 and Kg1 = 3.3 mm−2. For the solution shown, we assume ε1 = 0.1 and

ε2 = 10−3.

Within the passband, the transfer function (TF) amplitude is close to the target and is slowly

varying; similarly, the phase shows no visible deviation from the target on the scale shown. This

profile comes at the cost of increased ripples outside the passband, since these regions were not

constrained at all. Fluctuations in these regions could also be suppressed by adding additional

constraints, but at the cost of some performance within the passband.

The modulated grating phase profile [Fig. 3(b)] which yields this result is quite unintuitive,

highlighting the importance of having a global optimization framework. By using Eq. (17) to

construct an initial Kg(z) profile based on a target group delay spectrum, our method could

be applied to a wide variety of transfer function designs. Furthermore, we chose a constant-

amplitude target function for illustration purposes. Such a profile is not usually obtained for

two reasons: firstly, because ripples on the transfer function are usually partially (but not com-

pletely) suppressed by apodization techniques, and secondly because the driving term in Eq.

(4) is proportional to the idler optical frequency, which changes substantially over the chosen

passband; therefore, part of the phase modulation in the grating arises in order to compensate

for this frequency dependence. As such, it is possible to accomodate non-uniform target am-
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plitude profiles as well. Therefore, this design approach (and variations thereof) is likely to be

applicable to a wide range of optical systems employing QPM gratings.

4. Optimal design of chirped QPM gratings for OPCPA

In this section, we consider optical parametric chirped pulse amplification (OPCPA). OPCPA

is a widely-used technique for generating ultrashort, high-energy pulses [43–46]. Typically, a

narrow-bandwidth pump wave amplifies the highly chirped, broadband signal and idler pulses.

A key consideration is amplification bandwidth. Several schemes have been utilized to ob-

tain broad bandwidths, including noncollinear mixing geometries [45], operation at degener-

acy [46], and operation at high gain rates [47]. Another promising approach is the use of chirped

QPM gratings [1,5,7,44,48–51]. In this latter case, the gain bandwidth is chosen by designing a

crystal with a sufficient spatial frequency bandwidth to amplify all of the spectral components

of the signal and idler. Such devices have been studied theoretically [1, 7] and demonstrated

experimentally [44, 48, 50, 51].

An important issue in any OPCPA scheme is gain narrowing. That is: the reduction in the

gain for spectral components of the chirped signal and idler pulses which are not overlapped

(temporally) with the peak of the pump intensity profile. In this section, we build on the theoret-

ical framework of Ref. [1] in order to show how a flat spectral gain profile can be obtained even

for a Gaussian pump pulse, thereby suppressing gain narrowing. In subsection 4.1 we deter-

mine the frequency-dependent gain for an OPCPA experiment utilizing chirped QPM gratings.

In subsection 4.2 we recast this solution into a form suitable for convex optimization. In subsec-

tion 4.3, we use this formalism to show how spectral gain narrowing effects can be (optimally)

suppressed.

4.1. Approximate form of the signal gain

Assuming an undepleted pump wave, the coupled wave equations governing the evolution of

plane-wave signal and idler envelopes are given by

dÃi(ω)

dz
=−id̄(z)κi(ω)

∫ ∞

0
Ã∗

s (ω
′)Ãp(ω +ω ′)exp(−iΔk(ω,ω ′)z)

dω ′

2π
. (19a)

dÃs(ω)

dz
=−id̄(z)κs(ω)

∫ ∞

0
Ã∗

i (ω
′)Ãp(ω +ω ′)exp(−iΔk(ω ′,ω)z)

dω ′

2π
. (19b)

where the relevant quantities in Eqs. (19a) and (19b) were defined in section 2.1. These equa-

tions are a natural extension of Eq. (4), accounting for changes in both the signal and idler

waves. We assume that there is no incident idler, which means that we define the signal as the

seeded wave, not the higher-frequency wave.

In the case of a cw pump, Eqs. (19a) and (19b) simplify considerably [this assumption yielded

Eq. (13) in the case of DFG, for example]. For a sufficiently narrow-bandwidth pump wave and

strongly chirped signal and idler waves, the temporal intensity profile of the pump wave can be

accounted for approximately while still maintaining the simplicity of the cw-pump case. Con-

sider the group delays τs(ω) and τi(ω) associated with spectral components of the signal and

idler, respectively. By assuming that group velocity mismatch (GVM) is negligible compared

to the duration of the pump pulse given the length of the device, these group delays satisfy,

approximately,

τi(ωp −ω)≈ τs(ω) (20)

for pump frequency ωp. Hence mixing between signal frequency ω and idler frequency ωp−ω
involves the pump intensity at delay τs(ω). Assuming a narrow-band (but not cw) pump, Eqs.
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(19a) and (19b) can be written as

dÃi(ω)

dz
=− id̄(z)κi(ω)Ap(τi(ω))Ã∗

s (ωp −ω)e−iΔk(ω,ωp−ω)z (21a)

dÃs(ω)

dz
=− id̄(z)κs(ω)Ap(τs(ω))Ã∗

i (ωp −ω)e−iΔk(ωp−ω,ω)z (21b)

Note that these equations could be derived from Eqs. (19a) and (19b) via stationary phase

approximations. Note also that Eq. (20) is a useful approximation for calculating the gain spec-

trum given a narrow-bandwidth pump, but is not sufficient for calculating the group delay and

corresponding spectral phase of the idler for subsequent pulse compression [for such problems,

Eq. (17) must be used].

The structure of Eqs. (21a) and (21b) implies that each signal frequency ωs + Ω mixes

only with idler frequency ωi −Ω, where ωi +ωs = ωp. Therefore, it is convenient to define

frequency-shifted envelopes ã j(Ω) = Ã j(ω j +Ω). We also neglect higher orders of the QPM

grating at this stage, so that d̄ ∼ d̄±1 [see Eq. (1)]. As mentioned in section 1, for an energy-

conserving first-order QPM process, the nonlinear polarization at the pump frequency (which

is not included here since we are neglecting pump depletion) involves d̄−1 while the nonlinear

polarizations for the signal and idler waves involve d̄+1. Thus, combining Eq. (20) with Eqs.

(21a) and (21b) yields

dãi(−Ω)∗

dz
=+ id̄∗

1(z)κi(ωi −Ω)A∗
p(τs(ωs +Ω))ãs(Ω)eiΔk(Ω)z (22a)

dãs(Ω)

dz
=− id̄1(z)κs(ωs +Ω)Ap(τs(ωs +Ω))ã∗i (−Ω)e−iΔk(Ω)z (22b)

where the single-frequency-argument phase mismatch is given by

Δk(Ω) = kp(ωp)− ks(ωs +Ω)− ki(ωi −Ω). (23)

Equations (22a) and (22b) have forms analogous to Eqs. (3) and (4) of Ref. [1]. Based on the

complex WKB analysis performed in that paper, and Eq. (16) in particular, the signal gain

at frequency shift Ω can be approximated, for a chirped QPM grating that has a slow and

monotonic chirp profile and constant 50% duty cycle (|d̄1|= 2/π within the structure), as

Gs(Ω)≈ exp

⎡

⎣2

∫ zt p,2(Ω)

zt p,1(Ω)

√

γ(Ω)2 −

(

Δk(Ω)−Kg(z)

2

)2

dz

⎤

⎦ , (24)

where zt p, j(Ω) are frequency-dependent, real-valued turning points: they are the two positions

at which the integrand in Eq. (24) is zero. Equation (24) can only be applied for a frequency

Ω when both zt p, j(Ω) are within the structure (and are not too near to an edge). These turning

points are introduced in appendix F of [1]. The frequency-dependent coupling coefficient γ(Ω)
satisfies

γ(Ω)2 =

(

2

π

)2 (ωi −Ω)(ωs +Ω)d2
0

ni(ωi −Ω)ns(ωs +Ω)c2

2

np(ωp)ε0c
Ip(τs(ωs +Ω)), (25)

where Ip(t) is the pump intensity.

An important result is the gain for a linearly chirped grating (dKg/dz =−∂Δk/∂ z constant).

Integrating Eq. (24) for this case yields the following gain for the signal intensity:

ln(Gs(Ω)) = 2πΛ(Ω), (26)
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where Λ(Ω) = γ(Ω)2/|∂Δk/∂ z|. Equation (26) corresponds to the Rosenbluth amplification

formula [52]. Since γ(Ω) is strongly frequency dependent in an OPCPA system utilizing signal

pulses of comparable duration to the pump, high gain across the whole spectrum can only be

obtained by over-saturating the peak of the pump; operating in such a regime may be undesir-

able for many reasons [7].

4.2. Optimization framework

Our goal is to determine a grating chirp profile Kg(z) which yields a target signal gain spectrum

while satisfying several constraints. This problem can be put into convex form by a change

of variables in Eq. (24). Our main assumption is that Kg(z) is monotonic: this assumption

means that the integration variable in Eq. (24) can be changed to Kg instead of z. The limits of

integration in this case are the frequency-dependent k-space turning points Kt p, j, which satisfy

|Δk(Ω)−Kt p, j(Ω)| = 2γ(Ω). For spatial frequencies outside the interval [Kt p,1(Ω),Kt p,2(Ω)],
the integrand in Eq. (24) is imaginary. Provided that both Kt p, j(Ω) lie within the range of Kg

(i.e. provided that the amplification region of a particular spectral component is fully contained

within the grating), the integration limits can be extended to cover the entire range of Kg by

taking the real part of the integrand (so that the imaginary components outside the turning

points do not contribute). We therefore obtain

ln(Gs(Ω))≈
∫ K f

Ki

Γ(Ω,K)zK(K)dK (27)

where zK(Kg) = dz/dKg is the reciprocal of the local chirp rate, expressed as a function of

spatial frequency. Ki and K f are the grating k-vectors at the input and output ends of the device,

respectively. The local gain rate Γ is given by

Γ(Ω,K) = Re

⎡

⎣2

√

γ(Ω)2 −

(

Δk(Ω)−K

2

)2

⎤

⎦ . (28)

Analogously to Eq. (24), Eq. (27) is valid for spectral components for which Γ(Ω,Ki) =
Γ(Ω,K f ) = 0, provided that the chirp rate (dz/dKg)

−1 remains sufficiently slow within the

[Ki,K f ] interval.

Since Δk and γ are known functions of frequency, values of Ki and K f can be chosen in order

to contain the amplification regions of all the spectral components of interest. Based on Eq.

(27), each spectral component Ω is amplified over the interval Kg ∈ [Δk(Ω)−2γ(Ω),Δk(Ω)+
2γ(Ω)]; within this region, the local signal-idler coupling rate γ(Ω) sufficiently exceeds the

local phase mismatch, since |Δk(Ω)−Kg|< 2γ(Ω). If gain is required over a particular spectral

range, the (nominal) range of grating k-vectors should thus be extended beyond the range of

Δk(Ω) so that the constraint Γ(Ω,Ki) = Γ(Ω,K f ) = 0 is met for all Ω of interest. A simple and

sufficient condition can be obtained by imposing this constraint while neglecting the frequency

dependence of γ(Ω):

max([Ki,K f ]) =Kmax +2γ0

min([Ki,K f ]) =Kmin −2γ0 (29)

where Kmax = maxΩ(Δk(Ω)), Kmin = minΩ(Δk(Ω)), and γ0 = maxΩ(γ) (the peak signal-idler

coupling rate). For a constant chirp rate Δk′ = ∂Δk/∂ z, the grating length required to support

this range of k-vectors can be written as

L =Λ0

[

Kmax −Kmin

γ2
0

+
4

γ0

]

(30)
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where Λ0 = γ2
0/|Δk′|; the resulting signal gain is ln(Gs) = 2πΛ0 [Eq. (26)]. Equation (30) can

be used as a rough estimate for the required grating length. In an optimized device where all

spectral components achieve the same gain, the length will usually be longer than predicted by

Eq. (30), since γ(Ω)≤ γ0.

Equation (27) shows that the gain in dB is linear in the function zK(Kg) = dz/dKg. For this

reason, we will take zK to be the optimization variable. The nominal grating profile Kg(z) can

be constructed from zK by noting that the position is given, as a function of Kg, by

z(Kg) =
∫ Kg

Ki

zK(K)dK, (31)

and this function can be inverted to find Kg(z). Note also that since the approximate model

of Eq. (27) does not account for gain ripples that arise from the hard edges of the grating, a

grating profile determined by an optimization algorithm based on Eq. (27) alone will yield a

gain spectrum with strong ripples in amplitude and phase. However, it is possible to append

apodization regions to both ends of the device in order to almost completely suppress such

ripples [1, 8, 9, 51]. Here, we use apodization techniques for the example shown in section 4.3.

In parallel work, we have analyzed the design of such apodization profiles in detail for chirped

QPM interactions, including interactions involving high gain or high pump depletion [53].

To formulate an optimization problem for the grating chirp profile, we specify discrete grids

for optical frequency Ω, [Ω1, ...,ΩN ], and spatial frequency Kg, [K1, ...,KN ]. We define a matrix

ΓΓΓ as Γ(Ω,Kg) evaluated on these grids, appropriately weighted by the Kg grid spacing. The log

of the signal gain Gs is thus given simply by matrix multiplication:

ln(Gs) = ΓΓΓzK. (32)

For a uniform grid spacing δK, the (nominal) grating length is given by L = δK(1T zK). Since

the (logarithmic) gain is linear in zK, it can be readily optimized.

4.3. Suppression of gain narrowing

In order to demonstrate this QPM design technique and its capabilities, in this section we show

a specific design example. The goal of this example is to obtain a smooth and flat gain over a

broad optical bandwidth while using a signal pulse chirped to fill a large fraction of a Gaussian

pump’s intensity profile.

We consider an experimental configuration relevant to mid-IR OPCPA using the approach

discussed in Refs. [44, 50, 51]. We assume a Gaussian pump pulse with a center wavelength

of 1.064 µm, a FWHM duration of 10 ps, and a peak intensity such that γ0 = γ(Ω = 0) = 3

mm−1. The Gaussian input signal pulse has center wavelength 3.5 µm, bandwidth supporting

a 35-fs FWHM duration, and for simplicity has a purely quadratic spectral phase such that the

actual FWHM duration is 3.5 ps. We consider an undepleted-pump example, so the amplified

signal intensity is negligible compared with the pump. Note however that due to the properties

of adiabatic frequency conversion [6–8], high pump depletion across the pump temporal profile

is also possible for the design we present here; we discuss this regime further in subsection 5.2.

We choose a target amplification range spanning the 1/e2 signal pulse bandwidth, which

corresponds to spectral components between 3.1- and 4.0-µm. In MgO:LiNbO3 at 150 ◦C,

the grating k-vectors phasematching the ends of this spectrum are Kmin = 2.037×105 m−1 and

Kmax = 2.189×105 m−1. A linear Kg grid is defined with end-points Kmin−2γ0 and Kmax+2γ0,

to ensure that the entire amplification region of each spectral component is contained within the

grating [see Eq. (28)]. A frequency-independent target gain of GT = exp(2πΛT ) with ΛT = 2.2
is chosen, which corresponds to approximately 60 dB power gain. For the value of γ0 = 3 mm−1
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above, a constant chirp rate of κ ′ =±4.1 mm−2 would be required to obtain Λ0 = γ2
0/|κ

′|=ΛT .

With these values, Eq. (30) predicts a grating length of 6 mm.

We solve the following convex optimization problem for variable zK:

minimize ‖D1zK‖
2
2 (33a)

subject to:

−δG ≥ ΓΓΓzK − ln(GT )≤ δG (33b)

L ≤ Lmax (33c)

Λmin ≤ γ2
0 zK ≤ Λmax, (33d)

which is a quadratic program (QP). The chosen objective function ensures smoothness of the

solutions. The parameters Λmin = 1 and Λmax = 10 indicate bounds on the local chirp rate, and

are chosen to ensure a sensible solution. In particular, these parameters were selected such that

0 ≪ Λmin ≤ ΛT ≪ Λmax; as long as these conditions are met, the solution is not too sensitive

to these parameters. Note also that the Λmin > 0 constraint ensures monotonicity of the zK and

hence Kg(z).
We choose δG = 0.05, since this tolerance will typically be satisfactory. δG can be made

smaller, but eventually the problem may become infeasible. In general, the length Lmax can be

treated as a parameter: we solve Eq. (33) for a range of choices of Lmax, numerically simulate

the OPCPA process in the resulting grating with the full coupled-wave equations, and select a

feasible value of Lmax which yields a useful output spectrum from these simulations. For the

present example, we chose Lmax = 12 mm [twice the minimum length indicated by Eq. (30)]. In

the solution shown below, both this maximum length inequality (33c) and the chirp rate bounds

(33d) are not active, which emphasizes that very little information, and no scanning of Lmax, is

needed in order to arrive at a good solution. Finally, we apply nonlinear-chirp apodization re-

gions to the grating profile returned by the optimization routine [1] [see Fig. 4(a)]. The resulting

total length of the grating is L ≈ 9.55 mm.
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Fig. 4. Nonlinear chirp design example using convex optimization. (a) Optimized chirp

rate, normalized to the peak gain coefficient of the pump, γ0. The horizontal line indicates

the constant chirp rate needed for Eq. (26) to yield the target gain spectrum if γ(Ω) = γ0. (b)

Simulated output spectrum. The spectrum with a nominally linear, apodized chirp profile

is shown for comparison.

The optimized grating and simulated gain spectrum is shown in Fig. 4. The simulations are

based on Eqs. (19a) and (19b). The dashed horizontal line in Fig. 4(b) indicates the target gain.

The actual simulated gain is very close to the target gain; the differences arise due to group

velocity mismatch (GVM) and other effects included in the full numerical simulation. The gain
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spectrum of a nominally linear, apodized grating design supporting the same OPA bandwidth is

shown for comparison, showing pronounced gain narrowing. To quantify the GVM occurring in

this example, we denote the rate of temporal walk-off between two waves as δνi j = v−1
g,i − v−1

g, j
for waves i and j. For a pump wavelength of 1.064 µm and signal wavelength of 1.45 µm (1.65

µm), the resulting GVM values are given by δνsi = −182 fs/mm (−55 fs/mm); δνsp = −88

fs/mm (−105 fs/mm); and δνip = 93 fs/mm (−49 fs/mm). Thus, given the optimized grating

length of 9.55 mm, the range of walk-offs involved is significantly smaller than the duration

of the pulses. Nonetheless, GVM still leads to slight modifications in the signal gain spectrum

compared with the WKB-predicted spectrum.

A number of other convex formulations of this grating design problem are possible, but Eq.

(33) has several advantageous properties. It involves only a small number of free parameters,

appropriate values of which can be estimated by inspection. Furthermore, the objective function

has two particularly advantageous properties. First, it ensures that zK is a good approximation

to an underlying smooth variable. Second, recall that this approach relies on the validity of

Eq. (24), which in turn relies on having a sufficiently slowly-varying grating chirp: by using

smoothness as an objective, we maximize the validity of the approximation upon which the

optimization relies.

It is also worth emphasizing that the convex optimization approach allows us to add addi-

tional convex constraints as needed. For example, we can easily ensure that the gain spectrum

is flat at multiple transverse spatial components of a Gaussian pump beam: for each transverse

position r on the pump, a matrix ΓΓΓ(r) can be calculated and used to specify additional con-

straints. Another set of constraints could be obtained by using Eq. (17) to obtain an estimate of

the frequency-dependent group delay. It would then be possible to trade off gain narrowing and

group delay effects in one or more OPCPA stages.

5. Discussion

5.1. Diffraction and transverse beam effects

In the preceding examples, we have assumed plane-wave interactions. While such assumptions

are fully appropriate for waveguide interactions (after performing modal overlap integrals and

possibly accounting for higher order spatial modes), in bulk nonlinear interactions transverse

beam effects and diffraction can be important [54]. For cases such as OPCPA in which diffrac-

tion can be neglected, it is possible to view the nonlinear mixing as a series of interactions at

each transverse position on the beams, and hence incorporate these interactions into the opti-

mization problem, as described above.

One heuristic approach in tightly focused cases is to assume Gaussian beam profiles and

apply projection integrals as described for example in section 2.4.1 of Ref. [55]. However,

for cases such as DFG involving a non-resonant and long-wavelength idler, the generated idler

components diverge faster than the nonlinear polarization driving them, and so such approaches

may not be very accurate.

A more compelling but also more complicated approach would be to account for diffrac-

tion effects exactly within an extension of the optimization framework presented. We showed

above how the output field can be expressed as a linear function of the longitudinal spatial

frequencies of the QPM grating. However, given the diffracting pump and signal pulsed beam

profiles, it would be possible to generalize our analysis to construct a linear system mapping the

three-dimensional spatial frequency content of the QPM grating to the optical and transverse

spatial frequency components of the output wave. This system could even enable the synthe-

sis of complex spatiotemporal pulses and QPM transfer functions. However, such analysis and

optimization of the resulting system are beyond the scope of this paper.
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5.2. Nonlinear interactions with depletion

In the DFG and OPA examples presented here, we neglected the effects of pump depletion. For

QPM transfer functions used for signal processing applications [38], operating in this regime

can be useful, since it yields linearity of the output wave with respect to the input wave. In

some cases where pump depletion is important, it may be possible to use designs from the

linear regime either directly, or as the starting point for general optimization algorithms (for

example, by finding a global optimum for the linear case with the methods we have presented,

then refining the design via numerical simulations including pump depletion in order to track

this optimum as depletion is increased).

For OPCPA pre-amplifiers, the interaction may also typically involve weak pump depletion,

so our results are directly relevant to such cases. Furthermore, sufficiently chirped gratings

support adiabatic frequency conversion (AFC), which results in a conversion efficiency that

monotonically increases with respect to both pump and signal input intensities [6–8]. We have

tested via numerical simulations (including pump depletion and dispersion to all orders) that the

OPCPA designs shown in section 4 smoothly transition from high gain when the input signal

is weak to high pump depletion across most of its temporal profile (and hence across the signal

spectrum) when the input signal is strong. Therefore, while our designs assumed an undepleted

pump, they are robust against pump depletion effects due to AFC. Nonetheless, strong pump

depletion will modify the signal gain spectrum, and should not be ignored.

For SFG and DFG interactions involving depletion of one of the input waves, the corre-

sponding adiabatic frequency conversion processes do not require significant amplification of

the signal wave, and therefore approximations of the type used for Eq. (24) may be applicable to

this regime as well. For use of such DFG devices inside optical parametric oscillators, we note

that stability would be a critical additional consideration [8, 56]. More generally, we note also

that linear input/output functions of the type utilized in this paper are not required for convex

optimization, and thus a broader class of frequency conversion processes than those considered

in this paper may be describable, with suitable approximations, in terms of convex functions.

5.3. Robustness of the designs

In terms of robustness, the designs presented share some of the general features of QPM de-

signs. For example, changes in temperature will lead to shifts in phasematching. One factor

involved in the temperature sensitivity will be the spatial frequency resolution of the designed

grating, which is related to the total grating length. An important point, however, is that sensi-

tivities to experimental parameters can be included inside the optimization algorithm itself. For

example, we could take the derivative of the DFG coupling matrix T defined in Eq. (12) with

respect to crystal temperature or delay between the incident pulses, or in general some physi-

cal quantity ν , and constrain ‖(∂T/∂ν)g‖ so as to reduce the sensitivity of the output pulses

to changes in parameter ν . As such, designs which are robust against changes in one or more

system parameters can be achieved in a systematic way.

While such robustness analysis is appropriate for changes in “bulk” parameters, fabricated

QPM devices are also subject to an essentially random jitter in the domain sizes and positions.

With lithographic poling, the long-range order of the designed structure can be preserved, and

only local errors in each of the domain boundaries remain; when such errors are statistically

independent of each other, they are called random duty cycle (RDC) errors [31–33]. We have

recently studied these errors in detail [33], showing that the resulting pedestal in the spatial

frequency spectrum of the QPM grating, which occurs for arbitrary nominal designs, can play

a significant role in various experimental configurations. It is therefore important to design

experiments which are not excessively sensitive to this pedestal, or, if possible, to improve the

fabrication process so as to reduce the size of the RDC errors.
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6. Conclusions

In conclusion, we have demonstrated the utility of convex optimization techniques for QPM

grating design. This approach can help facilitate new QPM functionalities, including ultrashort

pulse synthesis and target OPCPA gain spectra. Furthermore, the approach enables systematic

design procedures, by which globally optimum designs can be determined and infeasible design

goals can be rejected. The number of variables involved in the discretized problems can be quite

large (e.g. several thousand), but these problems can be easily posed and solved with freely

available software packages such as CVX [37], which make use of fast and reliable interior-

point methods (see, for example, chapter 11 of [34]).

Another highly valuable property of the convex optimization approach is that additional con-

straints can be added straightforwardly, for example to yield a slowly-varying QPM spatial

profile, to obtain a flat OPCPA gain spectrum across the spatial profile of a Gaussian pump

pulse, or to reduce sensitivity to changes in certain experimental parameters. Practical fabri-

cation constraints such as a maximum grating length can also be included. In developing an

optimization framework, we generalized the QPM transfer function formalism, accounting for

dispersion to all orders for all the arbitrary-bandwidth interacting waves, while imposing a finite

crystal length.

Certain objective functions are particularly useful. The objective function max(|d|) tends

to result in a solution with |d(z)| = max(|d|), which corresponds to a purely phase-modulated

grating. Since fabricating QPM gratings with a varying duty cycle is typically quite challenging,

this objective function yields a device which can be easily fabricated. Another useful objective

function is ‖D2d‖2, which yields a smooth grating profile but typically involves some duty

cycle modulation, except for certain target pulses or transfer functions.

We have considered representative examples, based on solving quite simple convex optimiza-

tion problems. As discussed in section 5, it is likely that several other QPM design problems

(or relaxations thereof) can also be cast as convex optimization problems. Furthermore, other

optical devices such as chirped, dispersion-compensating mirrors, have a similar mathematical

structure as the problems we considered here, and may therefore be amenable to the same op-

timization techniques. We therefore expect these results to be of great use in many aspects of

nonlinear optics, custom waveform synthesis, and ultrafast optics.
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