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Abstract

In this paper, a method to design regular (2, dc)-LDPC codes over GF(q) with both good waterfall

and error floor properties is presented, based on the algebraic properties of their binary image. First, the

algebraic properties of rows of the parity check matrix H associated with a code are characterized and

optimized to improve the waterfall. Then the algebraic properties of cycles and stopping sets associated

with the underlying Tanner graph are studied and linked to the global binary minimum distance of the

code. Finally, simulations are presented to illustrate the excellent performance of the designed codes.

Index Terms

channel coding, error correction coding, nonbinary LDPC codes, iterative decoding, binary image.
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I. INTRODUCTION

Since their rediscovery in [16], low density parity check (LDPC) codes designed over GF(q)

have been shown to approach the Shannon limit performance for q = 2 and very long code lengths

[15][22]. Some efficient optimization methods of the code profile and the matrix structure have

been derived for both long [22][3] and moderate [13] length cases. For fields with parameters

q > 2, it has been shown that the error performance can be improved for moderate code lengths

by increasing q [5][4][11]. It has been shown, especially in [5][11], that as q becomes large

(q ≥ 64) the best performances at finite length are obtained for “ultra-sparse” LDPC codes,

that is with the minimum connectivity on the symbol nodes dv = 2. Furthermore, it is shown

in [11] that dv = 2 non binary LDPC codes have optimal average Hamming weight spectrum

as q → +∞ and N → +∞ when used on binary input channels. In this paper, we will focus

on the finite length optimization of dv = 2 non binary LDPC codes, for which the problem of

choosing appropriately the non zero values in the parity check matrix is simplified. Note also

that the decoding complexity of codes in GF(q) is a lot larger than for binary codes, but iterative

decoding of non binary LDPC codes using the belief propagation (BP) algorithm or its simplified

versions has been addressed efficiently by several authors [5][1][6].

The design of non binary LDPC codes can be addressed in order to meet different objectives:

(i) performance, by trying to improve the waterfall region and/or to lower the error floor, and (ii)

decoding complexity versus performance tradeoff, by trying to ensure good overall performance

using only a limited set of parameters for some efficient and practical hardware implementation

purposes. For finite length codes, the optimization problem is generally solved in a disjoint

manner. First, the positions of the nonzero entries of the parity check matrix H associated with

the non binary code are optimized in order to have good girth properties and minimize the impact

of cycles, when using the BP algorithm on the associated Tanner graph. This can be efficiently

done using the progressive edge growth (PEG) algorithm [13]. Then, the nonzero entries can be

selected either randomly from a uniform distribution among nonzero elements of GF(q) [13] or

carefully to meet some design criteria as done in [4][17].

In this paper, we address the problem of the selection and the matching of the parity check

matrix nonzero entries assuming that the positions of nonzero entries in the parity check matrix

H associated with the non binary code have been previously optimized. The proposed method
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is based on the binary image representation of the matrix H and of its components. First we

address the problem of rows optimization as previously done in [5][17] in order to improve

the waterfall region. Then, we address the problem of lowering the error floor: based on the

observation that the columns defining the minimum distance in the binary image of H are

located on symbols belonging to the shortest length cycles and the associated stopping sets, we

propose a method intended to improve the minimum distance of the binary image of the code.

To this end, we use the algebraic properties of both cycles and stopping sets, considered as

topological substructures inherently present in the underlying Tanner graph of the code. Finally,

the complexity-performance tradeoff is addressed: we show for example that for regular (2, 4)

and (2, 8) LDPC codes, using only one optimized row of coefficients to generate the parity check

matrix, it is possible to have at least the same performance as for a code with randomly selected

coefficients and, for some fields, the waterfall and the error floor region can be both improved.

The paper is organized as follows: in Section II, we briefly review the binary image con-

struction of a non binary parity check matrix and the vector representation of the parity check

equations. The optimization of the rows of the parity check matrix is addressed for waterfall

improvement in Section III. We also study the thresholds under density evolution for random

and row optimized code ensembles. Section IV provides a study of the binary representation of

both cycles and stopping sets, and establishes links between those topological structures of the

Tanner graph and the binary minimum distance property of the code. This study allows us to

propose a method to improve the error floor when using the row optimized code ensemble. In

Section V, some optimization and simulation results are provided and finally conclusions and

perspectives are drawn in Section VI.

II. BINARY IMAGES OF A NON BINARY PARITY CHECK MATRIX H

The motivation of using the binary image of the LDPC code is essentially that we address and

illustrate the optimization process for the non zero values in the case of binary input additive

white gaussian noise (BI-AWGN). In this context, our goal is then to try to maximize the

Hamming minimum distance at the bit level of the LDPC code. Note however that using the

binary image of the code is not mandatory and one could easily generalize our approach at the

symbol level, as it will be notified in sections IV-B, IV-C and IV-E.

Let us consider the parity check matrix H associated with a regular non binary LDPC code
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with the parameters (dv, dc, N) representing the number of nonzero entries of H for the columns,

for the rows and the code length respectively. All the nonzero elements of H are elements of

the Galois field GF(q), with q = 2p and q is the order of the field. Nonzero elements belong to

the set S =
{
αk : k = 0 . . . q − 2

}
where α is the primitive element of the field.

A. Representation of the Galois field using matrices

The Galois field GF(q), described usually using a polynomial (or vector) representation, can

be also represented using matrices [18, p.106]

Definition 1: If p(x) = a0 +a1x+ . . .+xp is a polynomial of degree p having its coefficients

in GF(2). The companion matrix of p(x) is the p× p matrix

A =










0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 1

a0 a1 a2 . . . ap−1










The characteristic polynomial of this matrix is given by

det(A− xI) = p(x)

where I is the identity matrix.

If p(x) is a primitive polynomial, it can be shown [18] that the matrix A is the primitive

element of the Galois field GF (2p) under a matrix representation and thus the powers of A are

the nonzero elements of this field, defining the set M =
{
0, Ak : k = 0 . . . q − 2

}
. Additions

and multiplications in the field correspond to additions and multiplications modulo 2 of these

matrices.

B. Vector representation for the parity check equations

Based on the matrix representation of each nonzero entry, we give thereafter the equivalent

vector representation of the parity check equations associated with the rows of H .

Let x = [x0 . . . xN−1] be a codeword. For the i−th parity equation of H , we have

∑

j:hij 6=0

hijxj = 0 (1)
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Translating (1) into the vector domain, we can write

∑

j:hij 6=0

Hijxj
t = 0

t

where Hij is the transpose of the matrix representation of the Galois field element hij , xj is the

vector representation (binary mapping) of the symbol element xj and t holds for transpose. The

vector 0 is the all zero component vector.

Considering the i-th parity check equation of H , we define Hi = [Hij0 . . . Hijm
. . . Hijdc−1

]

as the equivalent binary parity check matrix, with {jm : m = 0 . . . dc − 1} the indexes of the

nonzero elements of the i−th row. Let Xi = [xj0 . . .xjdc−1
] be the binary representation of the

symbols of the codeword x involved in the i−th parity check equation. When using the binary

representation, the i-th parity check equation of H , can be written as

HiXi
t = 0

t

We define dmin(i) as the minimum distance of the binary code associated with Hi.

C. Example

Let p(x) = x3 + x + 1 be the primitive polynomial used to generate the elements of GF (23).

The primitive element for the matrix representation is given by

A =








0 1 0

0 0 1

1 1 0








Thus, {Ak : k = 0, . . . , 6} are the nonzero elements of GF (23) under this matrix representation

and it is readily checked for our example that Akt
αl

t = αk+l
t.

III. SELECTING ROWS FOR WATERFALL IMPROVEMENT

In this section, we investigate the choice of “good” rows for the parity check matrix regardless

of the structure of the Tanner graph associated with it. First, we briefly review the method

proposed in [5], [17] to select the coefficients row by row. We show that the set of rows provided

by [17] can easily be reduced and we give an analysis of these coefficient sets using the binary

images of the code considered. Then, since the method of [5], as an instance of density evolution,

can be computationally expensive for high field orders, we propose a simpler optimization method
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based on the binary image of the code associated with a row. By comparing the results of both

methods, we observe that the coefficient sets we obtain may encompass the sets given by [17].

We also give some good sets for fields up to GF(256). Finally, we compare the convergence

thresholds for row optimized and random code ensembles for different code parameters and field

orders.

A. Optimization using Monte-Carlo simulations

In [5][17], the authors propose a method to optimize the rows of the parity check matrix H .

They select the coefficients of the matrices carefully using a monte-carlo method: the proposed

method starts with a choice of channel model, after which they search for the dc-tuples that

maximize the marginal entropy of the syndrome after a given number of iterations. They obtain

a primitive set of dc-tuples and then the rows of the matrix H are generated randomly from

the dc-tuples multiplied by constants and from their random permutations. For example, Table

I summarizes the best dc-tuples of coefficients for GF(16) and GF(64) with dc = 4. Using the

mapping used in [17], the corresponding powers of the primitive element α are given in these

tables.

From Table I, we observe that the given sets can be reduced to only one 4-tuple for GF(16)

(resp. two 4-tuples for GF(64)) since the other ones are obtained by multiplying by a constant

one of these 4-tuples. Thus, re-interpreting the primitive sets given in [17] using the powers of

the primitive element allows us to consider some reduced sets for good dc-tuples (indicated by

“ • ” and “ ⋄ ” in Table I).

According to Section II-B, using the equivalent binary parity check matrix associated with

each dc-tuple, we can compute the minimum distance dmin associated with it. In Table I, we

reported dmin and the weight enumerator coefficient W (dmin) associated with each 4-tuple.

For GF(16), we obtain a (N = 16, K = 12, dmin = 2) code and for GF(64), we obtain a

(N = 24, = 18, dmin = 3) code in both cases. As a result, these codes reach or are close to the

best possible dmin for their length and dimension [2].

B. Optimization using binary images

In this section, we present an optimization method that aims to select good rows using the

equivalent binary parity check matrix. The optimization idea is that the higher dmin is, the more
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distinguishable, hence reliable, the messages passed from check nodes to data nodes using BP

are. Therefore considering the equivalent binary parity check matrix Hi, we intend to maximize

dmin(i). Thus, the best dc-tuples candidates are those with the largest dmin and among those dc-

tuples with maximum dmin, the best are those with the smallest weight enumerator coefficient

W (dmin).

1) Search procedure: Since finding good dc-tuples can be computationally expensive, next

we provide some guidelines to accelerate the search procedure of the primitive set of rows:

• dmin(i) is the minimum number of columns of Hi that are dependent, thus the minimum

distance of a dc-tuple is at most the minimum distance associated with any two sub-matrices

Hij and Hij
′ of Hi. The minimum distance associated with these two elements is greater or

equal to 2. Whenever possible (i.e. when we consider a sufficiently high order compared to

the dc-tuple size we try to optimize), we focus on the dc-tuples having a minimum distance

greater or equal to 3.

• Since the rows of H can be some permutations or multiplication by a constant of dc-tuples

of a set, each and every element of this set can be written as an ordered set with the

following structure

1 . . . αi . . . αj . . . αk

︸ ︷︷ ︸

dc

, 0 < i < . . . < j . . . < k

• Based on the previous remarks, the dc-tuples can be derived from the (dc − 1)-tuples by

adding an element αl such as

1 . . . αi . . . αj . . . αk

︸ ︷︷ ︸

dc−1

αl, 0 < i < . . . < j . . . < k < l

• Once we have determined a set of good dc-tuples, as seen in the following example, it can

be further reduced since some dc-tuples can be related by a multiplication by a constant.

Note that, for a field of order q = 2p and a given dc, the equivalent binary matrix Hi defines a

code of length N = pdc and dimension K = p(dc− 1). Using the tables given in [2], we obtain

an upper bound on dmin(i).

2) Comparison of both methods: We consider GF(64) with dc = 4. The equivalent binary

code has the parameters N = 24 and K = 18. In this case, dmin ≤ 4 [2]. Table II summarizes

the primitive set of rows and their weight spectrum when using the same binary mapping as in

[17]. The best codes found have dmin = 3. When comparing our results to those of [17], the
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following observations can be made :

(i) Both procedures find the rows with associated binary minimum distance dmin = 3 and

W (dmin) = 20 (best rows). The method based on the binary images is also able to list all

rows of [17] with dmin = 3 and W (dmin) = 22 (not given in Table II).

(ii) The procedure using binary images records some good candidates not detected by [17]

with W (dmin) = 21.

(iii) As observed in Section III-A, we can reduce the elementary set to three primitive rows

(indicated by“•”, “⋄” and ”⋆” in Table II).

When we further compare the results provided by both methods, for GF(16), both the method

of [5][17] and the proposed method provide the set of rows with the smallest W (dmin). For

GF(64) and dc = 5, the same result is obtained. Both methods seem as effective to obtain the

best candidates. However, the proposed method allows us to optimize the rows for larger field

orders, since its computational complexity is less than that of a search based on an instance of

density evolution. In Table III, we enumerate the best rows found for some fields up to GF(256)

for dc = 4.

C. Minimum distance properties of rows

In Table IV, we compare the maximum binary minimum distance achievable after selecting

rows using the binary image with the upper bound given by [2], for different field orders and

different values dc. When considering for example dc = 4, for GF(16), we obtain a (N =

16, K = 12, dmin = 2) code and for GF(64), we obtain a (N = 24, K = 18, dmin = 3) code.

From Table IV, it appears that the codes obtained using the binary image selection reach or are

close to the best possible dmin for their length and dimension [2] for a wide range of values

dc, especially for low field orders. Moreover, despite the difficulty to reach the upper bound for

high field orders, increasing the order allows to keep the minimum distance greater than 2 for

an increasing range of values dc. Note that dmin is not sufficient to select good rows and that

the best are those with the smallest weight enumerator coefficient W (dmin).

D. Thresholds for row optimized code ensembles

After selecting some potentially good rows, an interesting issue is to predict and analyze the

influence of that choice on the convergence behavior for different code parameters and different
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field orders. Using density evolution [22], we study the theoretical thresholds for both random

and row optimized code ensembles. Note that the latter can be viewed as an expurgated ensemble

of the former. In this study, we focus on the row optimized code ensembles generated with only

one optimized row for some different field orders.

Figure 1 depicts a threshold comparison between random and optimized row code ensembles

for (2, 3), (2, 4) and (2, 6)–LDPC codes as a function of the field order. The thresholds have

been computed with a Monte Carlo estimation of the density evolution. As the variance of

the estimation of the threshold highly depends on the parameters used in the Monte Carlo

approach, we have chosen to keep reasonable values for the density evolution parameters (random

interleaving of size N = 10000, a maximum of 200 iterations), together with a simple variance

reduction technique. The variance reduction used is simply a posteriori averaging of the threshold

values for independent initializations of the density evolution. As observed in Figure 1, the row

optimized code ensemble exhibits a better threshold behavior than the random one for each field

order, suggesting that the waterfall region of the error performance curve can be improved by

selecting carefully the rows of the parity check matrix. However, the threshold improvement

tends to vanish as the field order increases.

IV. LOWERING ERROR FLOOR

In Section III, we have applied local optimizations on H to help the iterative decoding. In this

section, we address the problem of the global optimization of H using some local properties

of the graph associated with the code in order to design a good code for maximum likelihood

decoding.

A. Notations and motivations

Let Hb denote the equivalent binary matrix of H in GF (2). Hb is obtained by replacing

all elements in H by their p × p binary matrix representation as described in Section II. Let

Nb = N.p be the binary codeword length. Since the binary minimum distance is defined by the

minimum number of independent columns of Hb, it is also strongly related to the topology of

the Tanner graph associated with H , noted GH .

In this section, we show that, as in the binary case, it is likely that the cycles and the stopping

sets of GH remain the key elements to lower the error floor on the frame error rate (FER)
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performance of the code. Indeed, as developed in the following, the cycles and the stopping sets

of GH describe specific topological structures, that may provide low weight codewords of H . Our

definition of a structure in the graph is a set of nodes which forms a closed topological clique,

and therefore defines a sub-code of the global code. First, we analyze the equivalent binary

representations of both the cycles and the stopping sets of GH , in order to link their algebraic

properties to the “local” binary minimum distance of the LDPC code. Then, we propose an

iterative method to improve the error floor using row optimized LDPC code ensembles. Finally,

we derive some bounds for the binary minimum distance of (2, dc, N) non binary LDPC codes.

We also give the binary minimum distances for several codes obtained using our optimization

method.

For our analysis, we assume the knowledge of the structure of the graph GH (randomly

designed or optimized using instances of the PEG algorithm [13] or other good construction

algorithms [23]).

B. Cycle ”cancellation”

For a (2, dc, N) regular code, the binary representation of a cycle of GH is always a square

matrix. In order to lower the error floor, we would like to avoid cycles that provide low weight

codewords. Therefore, if we consider a cycle of length l, this cycle is not involved in the

equivalent binary minimum distance if the rank of the equivalent binary matrix associated with

the cycle is full (i.e., the cycle does not provide any codeword). Let g = lmin be the girth of

GH . By successively ensuring full rank condition for each binary matrix representation of the

cycles of GH with lengths g ≤ l ≤ lmax, we can expect to lower the error floor by eliminating

low weight codewords of the equivalent binary code.

1) Matrix representation of a cycle: Let C̃d be the block matrix representation of a cycle

of length l extracted from GH with d = l/2. Using row and column permutations, C̃d can be

related to the representation Cd of an elementary cycle given by the following d×d block square
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matrix:

Cd =















B1 B2 0 . . . . . . 0

0 B3 B4

...

...
. . .

...

...
. . . 0

0 Bl−3 Bl−2

B0 0 . . . . . . 0 Bl−1















where Bn, n = 0, . . . , l− 1 are the matrix representations of the non-zeros entries αn of H (see

Section II-B) involved in the cycle C̃d.

2) Full rank condition (FRC): The determinant of C̃d is given by

det (C̃d) = (−1)πi+πj det (Cd)

where πi (resp. πj) is the number of row permutations (resp. column permutations) which are

used to transform any cycle into the form of matrix Cd. Hence, C̃d is singular if and only if Cd

is singular.

Furthermore, the matrix Cd is itself equivalent to the matrix

C
′

d =















B1 B2 0 . . . . . . 0

0 B3 B4

...

...
. . .

...

...
. . . 0

0 Bl−3 Bl−2

0 0 . . . . . . 0 D















where D =
∏

i B2i+1 +
∏

i B2i. The equivalence is obtained using Gaussian elimination. Since

C
′

d is an upper triangular block matrix, the determinant of Cd is equal to the product of the

determinants of the block matrices of the diagonal. Since the matrices Bk, k = 0, . . . , l − 1 are

invertible, the full rank condition reduces to det(D) 6= 0. Using finite field addition properties,

this is finally equivalent to

(FRC) :
d−1∏

i=0

B2i+1 6=
d−1∏

i=0

B2i (2)

Remark: A short derivation shows that the FRC condition for the equivalent binary matrix of

a given cycle has its equivalent statement at the symbol level in the field as:

(FRCS) :
d−1∏

i=0

α2i+1 6=
d−1∏

i=0

α2i (3)
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where αi are the non-zero symbols involved in the cycle.

In the following, a cycle is called “cancelled” when the FRC is fulfilled for that cycle.

C. Topological stopping set mitigation

We have seen that the cycles in the Tanner graph of the code can have a mitigated influence

if the FRC condition is fulfilled, ensuring that no low weight codewords can be created by a

particular cycle. The global performance is however not only dependent on the cycle structure,

but also on the stopping sets (inherently present in the structure of GH) [7][23] that are not

reduced to a single cycle.

For a (2, dc, N)-regular code, a stopping set (defined through GH) that is not reduced to a

single cycle is composed of at least 3 imbricated cycles and describes a topological structure of

the Tanner graph that we aim to characterize algebraically. Note that the denomination “stopping

set” may be abusive in our case. Actually, we are not interested in the property that a stopping

set is a fixed point of the BP decoder for the Erasure channel, but rather in the fact that it defines

a specific topological structure of dimension immediately larger than a cycle. To this aim, we

adopt the topological definition of a stopping set, as proposed in [7].

Let ds be the number of symbols involved in a given stopping set, that we refer to “symbol

weight” of a stopping set in the rest of the paper. For a (2, dc, N)-regular graph, the minimum

symbol weight of a stopping set is ds,min = ⌈3g/4⌉, where g is the girth of the graph GH . For

all stopping sets with symbol weights ds ≥ ds,min, the equivalent binary matrix is no longer a

square matrix: its binary representation is at most a (ds − 1)p × dsp rectangular matrix Hss.

The minimum distance of the code defined by Hss depends on the choice of the coefficients αi

involved in the stopping set. Furthermore, each codeword associated with Hss is a codeword of

the global code defined by Hb. Thus, by nature, the code performance is drastically limited by

the smallest stopping sets and their associated binary minimum distance.

Unfortunately, unlike for cycles, there is no way to “cancel” the influence of such stopping sets

by proper symbol assignments: since each stopping set has a minimum distance associated with

it, the only way to ensure a good minimum distance for the whole code is to try to maximize the

minimum distance over all stopping sets (practically over the most exhaustive set of stopping

sets we can enumerate). It is also important to note that the cycle cancellation for the smallest

cycles is an important pre-requirement to avoid “catastrophic” stopping sets. The reason is that
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the stopping sets contain cycles, and therefore ensuring cycle cancellation inherently avoids that

some columns of the equivalent binary parity matrix in a stopping set add to zero. Note that

for a graph GH with minimum variable node degree dv = 2, it is quite simple to identify the

set of stopping sets with minimum weight ds,min: this can be achieved in conjunction with the

PEG construction by adding a procedure which tests if a group of nodes contains 3 imbricated

cycles.

Remark: As for cycles, this strategy can be applied at the symbol level, if the performance

criterion to track and improve is the minimum symbol distance.

D. Global optimization

In this section, we develop an iterative and row-wise optimization procedure which capitalizes

on the properties described in Sections IV-B and IV-C to lower the error floor of the non binary

LDPC codes.

The proposed optimization is based on a successive fulfillment of the FRC for all cycles of

length l, as l increases while maximizing the “local” minimum distance associated with the

stopping sets. Cycle cancellation is done with priority to avoid low weight codewords induced

by non cancelled cycles. For optimization purposes, the knowledge of the cycle (resp. stopping

set) distributions is assumed for some l (resp. ds) from g (resp. ds,min) up to a given length

lmax (resp. a given weight ds,max). The initial Tanner graph GH is first optimized using the PEG

algorithm [13]. We have modified the PEG algorithm in order to have both good girth property

and stopping set distribution (the number of stopping sets with minimum weight is minimized).

Let R and S be the set of optimized rows chosen from Section III and the set of the smallest

stopping sets (more generally, a union of stopping set ensembles with different low weights),

respectively. The following general procedure is applied:

• Initialization: The rows in H are chosen at random from the rows in R and their random

permutations.

• Initial cycle cancellation: This step intends to cancel successively all cycles with length

l, g ≤ l ≤ lM , included in the stopping sets in S in order to have well conditioned stopping

sets. We define I as the set of the row indexes of H to be optimized. The optimization is

performed iteratively using the following procedure for l ≥ g:

1) Initialize I with all the row indexes of H .
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2) Select at random a row index m ∈ I.

3) Compute Π
(m)
n , a set of n random permutations derived from R.

4) Select the permutation in Π
(m)
n that maximizes the number of cancelled cycles of length

l, conditioned that all shorter cycles are cancelled.

5) I ← I − {m}. If all length l cycles are cancelled, l = l + 1, go to step 1. Otherwise,

if I is empty and there subsist some non-cancelled cycles, go to step 1, else go to

step 2.

• Cycle cancellation and stopping set mitigation: In this step the successive cancellations

are performed for some l ≥ lM following the same procedure as the above procedure except

for step 4. The permutation selection is performed based on the maximization of the number

of cancelled cycles and the maximization of the minimum distance over all the stopping

sets belonging to S with which the current row m is connected. This maximization is still

performed conditioned that all shorter cycles are cancelled.

• End of optimization: the optimization procedure is stopped when cycle cancellation is not

possible anymore.

Note that, due to computational complexity, we have to restrict the initial set S. It is checked a

posteriori that we have a good minimum distance for some stopping sets with higher weights not

contained in the set S. Since it is impossible to cancel the cycles for all lengths l, we expect that

large non cancelled cycles have less impact on the minimum distance as well as less dramatic

influence on the stopping sets in which they are involved, as the size of the associated submatrix

increases with the size of the cycles.

E. Achievable binary minimum distance

In this section, we study bounds on the achievable binary minimum distance of non binary

(2, dc, N) regular LDPC codes. We first derive some bounds on the achievable minimum distance

when we consider random and PEG based Tanner graphs. Then we compare the bounds we

obtained with the minimum distances of the matrices that we have optimized using the previous

optimization method.

We suppose that the cycle cancellation has been efficiently done (i.e. the cycles are cancelled

for sufficiently long lengths), resulting in that no low weight codewords are produced by cycles.

In this context, low weight codewords are supposed to be given by stopping sets.
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1) Bounding the binary minimum distance: For a given girth g of GH , the minimum weight

of a stopping set is lower bounded by

ds,min = ⌈3g/4⌉ (4)

This minimum value is achieved if the 3 imbricated cycles have exactly length g. Then,

the matrix Hss associated with the stopping sets with weight ds,min has dimensions at most

(Mss = (ds,min− 1).p,Nss = ds,min.p). Using the maximum achievable minimum distance given

by [2] for a code with the preceding parameters (Mss, Nss), we can obtain an upper bound on

the maximum achievable binary minimum distance for that minimal stopping set with weight

ds,min. This upper bound becomes an upper bound for the global code associated with Hb if at

least one stopping set of GH has the minimal size given in (4). We refer this upper bound to the

worst case upper bound.

2) Minimum distance versus codeword length: Next, we aim to link the minimum distance

with the length Nb of the code defined by Hb, still under the assumption that at least one stopping

set of GH has the minimum size ds,min.

For a (dv, dc)-regular Tanner graph with N variable nodes and M check nodes, an upper bound

on the girth of the graph as a function of N has been derived in [13, Lemma 3]. Applying this

result for the (2, dc, N) case, we can derive an upper bound on ds,min:

Lemma 1: Let GH be a (2, dc)-regular Tanner graph. The minimum stopping set weight ds,min

is upper bounded by

ds,min ≤ min (d1, d2) (5)

where

d1 =







3⌊t1⌋+ 2 if I1 = 0

3⌊t1⌋+ 3 otherwise

d2 =







3⌊t2⌋+ 2 if I2 = 0

3⌊t2⌋+ 3 otherwise

in which

t1 =
log ((M − 1)(1− 2

dc
) + 1)

log (dc − 1)
(6)

t2 =
log ((N − 1)(1− dc

2(dc−1)
) + 1)

log (dc − 1)
(7)
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and I1 is equal to 0 if and only if

(dc − 1)⌊t1⌋ > M − 1−
dc((dc − 1)⌊t1⌋ − 1)

dc − 2

and I2 is equal to 0 if and only if

(dc − 1)⌊t2⌋ > N − 1−
2.(dc − 1)((dc − 1)⌊t2⌋ − 1)

dc − 2
Note that for a code of length N , according to this lemma, ds,min varies in O(log (N)). Using

the upper bound in [2], we are now able to compute numerically an upper bound on the binary

minimum distance versus Nb = p.N for a regular code.

However, since the upper bound in [2] for a code with parameters (Mss, Nss) does not provide

an analytical expression of dmin as a function of ds,min, we apply the Elias upper bound for a

code with parameters (Mss = (ds,min − 1).p,Nss = ds,min.p) [21]:

dmin ≤ 2A.(1− A)ds,min.p (8)

with A solution of

1/ds,min = 1 + A log2(A) + (1− A) log2(1− A), 0 ≤ A ≤ 1/2

Reporting (5)-(7) into (8), we can conclude that dmin scales as O(log (N)) = O(log (Nb)). This

can be related to a previous result from [9], where it is shown that the minimum distance of

the binary (2, dc)-regular LDPC codes can increase at most logarithmically with the codeword

length N : this emphasizes the need for efficient methods to design codes with good minimum

distance properties.

Recall that the expression given by (8) is actually a worst case upper bound, since we assume

that there are stopping sets in the Tanner graph GH with the minimum size given by (4). As

seen for example in Figure 2 for Nb = 256, a specific construction based on a modified version

of the PEG algorithm can avoid the stopping sets with the minimum size ds,min. In such cases,

the worst case upper bound (8) no longer applies and can be therefore exceeded.

3) Binary minimum distance comparison: When considering regular PEG designed codes,

in order to derive a bound, we use the best optimized (2, dc) graphs GH obtained with a PEG

construction, and we compute the effective achievable minimum stopping set weight. Then, as

above, we can derive a bound on the minimum distance achievable under a PEG construction

using the minimum weight stopping sets and the upper bound [2].
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In Figure 2, we report the binary minimum distance we have computed for some codes

optimized using our method (“Opt. codes” curve) and we present some bounds for (2, 4) LDPC

codes over GF (256): “Bound-random” is the bound derived from Lemma 1 and upper bound

[2], and “UB- Opt codes” is an upper bound derived from the effective ds,min of optimized

codes in [19] and the upper bound [2]. We observe that dmin = O(log(Nb)). Note that in our

PEG constructions, the effective minimal stopping set weight was either ds,min or ds,min + 1,

explaining why the PEG bound can be higher than the random graph upper bound based on

minimal stopping set with weight strictly equal to ds,min. Similar results were obtained for other

field orders [20].

4) Estimating the equivalent minimum distance: For a given matrix H of a (2, dc)-regular

LDPC code, it is possible to compute the stopping set ensembles S for some ds ≥ ds,min. Using

this ensemble S, we can compute the binary minimum distance of the matrix Hss associated

with each stopping set in S. The binary minimum distance of Hb is less or equal to the minimum

over all the computed minimum distances. This method appears to be a good tradeoff between

accuracy and complexity when compared to the impulse method which has been proposed to

estimate the minimum distance of LDPC codes [10]. This method allows us to have quickly a

good estimate of the minimum distance, especially if the code structure was previously optimized

using a cycle cancellation (no codewords provided by short cycles). When the cycle cancellation

has not been used previously, the impulse method may be required to find the low weight

codewords that the non cancelled cycles may have introduced.

Remark : This approach can be easily extended to the estimation of the symbol minimum

distance.

V. OPTIMIZATION AND SIMULATION RESULTS

A. Optimization strategies

The different construction methods to be compared are the following:

(i) Random method (R): Given a binary matrix, the nonzero entries are randomly selected

from the nonzero elements in the fields GF(q).

(ii) Davey-Mackay method (DM): Given a binary matrix and a set of good dc-tuples (previ-

ously optimized based on Section III), the rows of H are generated randomly from these

dc-tuples, from these dc-tuples multiplied by constants and from their random permutations.
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(ii) Binary image method (B): Given a binary matrix and a unique dc-tuples (previously

optimized based on Section III), the optimization is performed using the successive cycle

cancellation and stopping set influence mitigation described in Section IV. Each row of H

is generated randomly from the selected dc-tuple and its random permutations. By highly

constraining the matrix construction using only one primitive row, we intend to obtain a

good performance-complexity tradeoff as well.

B. Results

All the comparisons are done using the same matrix structure: first the graph GH is optimized

in order to have good girth and stopping set distribution properties. Then, the values αi are

chosen using one of the previously described methods. For different frame lengths and field

orders, we compare the FER assuming a memoryless binary input additive white Gaussian noise

(BI-AWGN) transmission channel and an iterative BP decoder over GF(q) at the receiver [1].

The maximum number of iterations is fixed to 1000 to ensure proper convergence. Much less

iterations are performed on average with the help of syndrome calculation as stopping criterion.

Figure 3 depicts the FER for a (dv = 2, dc = 4)-LDPC code, different field orders and almost

the same bit length. As predicted by the theoretical thresholds, the waterfall gain for B and

DM methods over R method vanishes when field order increases. The error floor is reduced in

the order of one decade for GF(64) when we compare the methods B and R/DM, showing the

effect of providing attention to the cycle and stopping set configurations. For GF(256), the three

methods have almost the same performance up to FER= 10−5. Figure 4 depicts the FER for

a (2, 4)-LDPC code over GF(16) and a (2, 8)-LDPC code over GF(64). For the (2,4) code, we

observe that the selection of some good rows is very relevant for the small field orders. For high

rate codes, the waterfall gain decreases with the rate for a given field order, but the optimization

can improve drastically the error floor.

More generally, simulation results underline that the row optimization (DM method) is not

sufficient to ensure good performance in the error floor region. Hence, the matching of the

matrix coefficients through cycle cancellation and stopping set mitigation (B method) appears

as mandatory to address this problem.
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C. Comparison with existing codes

In this section, we compare our performance results with some state of the art optimized

binary codes with small codeword lengths for the BI-AWGN channel. In Figure 5, we compare

the performance of our codes with that of [14] and with optimized irregular LDPC code whose

irregularity is taken from [22] (the PEG algorithm is used to build the parity check matrix in

order to avoid short cycles) for R = 1/2 and K = 1024 information bits. We observe that the

error floor region is high for the irregular LDPC codes and that we have a gain of about 0.6 dB

compared to the code of [14] in the waterfall region.

Since the optimized codes from [14] are designed for rather low coding rates, we further

compare our results with that of [8], whose codes are designed for high rates codes. With our

codes, the waterfall region is improved of about 0.25 dB, and slightly more for R = 4/5 as

shown in Figure 6. This gain has to be balanced by the higher decoding complexity of nonbinary

codes. Note that the codes presented in [8] have to our knowledge the best available performance

for binary codes presented in the literature.

VI. CONCLUSION

In this paper, we have addressed the problem of the design of non binary (2, dc, N) regular

LDPC codes. Using the binary image of the code, we characterized the algebraic properties

of rows, cycles and stopping sets with respect to a local or global minimum distance. Then,

we proposed a method for both waterfall and error floor improvements based on these algebraic

properties. The results show that the optimization of local topological structures (rows, cycles and

stopping sets) is important to design codes with both good waterfall and error floor properties.
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GF Row coefficients dmin W (dmin)

11 7 3 0 2 1 •

16 11 7 4 0 2 1 •

11 8 4 0 2 1 •

12 8 4 0 2 1 •

48 35 26 0 3 20 •

28 54 13 0 3 20 •

55 28 13 0 3 22 ⋄

64 27 48 35 0 3 22 ⋄

21 36 8 0 3 22 ⋄

22 37 9 0 3 20 •

50 15 41 0 3 20 •

42 50 15 0 3 22 ⋄

TABLE I

ROW COEFFICIENTS FOR GF(16) AND GF(64) AND dc = 4 FROM [17].

Row coefficients dmin W (dmin)

37 22 9 0 3 20 •

54 28 13 0 3 20 •

50 41 15 0 3 20 •

48 35 26 0 3 20 •

44 18 7 0 3 21 ⋄

37 19 9 0 3 21 ⋆

54 28 10 0 3 21 ⋆

56 37 11 0 3 21 ⋄

53 44 18 0 3 21 ⋆

37 26 19 0 3 21 ⋄

45 35 26 0 3 21 ⋆

52 45 26 0 3 21 ⋄

TABLE II

ROW COEFFICIENTS FOR GF(64) AND dc = 4 USING BINARY IMAGES.
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GF Row coefficients dmin W (dmin)

16 11 7 3 0 2 1

15 10 5 0 3 38

20 15 5 0 3 38

24 15 5 0 3 38

32 24 15 6 0 3 38

21 14 7 0 3 38

23 15 7 0 3 38

22 14 7 0 3 38

37 22 9 0 3 20

64 44 18 7 0 3 21

37 19 9 0 3 21

93 37 18 0 3 5

94 38 19 0 3 5

106 75 19 0 3 5

128 108 74 18 0 3 6

93 38 19 0 3 6

95 38 19 0 3 6

107 75 19 0 3 6

183 172 8 0 4 156

183 173 8 0 4 159

182 172 8 0 4 160

88 80 8 0 4 161

256 89 81 9 0 4 161

167 127 40 0 4 161

182 173 8 0 4 162

169 127 40 0 4 162

169 128 40 0 4 162

TABLE III

ROW COEFFICIENTS FOR DIFFERENT FIELD ORDERS AND dc = 4.
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dc

3 4 5 6 7 8 9 10 11 12

16 3 (3) 2 (2)

32 3 (4) 3 (3) 2 (2)

GF 64 4 (4) 3 (4) 3 (3) 2 (2)

128 4 (4) 3 (4) 3 (3)

256 4 (4) 3 (4)

TABLE IV

MINIMUM DISTANCE ACHIEVABLE FOR ROWS USING THE BINARY IMAGE. THE UPPER BOUND FROM [2] IS REPORTED IN

BRACKETS (.).

GF(16) GF(32) GF(64) GF(128) GF(256)
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Fig. 1. Theoretical thresholds comparison between random and optimized row code ensembles for (2, 3), (2, 4) and (2, 6)-LDPC

codes as a function of the field order. The thresholds are computed through density evolution using Monte-Carlo simulations

with Ns = 10000 symbols per codeword.
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Fig. 2. Bounds on the achievable minimum distance for a (2, 4) non binary LDPC codes over GF (256).
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Fig. 3. FER versus Eb/N0: GF = {64, 256}, Nb = {852, 848} bits, R = 1/2.
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Fig. 4. FER versus Eb/N0: (i) GF (16), Nb = 1504 and R = 1/2, (ii) GF (64), Nb = 576 and R = 3/4.
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Fig. 5. FER versus Eb/N0 : comparison with Quasi-cyclic codes from [14] and irregular codes from [22] for R = 1/2 and

K = 1024 information bits. Non binary codes are designed over GF(256).
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Fig. 6. FER versus Eb/N0 : comparison with [8]. Non binary codes are designed over GF(256). K = 1024 information bits
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