
Rochester Institute of Technology Rochester Institute of Technology

RIT Scholar Works RIT Scholar Works

Theses

8-2021

Design of Reversible Quantum Logic Structures in CMOS Design of Reversible Quantum Logic Structures in CMOS

Technology Technology

Bahar Canga
bxc7483@rit.edu

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Recommended Citation

Canga, Bahar, "Design of Reversible Quantum Logic Structures in CMOS Technology" (2021). Thesis.

Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact
ritscholarworks@rit.edu.

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F10872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/10872?utm_source=scholarworks.rit.edu%2Ftheses%2F10872&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

DESIGN OF REVERSIBLE QUANTUM LOGIC STRUCTURES IN

CMOS TECHNOLOGY

BAHAR CANGA

DESIGN OF REVERSIBLE QUANTUM LOGIC STRUCTURES IN CMOS TECHNOLOGY

by

BAHAR CANGA

GRADUATE THESIS

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE

in Electrical Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

AUGUST, 2021

DESIGN OF REVERSIBLE QUANTUM LOGIC STRUCTURES IN CMOS TECHNOLOGY

BAHAR CANGA

Committee Approval:

We, the undersigned committee members, certify that Bahar Canga has completed the

requirements for the Master of Science degree in Electrical Engineering.

Mr. Mark A. Indovina, Graduate Research Advisor Date
Senior Lecturer, Department of Electrical and Microelectronic Engineering

Dr. Dan Phillips Date
Associate Professor, Department of Electrical and Microelectronic Engineering

Mr. Carlos Barrios Date
Lecturer, Department of Electrical and Microelectronic Engineering

Dr. Ferat Sahin, Department Head Date
Professor, Department of Electrical and Microelectronic Engineering

Dedication

I would like to dedicate this work first to my supporting and loving family, my mother Nursel

Canga, my father Hakan Canga, my brother Alphan Canga, my significant other Caleb Klaver

and my ferrets Greg, Peach, Shadow, Pinky and Nugget, and last but not least to Professor Mark

Indovina who made this work possible by guiding, supporting and helping me through.

Declaration

I hereby declare that except where specific reference is made to the work of others, that all

content of this Graduate Paper are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other University. This Graduate

Project is the result of my own work and includes nothing which is the outcome of work done in

collaboration, except where specifically indicated in the text.

Bahar Canga

August, 2021

Acknowledgements

I would like to thank Professor Mark Indovina for guiding, helping and supporting me through

this thesis work and being a great role model as an engineer and as an entrepreneur. I would also

like to thank to Dr. Dorin Patru, Dr. Ferat Sahin, Dr. Dan Philips and Professor Carlos Barrios

for their support, time and feedback. Finally, I would like to thank to my loving and supporting

family and friends.

Abstract

Reversible logic gates have an equal number of inputs and outputs, which also makes it possible

to reverse calculate and reconstruct the inputs from the outputs. Quantum logic elements are

inherently reversible and requires very little energy to operate. Some of the most common uses

of Quantum Computers are in the design of Convolutional Neural Networks (CNN), Deep Neural

Networks (DNN) and for machine learning (ML) purposes. In this research, the reversible logic

gates were designed with 45ηm CMOS technology modeled after reversible quantum logic gates.

As a proof of concept, hardware that provided Sigmoid Neuron Functionality was carried out by

processing the MNIST Dataset, a handwritten digit database for number recognition.

Contents

Contents v

List of Figures ix

List of Tables xiv

1 Introduction 1

1.1 Research Goals . 3

1.2 Thesis Contributions . 3

1.3 Organization . 4

2 Background Research 6

3 Theory 9

3.1 Schrödinger’s Equation . 10

3.2 Bloch Sphere . 10

3.3 Energy Conservation . 11

4 Quantum Notations and Quantum Gates 12

4.1 Hilbert Spaces and Dirac Notation . 12

4.1.0.1 Ket . 13

Contents vi

4.1.0.2 Bra . 13

4.2 Quantum Gates . 14

4.2.0.1 Identity (I) Gate . 14

4.2.0.2 Pauli-X (X) Gate . 14

4.2.0.3 Pauli-Y (Y) Gate . 15

4.2.0.4 Pauli-Z (Z) Gate . 16

4.2.0.5 Phase (S, P) Gate . 17

4.2.0.6 Hadamard (H) Gate . 18

4.2.0.7 CNOT Gate . 19

4.2.0.8 Toffoli Gate . 20

4.2.0.9 SWAP Gate . 21

4.2.0.10 Fredkin Gate . 22

5 Cell Library 24

5.0.1 Inverter . 25

5.0.2 Reversible NAND . 26

5.0.3 Reversible NOR . 28

5.0.4 CNOT . 30

5.0.5 SWAP . 31

5.0.6 Toffoli Gate . 32

5.0.7 Reversible Full Adder . 33

5.0.8 Fredkin Gate . 34

5.0.9 Reversible D-Latch . 35

5.0.10 Reversible 32-bit Register . 37

5.0.11 Reversible 32-bit Carry Look Ahead Adder 39

Contents vii

5.0.12 Reversible 16-bit Multiplier . 44

6 Testing Components 49

6.0.1 Inverter Test . 50

6.0.2 Reversible NAND Test . 52

6.0.3 Reversible NOR Test . 53

6.0.4 CNOT Test . 54

6.0.5 SWAP Test . 56

6.0.6 Toffoli Test . 57

6.0.7 Reversible Full Adder Test . 59

6.0.8 Fredkin Test . 60

6.0.9 D-Latch Test . 61

6.0.10 Reversible 32-bit Register Test . 63

6.0.11 Reversible 32-bit Carry Look Ahead Adder Test 64

6.0.12 Reversible 16-bit Multiplier Test . 66

7 Reversible Multiply Accumulate Block 70

7.1 Algorithm and the Implementation . 71

8 Results and Discussion 78

8.1 Results . 78

8.2 Discussion . 80

9 Conclusion 82

9.1 Future Work . 83

References 84

Contents viii

I Testbench Code and Simulation Results 87

I.1 Reversible Carry Look Ahead Adder 4-bit Testbench 87

I.2 Reversible Carry Look Ahead Adder 16-bit Testbench 90

I.3 Reversible Carry Look Ahead Adder 32-bit Testbench 95

I.4 Reversible Multiplier 2-bit Testbench . 99

I.5 Reversible Multiplier 4-bit Testbench . 106

I.6 Reversible Multiplier 8-bit Testbench . 108

I.7 Reversible Multiplier 16-bit Testbench . 111

I.8 Reversible Register 32-bit Testbench . 114

I.9 Reversible Register 32-bit Testbench 2 . 121

I.10 Reversible Multiply Accumulate Testbench . 124

I.11 Reversible Multiply Accumulate Code . 127

I.12 Reversible Register 32-bit Results . 133

I.13 Reversible Carry Look Ahead Adder 32-bit Results 135

I.14 Reversible Carry Look Ahead Adder 16-bit Results 137

I.15 Reversible Carry Look Ahead Adder 4-bit Results 139

I.16 Reversible 16-bit Multiplier Results . 141

I.17 Reversible 8-bit Multiplier Results . 143

I.18 Reversible 4-bit Multiplier Results . 145

I.19 Reversible 2-bit Multiplier Results . 147

I.20 Reversible Multiply Accumulate Results . 149

List of Figures

3.1 Bloch Sphere . 11

4.1 Identity Gate Symbol . 14

4.2 Pauli-X Gate Symbol . 15

4.3 Pauli-Y Gate Symbol . 16

4.4 Pauli-Z Gate Symbol . 16

4.5 Phase Gate Symbol . 17

4.6 Hadamard Gate Symbol . 18

4.7 CNOT Gate Symbol . 19

4.8 Toffoli Gate Symbol . 20

4.9 SWAP Gate Symbol . 21

4.10 Fredkin Gate Symbol . 22

5.1 Inverter Schematic . 25

5.2 Inverter Symbol . 25

5.3 Inverter Layout . 26

5.4 Reversible NAND Schematic . 26

5.5 Reversible NAND Symbol . 27

5.6 Reversible NAND Layout . 28

List of Figures x

5.7 Reversible NOR Schematic . 28

5.8 Reversible NOR Symbol . 29

5.9 Reversible NOR Layout . 30

5.10 CNOT Schematic . 30

5.11 CNOT Symbol . 31

5.12 CNOT Layout . 31

5.13 SWAP Schematic . 31

5.14 SWAP Symbol . 31

5.15 SWAP Layout . 32

5.16 Toffoli Schematic . 32

5.17 Toffoli Symbol . 33

5.18 Toffoli Layout . 33

5.19 Reversible Full Adder Schematic . 33

5.20 Reversible Full Adder Symbol . 34

5.21 Reversible Full Adder Layout . 34

5.22 Fredkin Schematic . 34

5.23 Toffoli Symbol . 35

5.24 Fredkin Layout . 35

5.25 Reversible D-Latch Schematic . 35

5.26 Reversible D-Latch Symbol . 36

5.27 Reversible D-Latch Layout . 36

5.28 Reversible 32-bit Register Schematic . 37

5.29 Reversible 32-bit Register Symbol . 37

5.30 Reversible 32-bit Register Layout . 38

5.31 Reversible 32-bit Carry Look Ahead Adder Schematic 39

List of Figures xi

5.32 Reversible 4-bit Carry Look Ahead Adder Schematic 40

5.33 Reversible 4-bit Carry Look Ahead Adder Symbol 40

5.34 Reversible 4-bit Carry Look Partial Product Unit Schematic 40

5.35 Reversible 4-bit Carry Look Ahead Partial Product Unit Symbol 40

5.36 Reversible 16-bit Carry Look Ahead Adder Schematic 41

5.37 Reversible 16-bit Carry Look Ahead Adder Symbol 41

5.38 Reversible 32-bit Carry Look Ahead Adder Symbol 42

5.39 Reversible 32-bit Carry Look Ahead Adder Layout 43

5.40 Reversible16-bit Multiplier Schematic . 44

5.41 Reversible 8-bit Multiplier Schematic . 45

5.42 Reversible 8-bit Multiplier Symbol . 45

5.43 Reversible 4-bit Multiplier Schematic . 46

5.44 Reversible 4-bit Multiplier Symbol . 46

5.45 Reversible 2-bit Multiplier Schematic . 47

5.46 Reversible 2-bit Multiplier Symbol . 47

5.47 Reversible 16-bit Multiplier Symbol . 47

5.48 Reversible 16-bit Multiplier Layout . 48

6.1 Inverter Test Schematic . 50

6.2 Inverter Simulation . 51

6.3 Reversible NAND Test Schematic . 52

6.4 Reversible NAND Simulation . 53

6.5 Reversible NOR Test Schematic . 53

6.6 Reversible NOR Simulation . 54

6.7 CNOT Test Schematic . 54

List of Figures xii

6.8 CNOT Simulation . 55

6.9 SWAP Test Schematic . 56

6.10 SWAP Simulation . 57

6.11 Toffoli Test Schematic . 57

6.12 Toffoli Simulation . 58

6.13 Reversible Full Adder Test Schematic . 59

6.14 Reversible Full Adder Simulation . 60

6.15 Fredkin Test Schematic . 60

6.16 Fredkin Simulation . 61

6.17 D-Latch Schematic . 61

6.18 D-Latch Simulation . 62

6.19 Reversible 32-bit Register Test Schematic . 63

6.20 Reversible 32-bit Register Simulation . 63

6.21 Reversible 32-bit Carry Look Ahead Adder Test Schematic 64

6.22 Reversible 32-bit Carry Look Ahead Adder Test Simulation 65

6.23 Reversible 16-bit Carry Look Ahead Adder Test Schematic 65

6.24 Reversible 16-bit Carry Look Ahead Adder Test Simulation 65

6.25 Reversible 4-bit Carry Look Ahead Adder Test Schematic 66

6.26 Reversible 4-bit Carry Look Ahead Adder Test Simulation 66

6.27 Reversible 16-bit Multiplier Test Schematic . 66

6.28 Reversible 16-bit Multiplier Simulation Result 67

6.29 Reversible 8-bit Multiplier Test Schematic . 67

6.30 Reversible 8-bit Multiplier Simulation Result 68

6.31 Reversible 4-bit Multiplier Test Schematic . 68

6.32 Reversible 4-bit Multiplier Simulation Result 68

List of Figures xiii

6.33 Reversible 2-bit Multiplier Test Schematic . 69

6.34 Reversible 2-bit Multiplier Simulation Result 69

7.1 Handwriting Digit Inference CNN Structure Showing Layers 71

7.2 Single Neuron [1, 2] . 72

7.3 Sigmoid Function Graph . 73

7.4 Multiply Accumulate Block Diagram . 74

7.5 Multiply Accumulate Schematic . 74

7.6 Reversible Multiply Accumulate Symbol . 74

7.7 Reversible Multiply Accumulate Test Schematic 75

7.8 Reversible Multiply Accumulate Layout . 76

7.9 Reversible Multiply Accumulate Pre-Layout Simulation 77

I.1 Reversible 32-bit Register Simulation Results 133

I.2 Reversible 32-bit Carry Look Ahead Adder Simulation Results 135

I.3 Reversible 16-bit Carry Look Ahead Adder Simulation Results 137

I.4 Reversible 4-bit Carry Look Ahead Adder Simulation Results 139

I.5 Reversible 16-bit Multiplier Simulation Result 141

I.6 Reversible 8-bit Multiplier Simulation Results 143

I.7 Reversible 4-bit Multiplier Simulation Results 145

I.8 Reversible 2-bit Multiplier Simulation Results 147

I.9 Reversible Multiply Accumulate Simulation Results 149

List of Tables

4.1 Truth Table of Identity Gate . 14

4.2 Truth Table of Pauli-X Gate . 15

4.3 Truth Table of Pauli-Y Gate . 16

4.4 Truth Table of Pauli-Z Gate . 17

4.5 Truth Table of Phase Gate . 18

4.6 Truth Table of Hadamard Gate . 19

4.7 Truth Table of CNOT Gate . 20

4.8 Truth Table of Toffoli Gate . 21

4.9 Truth Table of SWAP Gate . 22

4.10 Truth Table of Fredkin Gate . 23

8.1 The Width, Height and Area of each Cell . 79

8.2 The Delay of each Cell . 80

Listings

I.1 Carry Look Ahead Adder 4-bits Testbench . 87

I.2 Carry Look Ahead Adder 16-bits Testbench . 90

I.3 Carry Look Ahead Adder 32-bits Testbench . 95

I.4 Multiplier 2-bits Testbench . 99

I.5 Multiplier 4-bits Testbench . 106

I.6 Multiplier 8-bits Testbench . 108

I.7 Multiplier 16-bits Testbench . 111

I.8 Register 32-bits Testbench . 114

I.9 Register 32-bits Testbench 2 . 121

I.10 Multiply Accumulate Testbench . 124

I.11 Multiply Accumulate Code . 127

Glossary

Acronyms

CNN Convolutional Neural Network

DFF D-Flip Flop

DRC Design Rule Check

LVS Layout Versus Schematic

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

MSB Most Significant Bit

QPU Quantum Processing Unit

Qubit Quantum Bit, the basic unit of quantum information and the quantum version of

the classic binary bit physically realized with a two-state device

ReLu Rectified Linear Unit activation function

Chapter 1

Introduction

Throughout history, advances in computers have led to many smart technological gadgets that

have revolutionized modern life. Computers have evolved from room sized machines to com-

pact devices thanks to the invention of transistors. Current technology allows the use of smart

devices with very high-speed processing and computations. Classical computers manipulate in-

formation represented as a sequence of bits. These bits have values represented as either “1”

or “0”. Computing can also be accomplished by exploiting quantum-mechanical phenomena,

where the use of superconducting qubits can have a state of either “1”, “0” or both “1 and 0”

at a given instance. This is possible due to the superposition and entanglement properties of

subatomic particles. The computers that use the quantum-mechanical phenomena for the com-

putation of certain algorithms are called “Quantum Computers”. Quantum computers are able

to solve certain problems substantially faster than classical computers especially when the prob-

lems are complex and well defined. Quantum computers have quantum gates just like the logic

gates in classical computers, yet the quantum gates are all reversible. Reversible gates do not

lose information, and the only reversible logic gate is a “Not” gate for classical computers. The

information loss occurs when there are more inputs than outputs on logic gates, which means

2

the input information is lost forever. However, reversible gates have the ability to reconstruct the

inputs from the output information.

In this dissertation, reversible quantum gates will be explored as well as the basis of theory

behind Quantum Computing. Many companies, such as Google, IBM and D-Wave were able to

demonstrate Quantum computing phenomena, yet without the proper tools and manufacturing,

to produce quantum components, it is almost impossible to test and verify the operation of actual

Quantum processor. This is primarily due to the probabilistic nature of the Quantum phenomena.

The state of a qubit is defined by its probability in superposition state, and once measured, the

probability collapses into a known state.

One of the most common uses of Quantum processing methods is the implementation of ma-

chine learning (ML) based on Convolutional Neural Networks (CNN) or Deep Neural Networks

(DNN). Quantum Processors can significantly reduce the time it takes to implement these algo-

rithms. Normally Quantum Processors use magnetic field to spin the qubit up or down, which

is used to calculate the probability of a solution. It is important to note that an actual Quantum

Processor was not created. Instead, a cell library with circuits that emulate the functionality of

reversible Quantum gates was implemented in CMOS technology. The cell library is documented

in detail in Chapter 5, with schematic, symbol and the layout of each cell. The test methodology,

test schematics and test results of these components were demonstrated in Chapter 6. Once the

reversible single and multi-cell components were designed and verified, a Multiply Accumulate

block was designed. The Multiply Accumulate block is commonly used in the implementation

of Convolutional Neural Network structures. In order to test and verify the reversible cell based

Multiply Accumulate block, Modified National Institute of Standards and Technology (MNIST)

dataset was evaluated on the hardware. The MNIST dataset is a database for handwritten digits

for digit recognition in CNN.

.

1.1 Research Goals 3

1.1 Research Goals

The aim of this work is to research and develop reversible Quantum gates, and then use those

gates to create a Multiply Accumulate block for CNN or DNN as follows:

1. To develop Quantum circuits in CMOS technology for emulation and evaluation

2. To validate the operation of the emulated Quantum circuits versus their known Quantum

behavior as logic elements

3. Combining emulated Quantum circuits into large building blocks that can be used with

Convolutional Neural Networks

1.2 Thesis Contributions

The thesis contributions to research and development in the field of digital systems design and

verification are as follows:

1. Creation of a CMOS based Reversible Logic and Quantum Gates.

2. Development of a suitable test environment to verify the operation of each Reversible

Logic and Quantum Gate

3. Creation of a Reversible 32-bit Carry Look Ahead Adder

4. Development of a suitable test environment to verify the operation of the Reversible 32-bit

Carry Look Ahead Adder

5. Creation of a Reversible 32-bit Register

6. Development of a suitable test environment to verify the operation of the Reversible 32-bit

Register

1.3 Organization 4

7. Creation of a Reversible 16-bit Multiplier

8. Development of a suitable test environment to verify the operation of the Reversible 32-bit

Register

9. Creation of Reversible Multiply Accumulate Block

10. Development of a suitable test environment to verify the operation of the Reversible Mul-

tiply Accumulate Block

11. Development of a suitable test environment to verify the operation of the Multiply Accu-

mulate Block with MNIST Dataset

1.3 Organization

The structure of the thesis is as follows:

• Chapter 1: This chapter introduces the Thesis topic, as well as the goal and the contribu-

tions to the engineering filed.

• Chapter 2: This background information is detailed including the motivation for this work

and the initial research done prior to beginning this work.

• Chapter 3: The theory of Quantum Mechanics and the difference between Binary and

Quantum computations.

• Chapter 4: The Quantum notations and some of the well known Quantum Gates were

explained in this chapter.

• Chapter 5: The cell library designed with 45ηm CMOS technology is demonstrated in this

chapter. The schematic, symbol and layout of each component are described.

1.3 Organization 5

• Chapter 6: The testing and verification of each component in reversible logic CMOS li-

brary is discussed in this chapter, including the test methodology, test schematics and the

results that were acquired.

• Chapter 7: Through the use of designed and verified reversible transistor library, a Multiply

Accumulate Block was designed for CNN. This chapter details the creation and validation

of Multiply Accumulate Block.

• Chapter 8: The results and discussion including the measurements of each layout and the

transition delay of each CMOS reversible structure are present in this chapter.

• Chapter 9: This chapter discusses the future work that can be done and the conclusion of

this Thesis work.

• Appendix I: The testbench code for large components and simulation results for those large

components are given in Appendix I.

Chapter 2

Background Research

Quantum Processing is considered to be the future of computation. Companies such as Google,

IBM and D-Waves, are currently working on their own Quantum Processors. According to an

article named “Quantum Supremacy using a Programmable Superconducting Processor” [3],

Google and NASA collaboratively worked on creating a processor with programmable super-

conducting qubits and adjustable couplers. According to the authors of that article [3], their

processor takes about 200 seconds to complete a task that would take a supercomputer around

10,000 years.

Even though Quantum Computers are known to compute some algorithms exponentially

faster than that of Classical Computers, based on the paper called “D-Wave’s Quantum Process-

ing Unit” which was written by Bahar Canga [4], D-Wave’s Quantum Processing Unit (QPU)

demonstrates a significant performance increase over Classical Computers when the algorithm

that runs is well defined and complex. Some of the research that has been done on D-Wave’s QPU

involved Convolutional Neural Networks (CNN). Both the authors of [5] and [6] conducted re-

search on D-Wave’s QPU by using a database of handwritten digits called MNIST Dataset [7].

Both research was conducted by running the MNIST dataset on D-Wave’s QPU with autoen-

7

coders in an unsupervised way.

Based on [4], one of the most common uses of Quantum Processors are for machine learning

purposes. As CNNs can also be implemented purely in hardware, having custom hardware can

increase the performance of the simulations. This research paper focused on creating a medium

for running CNN algorithms in a custom Sigmoid Neuron Function Hardware that is made out

of reversible gates. For this purpose, there were three crucial elements needed to achieve a

Reversible Multiply Accumulate Block, which are a fast multiplier, a fast adder and a register.

The register that was created in this thesis work is made out of D-Latches. The design for

the D-Latch was referenced from an article titled “Design and analysis of Flip-Flops using re-

versible logic” [8] as well as “Design of Reversible Logic based Basic Convolutional Circuits”

[9]. Initially the purpose was to construct a D-Flip Flop (DFF) based on [8] and [9], yet after

implementing and testing the positive-edge triggered DFF design from [9], the result illustrated a

D-Latch behavior. Even though the DFF design shown in [9] demonstrated a D-Latch behavior,

the 32-bit Register was built out of that architecture, which also allowed time borrowing. Time

borrowing allows the circuit to borrow time from a separate path within a latch.

The adder that is built for this project needed to be fast and reversible. The Carry Look Ahead

Adder is well known to be one of the fastest adder. In this research, the Carry Look Ahead Adder

was implemented with reversible Classical and Quantum gates. According to an article named

“A Logarithmic-depth Quantum Carry Look Ahead Adder” [10], the information in scratch space

needs to be erased, and the operations should not destroy any information. Information in scratch

space is an extra signal that is only there to allow computation of another signal. This signal is

just like the Quantum Full Adder, where the signal Z, the Zero signal is there to compute the

carry out. In [10], the Carry Look Ahead was designed purely out of Quantum gates, which are

Toffoli and CNOT. As reversible NAND gate was created in this research, the Carry Look Ahead

Adder was designed based on Classical circuit architecture. The circuitry given in [10] can be

8

used in future work, with the use of only CNOT and Toffoli gate.

For the multiplier to be fast, initially a multiplier with Booth encoder and Wallace Tree Adder

design was implemented based on the architecture given in a book titled “CMOS VSLI Design:

A Circuits and Systems Perspective” [11], yet the design did not correctly compute the partial

products. The next design was implemented by simply using 256 reversible NAND Gates to

calculate partial products. For the multiplier to calculate the result, the partial products either

needed to be added by rows or by column. In one implementation, the partial products were

added by column based on the Wallace Tree Adder architecture given in [11]. The Wallace tree

works by adding every 3 input and adding the respective carry and sum as the next input in the

form of a tree. By adding the partial products by column with Wallace Tree Adder architecture,

the results were not accurate. This was because for each next column, all the previous carry

bits needed to be added along with every partial product. This would exponentially increase the

circuit size to correct the addition. Thus, instead of that, the 32-bit Carry Look Ahead Adder was

used 8 times with Wallace Tree structure. Even though the wiring was done correctly, the results

acquired were not accurate. As the previous multiplier implementations were not successful,

another efficient multiplication design was created based on Vedic Mathematics. According to

[12–15], the Vedic algorithm conducts the Multiplication operation both vertically, crosswise

and in parallel. This means that the Vedic algorithm requires a 2 by 2 multiplier to multiply 2-bit

numbers, and by concatenating 4 of those 2 by 2 multipliers, a 4-bit multiplier could be designed.

The same thing applies for 4 of 4-bit multipliers concatenating to create and 8-bit multiplier and

finally 4 of 8-bit multipliers to concatenate to create a 16-bit multiplier. This design successfully

passed the pre-layout simulation and eventually was used in the Multiply Accumulate Block

created for this project.

Chapter 3

Theory

Quantum computers operate with quantum principals. In quantum mechanics and particle

physics, spin is referred to as the angular momentum in intrinsic form of subatomic particles.

A quantum particle, which can be a single photon, a nucleus of an atom, or an electron, has a

magnetic field around it. When an external magnetic field is applied to a quantum particle, the

particle aligns with that field. In that state, the particle has the lowest energy level, which is the

spin down or the “0” state. In order to spin the particle up, it requires an external force to amplify

the energy level. These two states are just like the bits in classical computers, yet the qubits can

be both at a given instance. This is mainly caused by the superposition principle, which states

that any linear system can be in one of many possible configurations and the most general state

is the combination of all the possible states. However, when the qubits are measured, the result

collapses into a known classical state.

3.1 Schrödinger’s Equation 10

3.1 Schrödinger’s Equation

In 1935, Erwin Schrödinger came up with a hypothetical experiment while having a course of

discussion with Albert Einstein. This thought experiment is well known as “Schrödinger’s Cat”

and the purpose was to point out the paradox of probable events and the uncertainty of the results

until observation. In this hypothetical experiment, Schrödinger inserts a cat in a box and seals it

with a flask of poison as well as a radioactive source. In this thought experiment, there is a 50%

chance that the radioactive material would decay, thus the flask would shatter, which would end

up killing the hypothetical cat. As the box is sealed in this experiment, there is no way to know

exactly what state the cat is. The cat is both dead and alive until somebody opens the box and

observes the exact state of the cat for sure. The same principle applies to quantum mechanics.

The quantum particles are in superposition state with certain probabilities of them being |0 > or

|1 >, such as 35% and 65% respectively. At that instance, the qubits are said to be both |0 >

and |1 >. Once the particle’s state is measured, the probabilities collapse, which results in a

definite qubit state of either |0 > or |1 >. With everything in mind, Schrödinger came up with an

equation which can be seen below. This equation describes the probability of finding a particle

at a certain position. The equation 3.1 states that Hamiltonian operator, Ĥ,and wavefunction of

an electron, |ψ>, is equal to the square root of minus one, i, multiplied with the Planc’s Constant,

h̄, multiplied with the rate of change of wavefunction with respect to time.

Ĥ|ψ(t)>= i✁✁h
∂

∂ t
|ψ(0)> |ψ(t)> (3.1)

3.2 Bloch Sphere

In Quantum Mechanics, the Bloch Sphere is a geometrical representation of the state of a single

qubit which is on the surface of a unit sphere. The Bloch Sphere representation can be seen in

3.3 Energy Conservation 11

Figure 3.1. The Bloch Vector is shown as |ψ>, has a state of |Ψ> = αβ. The probability of the

state of a qubit is defined around the Bloch Sphere.

Figure 3.1: Bloch Sphere

3.3 Energy Conservation

According to the law of conservation of energy, energy can neither be created nor be destroyed,

yet it can be transformed into another form. The majority of electronics are made out of logic

gates, that usually have more number of inputs than outputs. This suggests that the energy

entering that system through the input is larger than the energy coming out. What happens

to that loss of energy? Most probably, the loss of energy turns into harmful radiation, such

as radio frequency, microwave and photons, as well as excessive heat that both drains power

unnecessarily and lowers the lifespan of electronics. On the other hand, through the use of

reversible components, the loss of energy can be reduced significantly.

Chapter 4

Quantum Notations and Quantum Gates

In this chapter, a brief introduction to quantum notations and quantum gates will be explained.

As mentioned in Chapter 1, all quantum gates are inherently reversible. Quantum logic can be

constructed by using these reversible single-qubit, two-qubit and three-qubit gates. The quantum

gates can be represented with matrix notations, truth tables and Bloch Spheres. These quantum

gates rotate the qubits in certain ways either around x, y or z axis, or around a diagonal axis in

the x-z plane.

4.1 Hilbert Spaces and Dirac Notation

In quantum mechanics, the state of qubits are represented in a Hilbert space which is a vector

space with an inner product as well as a norm described by that inner product. In order to

describe vectors in quantum mechanical systems, Dirac notation or Bra-Ket is commonly used.

In the following subsections, the Dirac notations will be explained.

4.1 Hilbert Spaces and Dirac Notation 13

4.1.0.1 Ket

Ket is a column vector, and it is used to indicate the state of a qubit. The wave function is

represented with Ket notation. The Ket notation can be seen as below as |v>,

|v >=





























v0

v1

v2

...

vn





























= v

4.1.0.2 Bra

Bra is the dual vector of |v> or Ket, and it is the transposed complex conjugate square of v. The

notation of Bra can be seen below as <v|.

< v|=
[

v0 v1 v2 · · · vn

]

= vT

4.2 Quantum Gates 14

4.2 Quantum Gates

4.2.0.1 Identity (I) Gate

Identity Gate is a single qubit gate, with a single input and a single output. Identity gate has

no impact on the rotation of the qubits. It can also be represented as a wire. The symbol of

4.2.0.1 is shown in Figure Identity (I) Gate. The matrix representation of this gate can be seen in

Algorithm 4.1 below. The circuit representation of the Identity gate is illustrated in Table 4.1.

Figure 4.1: Identity Gate Symbol

Algorithm 4.1 Identity Matrix Notation

I =







1 0

0 1







Input Output

|0 > |0 >

|1 > |1 >

Table 4.1: Truth Table of Identity Gate

4.2.0.2 Pauli-X (X) Gate

Pauli-X Gate is a single qubit gate that rotates the qubit state by 180˚ (π radians) around x-axis.

Pauli-X Gate is the quantum equivalent of NOT gate in classical computers. This implies that

Pauli X converts |0> to |1>, and |1> to |0>. The symbol of Pauli-X (X) Gate is shown in Figure

4.2 Quantum Gates 15

4.2. The matrix representation of this gate can be seen in Algorithm 4.2 below. The circuit

representation of Pauli-X gate is illustrated in Table 4.2.

Figure 4.2: Pauli-X Gate Symbol

Algorithm 4.2 Pauli-X Matrix Notation

X =







0 1

1 0







Input Output

|0 > |1 >

|1 > |0 >

Table 4.2: Truth Table of Pauli-X Gate

4.2.0.3 Pauli-Y (Y) Gate

Pauli-Y Gate is a single qubit gate and rotates the qubit state by 180˚ (π radians) around y-axis.

The symbol of Pauli-Y (Y) Gate is shown in Figure 4.3. The matrix representation of this gate

can be seen in Algorithm 4.3 below. The circuit representation of the Pauli-Y gate can be seen

in Table 4.3.

4.2 Quantum Gates 16

Figure 4.3: Pauli-Y Gate Symbol

Algorithm 4.3 Pauli-Y Matrix Notation

Y =







0 −i

i 0







Input Output

|0 > i|1 >

|1 > −i|0 >

Table 4.3: Truth Table of Pauli-Y Gate

4.2.0.4 Pauli-Z (Z) Gate

Pauli-Z Gate is a single qubit and rotates the qubit state by 180˚ (π radians) around z-axis. The

symbol of Pauli-Z (Z) Gate is shown in Figure 4.4. The matrix representation of this gate can be

seen in Algorithm 4.4 below. The circuit representation of the Pauli-Z gate is illustrated in Table

4.4.

Figure 4.4: Pauli-Z Gate Symbol

4.2 Quantum Gates 17

Algorithm 4.4 Pauli-Z Matrix Notation

Z =







1 0

0 −1







Input Output

|0 > |0 >

|1 > −|1 >

Table 4.4: Truth Table of Pauli-Z Gate

4.2.0.5 Phase (S, P) Gate

Phase Gate or S Gate is a single qubit gate and rotates the qubit state by 90˚ (π/2 radians) around

z-axis. The symbol of Phase (S, P) Gate is shown in Figure 4.5. The matrix representation of

this gate can be seen in Algorithm 4.5 below. The circuit representation of the Phase gate is

illustrated in Table 4.5.

Figure 4.5: Phase Gate Symbol

Algorithm 4.5 Phase Gate Matrix Notation

S =







1 0

0 ei π
2







4.2 Quantum Gates 18

Input Output

|0 > |0 >

|1 > ei π
2 |1 >

Table 4.5: Truth Table of Phase Gate

4.2.0.6 Hadamard (H) Gate

Hadamard Gate is a single qubit gate that rotates the qubit state by 180˚ (π radians) around y-

axis. Hadamard Gate is one of the most commonly used quantum gates as it inserts the qubits in

superposition state, where the probability of the result being |0> and |1> are equally likely. The

symbol of Hadamard (H) Gate is shown in Figure 4.6. The matrix representation of this gate can

be seen in Algorithm 4.2 below. The circuit representation of the Hadamard gate is illustrated in

Table 4.2.

Figure 4.6: Hadamard Gate Symbol

Algorithm 4.6 Hadamard Matrix Notation

H = 1√
2







1 1

1 −1







4.2 Quantum Gates 19

Input Output

|0 >
|0>+|1>√

2

|1 >
|0>−|1>√

2

Table 4.6: Truth Table of Hadamard Gate

4.2.0.7 CNOT Gate

CNOT gate is a quantum gate, which is also known as Controlled Not Gate. The CNOT gate

has a control signal, which the value of the control signal does not get changed. If the value of

the control signal is |1 >, the output of the second input gets inverted. The CNOT gate behaves

like an XOR gate in classical computation. The quantum representation of the CNOT gate can

be seen in Figure 4.7. The truth table of the CNOT gate is illustrated in Table 4.7 below.

Figure 4.7: CNOT Gate Symbol

4.2 Quantum Gates 20

Input 1 Input 2 Output 1 Output 2

|0 > |0 > |0 > |0 >

|0 > |1 > |0 > |1 >

|1 > |0 > |1 > |1 >

|1 > |1 > |1 > |0 >

Table 4.7: Truth Table of CNOT Gate

4.2.0.8 Toffoli Gate

Toffoli gate is a quantum gate, which is also known as Controlled Controlled Not Gate. The

Toffoli gate has two control signals. The value of the control signals do not get changed and

if the value of both of the control signals are |1 >, the output of the third input gets inverted.

The quantum representation of the Toffoli gate can be seen in Figure 4.8. The truth table of the

Toffoli gate is illustrated in Table 4.8 below.

Figure 4.8: Toffoli Gate Symbol

4.2 Quantum Gates 21

Input 1 Input 2 Input 3 Output 1 Output 2 Output 3

|0 > |0 > |0 > |0 > |0 > |0 >

|0 > |0 > |1 > |0 > |0 > |1 >

|0 > |1 > |0 > |0 > |1 > |0 >

|0 > |1 > |1 > |0 > |1 > |1 >

|1 > |0 > |0 > |1 > |0 > |0 >

|1 > |0 > |1 > |1 > |0 > |1 >

|1 > |1 > |0 > |1 > |1 > |1 >

|1 > |1 > |1 > |1 > |1 > |0 >

Table 4.8: Truth Table of Toffoli Gate

4.2.0.9 SWAP Gate

SWAP gate is a quantum gate, which swaps both inputs with the outputs. The quantum represen-

tation of the SWAP gate can be seen in Figure 4.9. The truth table of the SWAP gate is illustrated

in Table 4.9 below.

Figure 4.9: SWAP Gate Symbol

4.2 Quantum Gates 22

Input 1 Input 2 Output 1 Output 2

|0 > |0 > |0 > |0 >

|0 > |1 > |1 > |0 >

|1 > |0 > |0 > |1 >

|1 > |1 > |1 > |1 >

Table 4.9: Truth Table of SWAP Gate

4.2.0.10 Fredkin Gate

Fredkin gate is a quantum gate, which is also known as Controlled SWAP Gate. The Fredkin gate

has a control signal which stays at the same state throughout. The Fredkin gate swaps the second

and third input if and only if the first input, the control signal, has a value of 1. The quantum

representation of the Fredkin gate can be seen in Figure 4.10. The truth table of the Fredkin gate

is illustrated in Table 4.10 below.

Figure 4.10: Fredkin Gate Symbol

4.2 Quantum Gates 23

Input 1 Input 2 Input 3 Output 1 Output 2 Output 3

|0 > |0 > |0 > |0 > |0 > |0 >

|0 > |0 > |1 > |0 > |0 > |1 >

|0 > |1 > |0 > |0 > |1 > |0 >

|0 > |1 > |1 > |0 > |1 > |1 >

|1 > |0 > |0 > |1 > |0 > |0 >

|1 > |0 > |1 > |1 > |1 > |0 >

|1 > |1 > |0 > |1 > |0 > |1 >

|1 > |1 > |1 > |1 > |1 > |1 >

Table 4.10: Truth Table of Fredkin Gate

Chapter 5

Cell Library

The cell library for the reversible quantum gates were designed through Cadence Custom IC

Design tool flow, and the technology used was 45 ηm using a generic library. In this chapter,

the reversible gates that were designed can be seen in both schematic, symbol, layout as well as

simulation view. As mentioned in earlier chapters, the reversible gates have equal number input

and output. This means that the number of input are equal to the output of each cell hierarchy.

The symbol of each single cell component has an accurate quantum representation.

25

5.0.1 Inverter

Figure 5.1: Inverter Schematic

The inverter is inherently reversible given that there is one input and an opposite output. In Figure

5.1, the schematic of the inverter can be seen. The width of the pMOS device is 540 ηm, thus

based on 2:1 ratio, the nMOS device is 270 ηm. The 2:1 ratio is the ratio of width over length of

pMOS compared to the width over length ratio of nMOS. This ratio is to keep the resistance of

two transistors same, so that the rise and rall time of each transistor is similar. In Figure 5.2, the

symbol of the inverter is present.

Figure 5.2: Inverter Symbol

The layout of the inverter is shown in Figure 5.3.

26

Figure 5.3: Inverter Layout

5.0.2 Reversible NAND

Figure 5.4: Reversible NAND Schematic

27

A NAND gate is not inherently reversible gate unlike an inverter. Thus, in order to equate the

number of input and output pins, the input pin to be replicated was turned into an input-output

pin. This allows for a pin to act both as an input as well as an output pin. Due to conflict issues,

the pins were named distinctly of one another. The block named cds_tru was placed between

the two input-output pins to connect two nets together and to avoid any netlist errors. Adding an

extra input-output pin adds a marginal amount of capacitance to the input pin load, however, the

fanout of the input-output pin would need to be taken into account when sizing the driving cell.

In Figure 5.4, the schematic of the Reversible NAND gate can be seen. The width of the pMOS

devices are 540 ηm, thus based on 2:1 ratio rule of pMOS and nMOS, each of the series nMOS

devices are 540 ηm. The 2:1 ratio is the ratio of width over length of pMOS compared to the

width over length ratio of nMOS. This ratio is to keep the resistance of two transistors same, so

that the rise and fall time of each transistor is similar. In Figure 5.5, the symbol of the Reversible

NAND is present.

Figure 5.5: Reversible NAND Symbol

The layout of the NAND is shown in Figure 5.6.

28

Figure 5.6: Reversible NAND Layout

5.0.3 Reversible NOR

Figure 5.7: Reversible NOR Schematic

29

Just like the NAND gate, a NOR gate is also not inherently reversible. Thus, in order to equate

the number of fan-in and fan-out, the input pin to be replicated was also turned into an input-

output pin. As mentioned above, converting the pin to be replicated into an input-output pin

allows for a pin to act both as an input as well as an output pin, creating a two way flow. Due

to conflict issues, the pins were named distinctly of one another. The block named cds_tru was

placed between the two input-output pins to connect two nets together and to avoid any netlist

errors. Adding an extra input-output pin adds a marginal amount of capacitance to the input

pin load, however, the fanout of the input-output pin would need to be taken into account when

sizing the driving cell. This applies to the rest of the cells as well. In Figure 5.7, the schematic

of the NOR gate can be seen. The width of the pMOS devices are 1080 ηm, thus based on 2:1

ratio rule of pMOS and nMOS, each of the parallel nMOS devices are 270 ηm. In Figure 5.8, the

symbol of the Reversible NOR is present.

Figure 5.8: Reversible NOR Symbol

The layout of the reversible NOR gate is shown in Figure 5.9.

30

Figure 5.9: Reversible NOR Layout

5.0.4 CNOT

Figure 5.10: CNOT Schematic

The CNOT gate is a quantum gate which is also known as Controlled Not Gate. Based on

the controlled reversible input, the function XORs the two incoming input. In Figure 5.10, the

schematic of the CNOT gate can be seen. In 5.11, the symbol of the CNOT gate is present.

31

Figure 5.11: CNOT Symbol

The layout of the CNOT is shown in 5.12.

Figure 5.12: CNOT Layout

5.0.5 SWAP

Figure 5.13: SWAP Schematic

The SWAP gate is another quantum gate that switches the two incoming inputs to be each other’s

outputs. This gate is made out of three XOR gates connected back to back. The schematic of the

SWAP gate can be seen in Figure 5.13. In 5.14, the symbol of the SWAP gate is present.

Figure 5.14: SWAP Symbol

32

The layout of the SWAP is shown in 5.15.

Figure 5.15: SWAP Layout

5.0.6 Toffoli Gate

Figure 5.16: Toffoli Schematic

The Toffoli gate is another quantum gate which is also known as Controlled Controlled NOT

Gate (CCNOT). The two control qubit, A and B, are ANDed together and then XORed with

the third input C. Unless the two control signals have a value of 1, the Toffoli output is not get

inverted. The two control inputs A and B are input-output pin due to replicating the pins to allow

same input and output count. In Figure 5.16, the schematic of the Toffoli gate can be seen. In

Figure 5.17, the symbol of the Toffoli gate is present.

33

Figure 5.17: Toffoli Symbol

The layout of the Toffoli gate is shown in Figure 5.18.

Figure 5.18: Toffoli Layout

5.0.7 Reversible Full Adder

Figure 5.19: Reversible Full Adder Schematic

The Toffoli and CNOT gates can be combined to create a reversible Full Adder. In Figure 5.19,

the schematic of the Reversible Full Adder can be seen. In Figure 5.20, the symbol of the

Reversible Full Adder is present.

34

Figure 5.20: Reversible Full Adder Symbol

The layout of the Reversible Full Adder is shown in Figure 5.21.

Figure 5.21: Reversible Full Adder Layout

5.0.8 Fredkin Gate

Figure 5.22: Fredkin Schematic

The Fredkin gate is also known as a Controlled Swap Gate. Through a controlled signal, the

Fredkin Gate determines when to swap the inputs. This hierarchy is a quantum gate. In Figure

5.22, the schematic of the Fredkin gate can be seen. In Figure 5.23, the symbol of the Fredkin

Gate is present.

35

Figure 5.23: Toffoli Symbol

The layout of the Fredkin gate is shown in Figure 5.24.

Figure 5.24: Fredkin Layout

5.0.9 Reversible D-Latch

Figure 5.25: Reversible D-Latch Schematic

The combination of Fredkin gate and a CNOT gate allows a Reversible D-Latch to be created.

The Reversible D-Latch follows the exact pattern of an input D as long as the clock is high or the

signal is enabled. The output stays at the edge where the last position of the D input was once

the negative edge is present. In Figure 5.25, the schematic of the D-Latch can be seen. In Figure

5.26, the symbol of the Reversible D-Latch is present. According to [8] and [9], combining a

Fredkin gate and a CNOT gate should have created a D-Flip Flop. However after testing the

implementation, the design demonstrated a behavior similar to a D-Latch rather than a D-Flip

Flop. The simulation result of this block is illustrated in Chapter 6 Section 6.0.9.

36

Figure 5.26: Reversible D-Latch Symbol

The layout of the Reversible D-Latch is shown in Figure 5.27.

Figure 5.27: Reversible D-Latch Layout

37

5.0.10 Reversible 32-bit Register

Figure 5.28: Reversible 32-bit Register Schematic

The Reversible D-Latch was used to create a Reversible 32-bit Register. In Figure 5.28, the

schematic of the Reversible 32-bit Register can be seen. In Figure 5.29, the symbol of the

Reversible 32-bit Register is present.

Figure 5.29: Reversible 32-bit Register Symbol

The layout of the Reversible 32-bit Register is shown in Figure 5.30.

38

Figure 5.30: Reversible 32-bit Register Layout

39

5.0.11 Reversible 32-bit Carry Look Ahead Adder

Figure 5.31: Reversible 32-bit Carry Look Ahead Adder Schematic

The Carry Look Ahead Adder performs addition while separately calculating the carry for the

next adder. This speeds up the addition and the delay caused by the carry out signal is diminished.

In Figure 5.31, the schematic of the Reversible 32-bit Carry Look Ahead Adder can be seen. As

shown, the Reversible 32-bit Carry Look Ahead Adder is composed of other cells, which are the

Reversible 16-bit Carry Look Ahead Adder and the Reversible 4 bit Carry Look Ahead cells. The

Reversible 16-bit Carry Look Ahead Adder is also made out of another cell named Reversible

4-bit Carry Look Ahead Adder. These are illustrated respectively in Figure 5.36, Figure 5.34 and

Figure 5.34. The reason for designing the Carry Look Ahead Adder in hierarchy base is to reduce

complexity of the design. The smaller adders were also used in the multiplier. The symbol of 16-

bit Carry Look Ahead Adder is given in Figure 5.37, the 4-bit Carry Look Ahead Unit Symbol

is shown as Figure 5.35 and the 4-bit 32-bit Carry Look Ahead Adder Symbol is given as Figure

5.33. In Figure 5.32, the symbol of the 32-bit Carry Look Ahead Adder is present. From these

schematics, it can be observed that in order to equate the input and output pin numbers, some

signals were randomly added in some hierarchy, and removed by not connecting in others.

40

Figure 5.32: Reversible 4-bit Carry Look Ahead Adder Schematic

Figure 5.33: Reversible 4-bit Carry Look Ahead Adder Symbol

Figure 5.34: Reversible 4-bit Carry Look Partial Product Unit Schematic

Figure 5.35: Reversible 4-bit Carry Look Ahead Partial Product Unit Symbol

41

Figure 5.36: Reversible 16-bit Carry Look Ahead Adder Schematic

Figure 5.37: Reversible 16-bit Carry Look Ahead Adder Symbol

42

Figure 5.38: Reversible 32-bit Carry Look Ahead Adder Symbol

The layout of the Reversible 32-bit Carry Look Ahead Adder is shown in Figure 5.39. As the

tools and machines that were available for this work at Rochester Institute of Technology did not

have enough memory to auto place this large adder, the tools gave up during auto placement and

left a large amount of space. Thus, all of the components in the Reversible 32-bit Carry Look

Ahead Adder were placed by hand.

43

Figure 5.39: Reversible 32-bit Carry Look Ahead Adder Layout

44

5.0.12 Reversible 16-bit Multiplier

Figure 5.40: Reversible16-bit Multiplier Schematic

The Reversible 16-bit multiplier was designed using the Vedic technique by concatenating

smaller multipliers together. First a Reversible 2-bit Multiplier was designed, which was used

to create a Reversible 4-bit Multiplier, which was used to design an Reversible 8-bit Multiplier,

and the Reversible 8-bit Multiplier was used while creating the final Reversible 16-bit Multi-

plier. The schematic of the Reversible 16-bit Multiplier can be seen in Figure 5.40, whereas the

Reversible 8-bit Multiplier is present in Figure 5.41, Reversible 4-bit Multiplier in Figure 5.43

and Reversible 2-bit Multiplier in Figure 5.43. The symbol of Reversible 16-bit Multiplier is

indicated by Figure 5.47. The Reversible 8-bit,4-bit and 2-bit Multiplier Symbols are present in

Figure 5.42, Figure 5.44, and Figure 5.46 respectively.

45

Figure 5.41: Reversible 8-bit Multiplier Schematic

Figure 5.42: Reversible 8-bit Multiplier Symbol

46

Figure 5.43: Reversible 4-bit Multiplier Schematic

Figure 5.44: Reversible 4-bit Multiplier Symbol

47

Figure 5.45: Reversible 2-bit Multiplier Schematic

Figure 5.46: Reversible 2-bit Multiplier Symbol

Figure 5.47: Reversible 16-bit Multiplier Symbol

After verifying the function of these designs, the layout of the Reversible 16-bit Multiplier

was made. The layout of the Reversible 16-bit Multiplier can be seen in Figure 5.48. Even though

the components in the Reversible 32-bit Carry Look Ahead Adder were placed by hand, given

the size of the multiplier, the components in the multiplier were not placed by hand. Instead, the

design generated through autoplacement with large amount of spacing was used as it would have

taken couple of weeks to place each component by hand for the multiplier.

48

Figure 5.48: Reversible 16-bit Multiplier Layout

Chapter 6

Testing Components

Each designed cell and design were verified functionally and behaviorally before creating the

layouts.The pre-layout testing allowed for the verification of the schematic. Single cell compo-

nents were tested by adding a 100 fF capacitor on the output pin to be tested. Multi-cell designs

were tested through coding individual testbenches. The Verilog testbench code can be further

seen in the Appendix A.

50

6.0.1 Inverter Test

Figure 6.1: Inverter Test Schematic

The inverter test schematic setup can be seen in Figure 6.1. By adding appropriate input and

output pins to the symbol created through schematic, and adding a load capacitor along with

power and ground, the test schematic was created. The results acquired by running this schematic

can be seen in Figure 6.2. It can be seen that the inverter inverts the input signal A to be the output

signal Y.

51

Figure 6.2: Inverter Simulation

52

6.0.2 Reversible NAND Test

Figure 6.3: Reversible NAND Test Schematic

The Reversible NAND test schematic setup can be seen in Figure 6.3. By adding appropriate

input, output and input-output pins to the symbol created through schematic, and including a

load capacitor along with power and ground nets, the test schematic was created. The results

acquired by running test schematic for reversible Reversible NAND can be seen in Figure 6.4.

As shown, the output of the Reversible NAND gate is low only when both of the inputs are high

and the A_IN and A_OUT demonstrate an equivalent signal property. This applies to everys

53

Figure 6.4: Reversible NAND Simulation

6.0.3 Reversible NOR Test

Figure 6.5: Reversible NOR Test Schematic

The Reversible NOR test schematic setup can be seen in Figure 6.5. Load capacitor was added

to this test schematic just like the previous test setups. The results acquired by running test

schematic for Reversible NOR can be seen in Figure 6.6. The NOR signal turns high when both

54

of the input signals are low.

Figure 6.6: Reversible NOR Simulation

6.0.4 CNOT Test

Figure 6.7: CNOT Test Schematic

The CNOT test schematic setup can be seen in Figure 6.7. Appropriate pins were placed along

with a load capacitor. The results acquired by running test schematic for reversible CNOT can

55

be seen in Figure 6.8. It can be seen in Figure 6.8 that due to high output impedance, the CNOT

gate did not have enough drive to switch the output, which resulted in CNOT signal to be in

superposition state, neither 1 nor 0. When the control signal, A, has a value of 1, the other input

signal, B, gets inverted.

Figure 6.8: CNOT Simulation

56

6.0.5 SWAP Test

Figure 6.9: SWAP Test Schematic

The SWAP gate test schematic setup can be seen in Figure 6.9. The results acquired by running

test schematic for reversible SWAP can be seen in Figure 6.10. It can be seen that the SWAP

gate swaps both of the input pins. The glitches are caused by the transition arc. Transition arcs

were caused as the signal turns low momentarily before settling down, and transition arcs were

perfectly expected to be seen.

57

Figure 6.10: SWAP Simulation

6.0.6 Toffoli Test

Figure 6.11: Toffoli Test Schematic

58

The Toffoli test schematic setup can be seen in Figure 6.11. The results acquired by running test

schematic for reversible NAND can be seen in Figure 6.12. It can be seen that when both the

control signals, A and B, were high, the third input, C, gets inverted.

Figure 6.12: Toffoli Simulation

59

6.0.7 Reversible Full Adder Test

Figure 6.13: Reversible Full Adder Test Schematic

The Reversible Full Adder test schematic setup can be seen in Figure 6.13. The results acquired

by running test schematic for the Reversible Full Adder can be seen in Figure 6.14. Once again,

the glitches are caused by the transition arc. Transition arcs were perfectly expected to be seen

and were caused do to momentary output transition when the signal passes through the transis-

tors.

60

Figure 6.14: Reversible Full Adder Simulation

6.0.8 Fredkin Test

Figure 6.15: Fredkin Test Schematic

61

The Fredkin test schematic setup can be seen in Figure 6.15. The results acquired by running

test schematic for Fredkin can be seen in Figure 6.16. It can be seen that, the Fredkin gate swaps

the second and input signals when the control signal, A, is high.

Figure 6.16: Fredkin Simulation

6.0.9 D-Latch Test

Figure 6.17: D-Latch Schematic

62

The combination of Fredkin gate and a CNOT gate allows a D-Latch to be created. D-Latch

follows the exact pattern of an input D as long as the clock is high or the signal is enabled. The

output stays at the edge where the last position of the D input was once the negative edge is

present. In Figure 6.17, the schematic of the D-Latch can be seen. In Figure 6.18, the symbol of

the D-Latch is present. It can be seen that the Zero input has a zero value throughout, and both

of the results follow the D input through the high clock edge, and follow the same value through

the negative edge.

Figure 6.18: D-Latch Simulation

63

6.0.10 Reversible 32-bit Register Test

Figure 6.19: Reversible 32-bit Register Test Schematic

The test setup for the Reversible 32-bit Register is shown in Figure 6.19, the schematic of the

Reversible 32-bit Register can be seen. In Figure 6.20, the pre-layout simulation results of one

test is illustrated. It can be seen that the given input is received from the memory. Both binary

and decimal values can be seen for inputs and outputs. Further results can be seen in AppendixI.

Figure 6.20: Reversible 32-bit Register Simulation

64

6.0.11 Reversible 32-bit Carry Look Ahead Adder Test

Figure 6.21: Reversible 32-bit Carry Look Ahead Adder Test Schematic

The Reversible 32-bit Carry Look Ahead Adder test schematic setup can be seen in Figure 6.21.

The test setup was done by combining the symbol created through the testbench and the symbol

created through the design schematic together. Some of the unwanted pins with the purpose to

generate reversible gates, were ignored by adding no connect pins. The same methodology was

done for Reversible 16-bit Carry Look Ahead Adder, shown as Figure 6.23 and for the Reversible

4-bit Carry Look Ahead Adder, shown as Figure 6.25. The simulation results for Reversible32 bit

Carry Look Ahead Adder are shown in Figure 6.22, along with Reversible 16-bit in Figure 6.24,

and Reversible 4-bit in Figure 6.26. It can be seen in each simulation result that the additions

were computed correctly and the expected results were received. Both binary and decimal values

can be seen for inputs and outputs. Further results can be seen in AppendixI.

65

Figure 6.22: Reversible 32-bit Carry Look Ahead Adder Test Simulation

Figure 6.23: Reversible 16-bit Carry Look Ahead Adder Test Schematic

Figure 6.24: Reversible 16-bit Carry Look Ahead Adder Test Simulation

66

Figure 6.25: Reversible 4-bit Carry Look Ahead Adder Test Schematic

Figure 6.26: Reversible 4-bit Carry Look Ahead Adder Test Simulation

6.0.12 Reversible 16-bit Multiplier Test

Figure 6.27: Reversible 16-bit Multiplier Test Schematic

67

The Reversible 16-bit Multiplier test schematic setup can be seen in Figure 6.27. The test setup

was done by combining the symbol created through the testbench and the symbol created through

the design schematic together. The same methodology was done for Reversible 8-bit Multiplier,

shown as Figure 6.29, Reversible 4-bit Multiplier shown as Figure 6.31 as well as Reversible

2-bit Multiplier shown in Figure 6.33. The simulation results for Reversible 16-bit Multiplier

is demonstrated in Figure 6.28, along with Reversible 8-bit in Figure 6.30, Reversible 4-bit in

Figure 6.32 and Reversible 2-bit in Figure 6.34. Through the test results, it can be seen that the

multiplication operation worked correctly and the expected results were acquired. Both binary

and decimal values can be seen for inputs and outputs. Further results can be seen in Appendix

I.

Figure 6.28: Reversible 16-bit Multiplier Simulation Result

Figure 6.29: Reversible 8-bit Multiplier Test Schematic

68

Figure 6.30: Reversible 8-bit Multiplier Simulation Result

Figure 6.31: Reversible 4-bit Multiplier Test Schematic

Figure 6.32: Reversible 4-bit Multiplier Simulation Result

69

Figure 6.33: Reversible 2-bit Multiplier Test Schematic

Figure 6.34: Reversible 2-bit Multiplier Simulation Result

Chapter 7

Reversible Multiply Accumulate Block

As mentioned in the previous chapters, the most common uses of quantum processors are for ma-

chine learning with Convolutional Neural Networks (CNN) or Deep Neural Networks (DNN).

This is because the Quantum processors cut back on time it takes to compute results through

probabilistic nature. This not only gives the best result, but also other possible results. Due

to limitations, this project implemented the computational elements through CMOS technol-

ogy. The Reversible Multiply Accumulate block was created by combining the Reversible 32-bit

Carry Look Ahead Adder, Reversible 16-bit Multiplier and Reversible 32-bit Register together.

In order to keep the simulation time manageable due to simulating at the transistor level, a single

neuron of the CNN was implemented and then verified by using a portion of the MNIST Dataset.

The MNIST Dataset is a collection of data files that contain a set of hand written digits (0 through

9) to be identified. The data was fed into the Reversible Multiply Accumulate Block and the re-

sults were generated. As mentioned before, running the entire dataset with multiple layers would

have taken months to simulate at the transistor level, thus only a portion of the dataset was run

in order to verify the functionality.

7.1 Algorithm and the Implementation 71

7.1 Algorithm and the Implementation

A classical way of computing a CNN layer is built using Neurons that require three inputs. Early

research forcused on Single-layer Perceptron Networks; current work focuses on Multi-layer

Neural Networks. For recognition of hand written digits, a multi-layer CNN which is composed

of 3 layers can be used for processing the MNIST dataset. The structure of the CNN can be

seen in Figure 7.1. There are 30 input nodes with 30 neurons on the left hand side. Based on

classification of the first layer, the outputs from the 30 neurons enter to the second layer with 10

neurons. The outputs of the 10 neurons in the second layer enter the third layer with one neuron.

Figure 7.1: Handwriting Digit Inference CNN Structure Showing Layers

Each neuron could be built as shown in Figure 7.2, and this model was used as the algorithm

7.1 Algorithm and the Implementation 72

for this work. As shown, each neuron contains two parts, (i) Summation and Bias, and (ii)

Activation Function, which in this case is the Sigmoid Function (there are many other possible

activation functions, such as the ReLu Function). The exact calculations for each part can be

found in Equations 7.1 and 7.2 below. The three inputs to the network are: (i) “W” indicates

the Weights, (ii) “X” indicates the input, and (iii) “B” indicates the Biases. Finally, through the

Activation Function, identification of digits is possible.

Figure 7.2: Single Neuron [1, 2]

Z = ∑[Wj ∗X j]+B (7.1)

This work focused on the Summation and Bias portion of the Neuron. Equation 7.1 indicates

that each of the Weights needs to be multiplied with the input data, and the summation result

needs to be added to a bias. In order to reduce several day’s worth of simulation time, only a sin-

gle input node was used for verification at the transistor level. While the Activation Function was

not implemented in this work, the Sigmoid Function is being used this CNN because the result

varies between 0 and 1 simplifying the classification. The Sigmoid Function has an “S” shaped

curve seen in Figure 7.3, with a threshold at one extreme and saturates at the other extreme. Thus

7.1 Algorithm and the Implementation 73

a small change in the input does not significantly impact the result at either extreme.

Figure 7.3: Sigmoid Function Graph

σ(Z) =
1

1+ e−Z
(7.2)

The Summation and Bias portion shown in Equation 7.1 is implemented in hardware through

the use of Reversible 16-bit Multiplier, Reversible 32-bit Carry Look Ahead Adder, and Re-

versible 32-bit Register. The block diagram of this function can be seen in Figure 7.4. Figure

7.5 illustrates the schematic of the Reversible Multiply Accumulate design, with the inputs to

the multiplier fed with 16-bit Weights, and 16-bit input X. Then the resultant 32-bit product was

added with the Biases since a single input node was simulated. Note the biases in MNIST dataset

are 8-bits. Thus 24 bits of logic 0 were added to the most significant bit (MSB) to pad the bias

to 32-bits. The result from the adder was then stored in the 32-bit Register. In order to give a

0 for Carry in and Zero signal, a Tielo block was inserted. The Tielo pulls the network down

and creates a low input signal. In order to keep the input and output pin numbers equal, some

unnecessary pins were connected to noConnect, which means those nets were not connected to

anything and still pass the netlist checks without error.

7.1 Algorithm and the Implementation 74

Figure 7.4: Multiply Accumulate Block Diagram

Figure 7.5: Multiply Accumulate Schematic

The symbol of the Multiply Accumulate can be seen in Figure 7.6 illustrates the schematic

of the Multiply Accumulate design.

Figure 7.6: Reversible Multiply Accumulate Symbol

The symbol was then used to create a test instance with a testbench that would feed the

Weights and Biases from the .mif files from the MNIST Dataset. The test schematic can be

seen in Figure 7.7. After verifying the pre-layout functionality of the block, the layout of the Re-

versible Multiply Accumulate was created by routing the Reversible 16-bit Multiplier, Reversible

32-bit Carry Look Ahead Adder, and Reversible 32-bit Register together, which is shown in Fig-

ure 7.8. The layout of the Multiply Accumulate block passed both Design Rule Check (DRC)

and Layout Versus Schematic (LVS) checks, which verified the correctness of the layout design.

7.1 Algorithm and the Implementation 75

Figure 7.7: Reversible Multiply Accumulate Test Schematic

7.1 Algorithm and the Implementation 76

Figure 7.8: Reversible Multiply Accumulate Layout

The results obtained by the pre-layout simulation are illustrated in Figure 7.9. It can be

seen from the pre-layout simulation that the Reversible Multiply Accumulate block successfully

multiplies weights and the input X together and adds the biases correctly. Both binary and

decimal values can be seen for inputs and outputs. Further results can be seen in Appendix I.

7.1 Algorithm and the Implementation 77

Thus, the project was successfully completed with the given results in Chapter 8.

Figure 7.9: Reversible Multiply Accumulate Pre-Layout Simulation

Chapter 8

Results and Discussion

8.1 Results

In this chapter, the size of each created component as well as the rise and fall time associated with

each component is documented. As each component was successfully ran pre-layout simulation

and the Layout Versus Schematic (LVS) and Design Rule Check (DRC) were passed for each

layout, the design and verification of each component were made.

8.1 Results 79

In Table 8.1, the width, height and area of each component is present.

Table 8.1: The Width, Height and Area of each Cell

Cell Name Width (um) Height (um) Area (um2)

Inverter 0.8 1.71 1.368

Reversible NAND
Gate

1.2 1.71 2.052

Reversible NOR
Gate

2 1.71 3.42

CNOT Gate 5.4 1.71 9.234

SWAP Gate 16.2 1.71 27.702

Toffoli Gate 7.2 1.71 12.312

Full Adder 30 1.71 51.3

Fredkin Gate 14.46 1.71 24.7266

D-Latch 19.86 1.71 33.9606

32-bit Register 46.04 35.29 1,624.7516

32-bit Carry Look
Ahead Adder

46.14 50.005 2,307.2307

16-bit Multiplier 351.23 300 105,369

Multiply
Accumulate

351.23 356.105 125,074.759

8.2 Discussion 80

The delay of each component were measured and can be found in Table 8.1. It can be ob-

served that the transition delay of each component is below nanoseconds.

Table 8.2: The Delay of each Cell

Cell Name Delay (s)

Inverter 576.0E-12

Reversible NAND
Gate

529.8E-12

Reversible NOR
Gate

246.2E-12

CNOT Gate 431.7E-12

SWAP Gate 89.97E-12

Toffoli Gate 353.5E-12

Full Adder 592.8E-12

Fredkin Gate 458.7E-12

D-Latch 461.0E-12

32-bit Register 598.6E-12

32-bit Carry Look
Ahead Adder

535.6E-11

16-bit Multiplier 387.2E-11

8.2 Discussion

It can be seen in Table 8.1 that the 16-bit multiplier and the Reversible Multiply Accumulate

unit are the largest. This is because during auto placement, the tools leave unnecessary spacing

between each component and gave up auto placement as the machines that were available for

this work at Rochester Institute of Technology did not have enough memory to support auto

placement. As the 32-bit Carry Look Ahead Adder and the 32-bit Register had less components,

the cells were gathered closer by hand. However due to the large number of cells that the 16-

bit Multiplier had, it would have taken several weeks to move and place each component by

8.2 Discussion 81

hand. Thus, the auto-placed layout design was used and the area of the 16-bit Multiplier and the

Multiply Accumulate unit ended up being unnecessarily larger than needed.

Each design successfully ran pre-layout simulation and then layouts were completed. The

verification of layout was done first by comparing the layout and schematic through LVS, and

then by checking the design constraints through DRC. Even though the LVS were passed for

each layout, for multiplier and adder, the tools complained about shorts in input-output nets. As

these were just warnings that were expected, they could safely be ignored.

From a timing perspective, as can be seen in Table 8.2, the basic gates logic gates were all

reasonably fast, with timing in the picoseconds. The hierarchical cells, 16-bit Multiplier and

32-bit Carry Look Ahead Adder were also quite fast as expected since the architecture of these

blocks are known to provide fast designs.

Chapter 9

Conclusion

Through this work, reversible Quantum logic structures in CMOS technology were researched

and successfully created, designed and verified. Moreover, some classical gates were converted

into reversible gates and tested as well. Through the use of fully reversible gates, a Reversible

Multiply Accumulate Block used as part of a Perceptron was successfully designed in hardware

for Convolutional Neural Network use. The functionality of the hardware was then tested and

verified by using the the MNIST Dataset, the database of handwritten digits. The Reversible

Multiply Accumulate Block throughout this paper, computed each calculation accurately. For

each designed component, a layout was also created. The physical size was measured along with

the delay time, and these were detailed in the Results Section in Chapter 8. Even though each

component designed was reversible, the reconstruction of inputs from outputs have not been

worked on in this research. Achieving forward and backward computation could cut back on

time to train the CNNs, which is detailed in Future Work below, in Section 9.1.

9.1 Future Work 83

9.1 Future Work

For future work, the entire MNIST dataset for all nodes can be ran on the Reversible Multiply

Accumulate hardware instead of just running a single node. The Sigmoid Function could be

added to the Neuron to complete the classification. Even though the Reversible Multiply Ac-

cumulate Block is composed of reversible gates, as the Reversible Multiplier block is made out

of hierarchical blocks, the inputs may not be fully reconfigurable. When CNN undergoes cal-

culation and machine learning, the input nodes adjust the weights and biases, which means if

there is a miscategorization, the reversible gates should have the capability to go back a layer

instead of rerunning the entire algorithm. This would potentially save a tremendous amount of

time and resources as every miscalculation requires the layers to be categorized all over again.

Reconstruction of inputs from the outputs can be tested as a future work as well.

References

[1] Nahua Kang. Multi-Layer Neural Networks with Sigmoid Function - Deep Learning for

Rookies (2). Medium, 2017.

[2] Shiwei Xing and Chenjian Wu. Implementation of A Neuron Using Sigmoid Activation

Function with CMOS. In 2020 IEEE 5th International Conference on Integrated Circuits

and Microsystems (ICICM), pages 201–204, 2020. doi:10.1109/ICICM50929.2020.

9292239.

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends, Ru-

pak Biswas, Sergio Boixo, Fernando Brandao, David Buell, Brian Burkett, Yu Chen, Jimmy

Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi,

Brooks Foxen, Austin Fowler, Craig Michael Gidney, Marissa Giustina, Rob Graff, Keith

Guerin, Steve Habegger, Matthew Harrigan, Michael Hartmann, Alan Ho, Markus Rudolf

Hoffmann, Trent Huang, Travis Humble, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir

Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul Klimov, Sergey Knysh, Alexander Ko-

rotkov, Fedor Kostritsa, Dave Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Sal-

vatore MandrÃ , Jarrod Ryan McClean, Matthew McEwen, Anthony Megrant, Xiao Mi,

Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles

Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John Platt, Chris Quintana,

https://doi.org/10.1109/ICICM50929.2020.9292239
https://doi.org/10.1109/ICICM50929.2020.9292239

References 85

Eleanor G. Rieffel, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin J. Satzinger,

Vadim Smelyanskiy, Kevin Jeffery Sung, Matt Trevithick, Amit Vainsencher, Benjamin

Villalonga, Ted White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John

Martinis. Quantum Supremacy using a Programmable Superconducting Processor. Nature,

574:505–510, 2019. doi:10.1038/s41586-019-1666-5.

[4] Bahar Canga. D-Wave’s Quantum Processing Unit. April 2021.

[5] Amir Khoshaman, Walter Vinci, Brandon Denis, Evgeny Andriyash, Hossein Sadeghi, and

Mohammad H. Amin. Quantum variational autoencoder. Quantum Science and Technol-

ogy, 4(1), Sep 2018. doi:10.1088/2058-9565/aada1f.

[6] Jason Tyler Rolfe. Discrete Variational Autoencoders. 2017. arXiv:1609.02200.

[7] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[8] R. Jayashree and M. Kiran Kumar. DESIGN AND ANALYSIS OF FLIP-FLOPS USING

REVERSIBLE LOGIC. International Journal of Advanced Information Science and Tech-

nology (IJAIST), 23(23):210–217, 2014.

[9] H. Rohini and S. Rajashekar. Design of Reversible Logic based Basic Combinational Cir-

cuits. Communications on Applied Electronics, 5(9):38–43, Sep 2016. doi:10.5120/

cae2016652372.

[10] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A logarithmic-

depth quantum carry-lookahead adder. Quant. Inf. Comp., 6(4-5):351–369, 2006.

[11] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective.

Addison-Wesley Publishing Company, USA, 4th edition, 2010.

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1088/2058-9565/aada1f
http://arxiv.org/abs/1609.02200
https://doi.org/10.5120/cae2016652372
https://doi.org/10.5120/cae2016652372

References 86

[12] D.V.Manjunatha Savita Patil, D.V.Manjunatha. Design of speed and power efficient mul-

tipliers using vedic mathematics with vlsi implementation. International Conference on

Advances in Electronics, Computers and Communications (ICAECC), page 6, 2014.

[13] Amit Kumar and Hitesh Pahuja. Design and Analysis of Faster Multiplier using Vedic

Mathematics Technique. IJCA Proceedings on International Conference on Advancements

in Engineering and Technology, ICAET 2016(9):28–31, September 2016. Full text avail-

able.

[14] Deepak Kumar Shiksha Pandey. A Fast 16x16 Vedic Multiplier Using Carry Select Adder

on FPGA. International Journal of Advanced Research in Computer and Communication

Engineering, 5:989–994, April 2016. doi:10.17148/IJARCCE.2016.54243.

[15] J M Rudagi, Vishwanath Ambli, Vishwanath Munavalli, Ravindra Patil, and Vinaykumar

Sajjan. Design and implementation of efficient multiplier using vedic mathematics. In

3rd International Conference on Advances in Recent Technologies in Communication and

Computing (ARTCom 2011), pages 162–166, 2011. doi:10.1049/ic.2011.0071.

https://doi.org/10.17148/IJARCCE.2016.54243
https://doi.org/10.1049/ic.2011.0071

Appendix I

Testbench Code and Simulation Results

I.1 Reversible Carry Look Ahead Adder 4-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_CLAA4_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_CLAA4_TESTBENCH (A_IN , B_IN , Cin , Cout , Sum ,A_OUT) ;

5

6 o u t p u t [3 : 0] A_IN ;

7 o u t p u t [3 : 0] B_IN ;

8 o u t p u t Cin ;

9 i n p u t [3 : 0] Sum ;

10 i n p u t [1 : 0] A_OUT;

11 i n p u t Cout ;

12

I.1 Reversible Carry Look Ahead Adder 4-bit Testbench 88

13 r e g [3 : 0] A_IN_T ;

14 r e g [3 : 0] B_IN_T ;

15 r e g [3 : 0] R e s u l t ;

16 r e g Cin_T ;

17 r e g ECout ;

18 i n t e g e r loop1 ;

19

20 a s s i g n Cin = Cin_T ;

21 a s s i g n A_IN = A_IN_T ;

22 a s s i g n B_IN = B_IN_T ;

23

24 i n i t i a l b e g i n

25

26 A_IN_T = 4 ’ b0000 ;

27 B_IN_T = 4 ’ b0000 ;

28 Cin_T = 0 ;

29 R e s u l t = 0 ;

30 ECout = 0 ;

31

32 loop1 = 0 ;

33 end

34 a lways b e g i n

35 # 3 ; / / P r o p a g a t i o n

36 loop1 = loop1 +1;

37 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

I.1 Reversible Carry Look Ahead Adder 4-bit Testbench 89

38 A_IN_T = $random ;

39 B_IN_T = $random ;

40 Cin_T = $random ;

41 #10 ;

42 {ECout , R e s u l t } = A_IN_T + B_IN_T + Cin_T ;

43 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_IN , A_IN) ;

44 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_IN , B_IN) ;

45 #10 ;

46 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 Sum : %b %d , " , Sum , Sum) ;

47 $ d i s p l a y (" The e x p e c t e d o u t p u t 1 Sum : %b %d , " , R e s u l t ,

R e s u l t) ;

48 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout : %b " , Cout) ;

49 $ d i s p l a y (" The e x p e c t e d o u t p u t 2 Cout : %b " , ECout) ;

50 #10 ;

51 i f (loop1 == 20)

52 $ f i n i s h ;

53 end

54 endmodule

Listing I.1: Carry Look Ahead Adder 4-bits Testbench

I.2 Reversible Carry Look Ahead Adder 16-bit Testbench 90

I.2 Reversible Carry Look Ahead Adder 16-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_CLAA16_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_CLAA16_TESTBENCH (A_IN , B_IN , Cin , Cout , Cout1 ,

Cout2 , Cout3 , Cout4 , Sum ,A_OUT, C1 , C2 , C3 , C4) ;

5

6 o u t p u t [1 5 : 0] A_IN ;

7 o u t p u t [1 5 : 0] B_IN ;

8 o u t p u t Cin ;

9 i n p u t [1 5 : 0] Sum ;

10 i n p u t [7 : 0] A_OUT;

11 i n p u t Cout ;

12 i n p u t Cout1 ;

13 i n p u t Cout2 ;

14 i n p u t Cout3 ;

15 i n p u t Cout4 ;

16 i n p u t C1 , C2 , C3 , C4 ;

17

18 r e g [1 5 : 0] A_IN_T ;

19 r e g [1 5 : 0] B_IN_T ;

20 r e g [1 5 : 0] R e s u l t ;

21

I.2 Reversible Carry Look Ahead Adder 16-bit Testbench 91

22 r e g Cin_T ;

23 r e g Cout_T ;

24 i n t e g e r loop1 ;

25 a s s i g n Cin = Cin_T ;

26 a s s i g n A_IN = A_IN_T ;

27 a s s i g n B_IN = B_IN_T ;

28

29 i n i t i a l b e g i n

30

31 A_IN_T = 16 ’ b0000 ;

32 B_IN_T = 16 ’ b0000 ;

33 R e s u l t = 16 ’ b0000 ;

34 Cin_T = 0 ;

35

36 loop1 = 0 ;

37 end

38 a lways b e g i n

39 # 3 ; / / P r o p a g a t i o n

40 loop1 = loop1 +1;

41 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

42 Cin_T = 0 ;

43 R e s u l t = 16 ’ b0000 ;

44 A_IN_T= 16 ’ b01010 ;

45 B_IN_T= 16 ’ b0111001 ;

46 R e s u l t = A_IN_T + B_IN_T ;

I.2 Reversible Carry Look Ahead Adder 16-bit Testbench 92

47 #10 ;

48 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_IN , A_IN) ;

49 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_IN , B_IN) ;

50 #10 ;

51 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 Sum : %b %d , " , Sum , Sum) ;

52 $ d i s p l a y (" The e x p e c t e d o u t p u t 1 Sum : %b %d , " , R e s u l t ,

R e s u l t) ;

53 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout : %b " , Cout) ;

54 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout1

, C1) ;

55 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout2

, C2) ;

56 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout3

, C3) ;

57 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout4

, C4) ;

58 #10 ;

59

60 loop1 = loop1 +1;

61 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

62 R e s u l t = 16 ’ b0000 ;

63 A_IN_T= 16 ’ b111010 ;

64 B_IN_T= 16 ’ b01101 ;

65 R e s u l t = A_IN_T + B_IN_T ;

66 #10 ;

I.2 Reversible Carry Look Ahead Adder 16-bit Testbench 93

67 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_IN , A_IN) ;

68 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_IN , B_IN) ;

69 #10 ;

70 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 Sum : %b , %d , " , Sum , Sum) ;

71 $ d i s p l a y (" The e x p e c t e d o u t p u t 1 Sum : %b %d , " , R e s u l t ,

R e s u l t) ;

72 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout : %b " , Cout) ;

73 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout1

, C1) ;

74 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout2

, C2) ;

75 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout3

, C3) ;

76 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout4

, C4) ;

77 #10 ;

78

79 loop1 = loop1 +1;

80 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

81 R e s u l t = 16 ’ b00000 ;

82 A_IN_T= 16 ’ b0101101011110110 ;

83 B_IN_T= 16 ’ b1101010101010011 ;

84 R e s u l t = A_IN_T + B_IN_T ;

85 #10 ;

86 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_IN , A_IN) ;

I.2 Reversible Carry Look Ahead Adder 16-bit Testbench 94

87 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_IN , B_IN) ;

88 #10 ;

89 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 Sum : %b , %d , " , Sum , Sum) ;

90 $ d i s p l a y (" The e x p e c t e d o u t p u t 1 Sum : %b %d , " , R e s u l t ,

R e s u l t) ;

91 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout : %b " , Cout) ;

92 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout1

, C1) ;

93 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout2

, C2) ;

94 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout3

, C3) ;

95 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout1 : %b vs %b " , Cout4

, C4) ;

96 #10 ;

97

98

99 end

100 endmodule

Listing I.2: Carry Look Ahead Adder 16-bits Testbench

I.3 Reversible Carry Look Ahead Adder 32-bit Testbench 95

I.3 Reversible Carry Look Ahead Adder 32-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_CLAA32_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_CLAA32_TESTBENCH (A_IN , B_IN , Cin , Cout , Sum ,A_OUT

) ;

5

6 o u t p u t [3 1 : 0] A_IN ;

7 o u t p u t [3 1 : 0] B_IN ;

8 o u t p u t Cin ;

9 i n p u t [3 1 : 0] Sum ;

10 i n p u t [1 5 : 0] A_OUT;

11 i n p u t Cout ;

12

13 r e g [3 1 : 0] A_IN_T ;

14 r e g [3 1 : 0] B_IN_T ;

15 r e g [3 1 : 0] R e s u l t ;

16

17 r e g Cin_T ;

18 r e g Cout_T ;

19 i n t e g e r loop1 ;

20 a s s i g n Cin = Cin_T ;

21 a s s i g n A_IN = A_IN_T ;

I.3 Reversible Carry Look Ahead Adder 32-bit Testbench 96

22 a s s i g n B_IN = B_IN_T ;

23

24 i n i t i a l b e g i n

25

26 A_IN_T = 32 ’ b0000 ;

27 B_IN_T = 32 ’ b0000 ;

28 R e s u l t = 32 ’ b0000 ;

29 Cin_T = 0 ;

30

31 loop1 = 0 ;

32 end

33 a lways b e g i n

34 # 3 ; / / P r o p a g a t i o n

35 loop1 = loop1 +1;

36 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

37 A_IN_T= 32 ’ b01010 ;

38 B_IN_T= 32 ’ b0111001 ;

39 R e s u l t = A_IN_T + B_IN_T ;

40 #10 ;

41 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_IN , A_IN) ;

42 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_IN , B_IN) ;

43 #10 ;

44 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 Sum : %b %d , " , Sum , Sum) ;

45 $ d i s p l a y (" The e x p e c t e d o u t p u t 1 Sum : %b %d , " , R e s u l t ,

R e s u l t) ;

I.3 Reversible Carry Look Ahead Adder 32-bit Testbench 97

46 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout : %b " , Cout) ;

47 #10 ;

48

49 loop1 = loop1 +1;

50 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

51 R e s u l t = 32 ’ b0000 ;

52 A_IN_T= 32 ’ b111010 ;

53 B_IN_T= 32 ’ b01101 ;

54 R e s u l t = A_IN_T + B_IN_T ;

55 #10 ;

56 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_IN , A_IN) ;

57 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_IN , B_IN) ;

58 #10 ;

59 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 Sum : %b , %d , " , Sum , Sum) ;

60 $ d i s p l a y (" The e x p e c t e d o u t p u t 1 Sum : %b %d , " , R e s u l t ,

R e s u l t) ;

61 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout : %b " , Cout) ;

62 #10 ;

63

64 loop1 = loop1 +1;

65 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

66 R e s u l t = 32 ’ b00000 ;

67 A_IN_T= 32 ’ b0011010001101010101101011110110 ;

68 B_IN_T= 32 ’ b01101101011011010101010101010011 ;

69 R e s u l t = A_IN_T + B_IN_T ;

I.3 Reversible Carry Look Ahead Adder 32-bit Testbench 98

70 #10 ;

71 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_IN , A_IN) ;

72 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_IN , B_IN) ;

73 #10 ;

74 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 Sum : %b , %d , " , Sum , Sum) ;

75 $ d i s p l a y (" The e x p e c t e d o u t p u t 1 Sum : %b %d , " , R e s u l t ,

R e s u l t) ;

76 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 Cout : %b " , Cout) ;

77 #10 ;

78

79

80 end

81 endmodule

Listing I.3: Carry Look Ahead Adder 32-bits Testbench

I.4 Reversible Multiplier 2-bit Testbench 99

I.4 Reversible Multiplier 2-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_CLAA4_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_MULT2_TESTBENCH (A, B , Y) ;

5

6 o u t p u t [1 : 0] A;

7 o u t p u t [1 : 0] B ;

8 i n p u t [3 : 0] Y;

9

10

11 r e g [1 : 0] A_T ;

12 r e g [1 : 0] B_T ;

13 r e g [3 : 0] R e s u l t ;

14

15 i n t e g e r loop1 ;

16 a s s i g n A = A_T ;

17 a s s i g n B = B_T ;

18

19 i n i t i a l b e g i n

20

21 A_T = 2 ’ b00 ;

22 B_T = 2 ’ b00 ;

I.4 Reversible Multiplier 2-bit Testbench 100

23 loop1 = 0 ;

24 end

25 a lways b e g i n

26 # 3 ; / / P r o p a g a t i o n

27 loop1 = loop1 +1;

28 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

29 R e s u l t = 4 ’ b0000 ;

30 A_T = 2 ’ b00 ;

31 B_T = 2 ’ b00 ;

32 #0 R e s u l t = A * B ;

33 #10 ;

34 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

35 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

36 #10 ;

37 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

38 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

39 #10 ;

40

41 loop1 = loop1 +1;

42 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

43 R e s u l t = 4 ’ b0000 ;

44 A_T = 2 ’ b01 ;

45 B_T = 2 ’ b00 ;

46 #0 R e s u l t = A * B ;

47 #10 ;

I.4 Reversible Multiplier 2-bit Testbench 101

48 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

49 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

50 #10 ;

51 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

52 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

53 #10 ;

54

55 loop1 = loop1 +1;

56 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

57 R e s u l t = 4 ’ b0000 ;

58 A_T = 2 ’ b11 ;

59 B_T = 2 ’ b00 ;

60 #0 R e s u l t = A * B ;

61 #10 ;

62 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

63 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

64 #10 ;

65 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

66 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

67 #10 ;

68

69 loop1 = loop1 +1;

70 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

71 R e s u l t = 4 ’ b0000 ;

72 A_T = 2 ’ b10 ;

I.4 Reversible Multiplier 2-bit Testbench 102

73 B_T = 2 ’ b00 ;

74 #0 R e s u l t = A * B ;

75 #10 ;

76 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

77 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

78 #10 ;

79 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

80 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

81 #10 ;

82

83 loop1 = loop1 +1;

84 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

85 R e s u l t = 4 ’ b0000 ;

86 A_T = 2 ’ b11 ;

87 B_T = 2 ’ b10 ;

88 #0 R e s u l t = A * B ;

89 #10 ;

90 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

91 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

92 #10 ;

93 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

94 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

95 #10 ;

96

97 loop1 = loop1 +1;

I.4 Reversible Multiplier 2-bit Testbench 103

98 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

99 R e s u l t = 4 ’ b0000 ;

100 A_T = 2 ’ b11 ;

101 B_T = 2 ’ b00 ;

102 #0 R e s u l t = A * B ;

103 #10 ;

104 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

105 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

106 #10 ;

107 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

108 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

109 #10 ;

110

111 loop1 = loop1 +1;

112 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

113 R e s u l t = 4 ’ b0000 ;

114 A_T = 2 ’ b01 ;

115 B_T = 2 ’ b11 ;

116 #0 R e s u l t = A * B ;

117 #10 ;

118 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

119 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

120 #10 ;

121 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

122 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

I.4 Reversible Multiplier 2-bit Testbench 104

123 #10 ;

124

125 loop1 = loop1 +1;

126 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

127 R e s u l t = 4 ’ b0000 ;

128 A_T = 2 ’ b11 ;

129 B_T = 2 ’ b10 ;

130 #0 R e s u l t = A * B ;

131 #10 ;

132 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

133 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

134 #10 ;

135 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

136 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

137 #10 ;

138

139 loop1 = loop1 +1;

140 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

141 R e s u l t = 4 ’ b0000 ;

142 A_T = 2 ’ b01 ;

143 B_T = 2 ’ b10 ;

144 #0 R e s u l t = A * B ;

145 #10 ;

146 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

147 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

I.4 Reversible Multiplier 2-bit Testbench 105

148 #10 ;

149 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

150 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

151 #10 ;

152

153 loop1 = loop1 +1;

154 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

155 R e s u l t = 4 ’ b0000 ;

156 A_T = 2 ’ b11 ;

157 B_T = 2 ’ b11 ;

158 #0 R e s u l t = A * B ;

159 #10 ;

160 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

161 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

162 #10 ;

163 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , Y, Y) ;

164 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

165 #10 ;

166

167

168

169 end

170 endmodule

Listing I.4: Multiplier 2-bits Testbench

I.5 Reversible Multiplier 4-bit Testbench 106

I.5 Reversible Multiplier 4-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_CLAA4_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_MULT4_TESTBENCH (A, B , R e s u l t) ;

5

6 o u t p u t [3 : 0] A;

7 o u t p u t [3 : 0] B ;

8 i n p u t [7 : 0] R e s u l t ;

9

10

11 r e g [3 : 0] A_T ;

12 r e g [3 : 0] B_T ;

13 r e g [7 : 0] R e s u l t T ;

14

15 i n t e g e r loop1 ;

16 a s s i g n A = A_T ;

17 a s s i g n B = B_T ;

18

19 i n i t i a l b e g i n

20

21 A_T = 4 ’ b00 ;

22 B_T = 4 ’ b00 ;

I.5 Reversible Multiplier 4-bit Testbench 107

23 loop1 = 0 ;

24 end

25 a lways b e g i n

26 # 3 ; / / P r o p a g a t i o n

27 loop1 = loop1 +1;

28 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

29 A_T = $random ;

30 B_T = $random ;

31 #10 ;

32 R e s u l t T = A * B ;

33 $ d i s p l a y (" The g i v e n i n p u t A: %b , %d , " , A_T , A_T) ;

34 $ d i s p l a y (" The g i v e n i n p u t B : %b , %d , " , B_T , B_T) ;

35 #15 ;

36 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b %d , " , R e s u l t , R e s u l t) ;

37 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b %d , " , Resu l tT , R e s u l t T)

;

38 # 5 ;

39 i f (loop1 == 30)

40 $ f i n i s h ;

41

42 end

43 endmodule

Listing I.5: Multiplier 4-bits Testbench

I.6 Reversible Multiplier 8-bit Testbench 108

I.6 Reversible Multiplier 8-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_MULT8x8_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_MULT8x8_TESTBENCH (A, B , R e s u l t) ;

5

6 o u t p u t [7 : 0] A;

7 o u t p u t [7 : 0] B ;

8 i n p u t [1 5 : 0] R e s u l t ;

9

10 w i r e [7 : 0] A;

11 w i r e [7 : 0] B ;

12 r e g [7 : 0] a , b ;

13

14 r e g c l k ;

15

16 i n t e g e r c n t ;

17

18 w i r e [1 5 : 0] r = a * b ;

19

20 a s s i g n A = a ;

21 a s s i g n B = b ;

22

I.6 Reversible Multiplier 8-bit Testbench 109

23 i n i t i a l

24 b e g i n

25 a = 0 ;

26 b = 0 ;

27 c l k = 0 ;

28 c n t = 0 ;

29

30 end

31

32 a lways @(posedge c l k)

33 b e g i n

34 $ d i s p l a y ("A = %d , B = %d , R e s u l t = %d , Expec ted R e s u l t = %d " ,

a , b , R e s u l t , r) ;

35 $ d i s p l a y ("A = %b , B = %b , R e s u l t = %b , Expec ted R e s u l t = %b " ,

a , b , R e s u l t , r) ;

36 i f (R e s u l t != r)

37 $ d i s p l a y ("ERROR: R e s u l t (%d) != r (%d) \ n " , R e s u l t , r) ;

38

39 a <= ($random & 8 ’ h f f) ;

40 b <= ($random & 8 ’ h f f) ;

41 c n t <= c n t + 1 ;

42 @(negedge c l k) ;

43 i f (c n t > 30)

44 $ f i n i s h ;

45 end

I.6 Reversible Multiplier 8-bit Testbench 110

46

47 a lways

48 #10 c l k = ~ c l k ;

49

50 endmodule

Listing I.6: Multiplier 8-bits Testbench

I.7 Reversible Multiplier 16-bit Testbench 111

I.7 Reversible Multiplier 16-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , " BXC_Mult16 " " f u n c t i o n a l "

2

3

4 module BXC_MULT16x16_TESTBENCH (A, B , R e s u l t) ;

5

6 o u t p u t [1 5 : 0] A;

7 o u t p u t [1 5 : 0] B ;

8 i n p u t [3 1 : 0] R e s u l t ;

9

10 w i r e [1 5 : 0] A;

11 w i r e [1 5 : 0] B ;

12

13 r e g [1 5 : 0] a , b ;

14 r e g c l k ;

15

16 i n t e g e r c n t ;

17

18 w i r e [3 1 : 0] r = a * b ;

19

20 a s s i g n A = a ;

21 a s s i g n B = b ;

22

23 i n i t i a l

I.7 Reversible Multiplier 16-bit Testbench 112

24 b e g i n

25 a = 0 ;

26 b = 0 ;

27 c l k = 0 ;

28 c n t = 0 ;

29 end

30

31 a lways @(posedge c l k)

32 b e g i n

33 $ d i s p l a y ("A = %d , B = %d , R e s u l t = %d , Expec ted R e s u l t = %d " ,

a , b , R e s u l t , r) ;

34 $ d i s p l a y ("A = %b , B = %b , R e s u l t = %b , Expec ted R e s u l t = %b " ,

a , b , R e s u l t , r) ;

35 i f (R e s u l t != r)

36 $ d i s p l a y ("ERROR: R e s u l t (%d) != r (%d) \ n " , R e s u l t , r) ;

37

38 a <= ($random & 16 ’ h f f) ;

39 b <= ($random & 16 ’ h f f) ;

40 c n t <= c n t + 1 ;

41 @(negedge c l k) ;

42 i f (c n t > 30)

43 $ f i n i s h ;

44 end

45

46 a lways

I.7 Reversible Multiplier 16-bit Testbench 113

47 #10 c l k = ~ c l k ;

48

49 endmodule

Listing I.7: Multiplier 16-bits Testbench

I.8 Reversible Register 32-bit Testbench 114

I.8 Reversible Register 32-bit Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_REG_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_REG_TESTBENCH (D, Z , E_IN , E_OUT , Q1 , Q2) ;

5 o u t p u t [3 1 : 0] D;

6 o u t p u t [3 1 : 0] Z ;

7 o u t p u t [3 1 : 0] E_IN ;

8 i n p u t [3 1 : 0] Q1 ;

9 i n p u t [3 1 : 0] Q2 ;

10 i n p u t [3 1 : 0] E_OUT ;

11

12 r e g [3 1 : 0] D_T ;

13 r e g [3 1 : 0] Z_T ;

14 r e g [3 1 : 0] E_IN_T ;

15 r e g [3 1 : 0] Q1_T ;

16 r e g [3 1 : 0] Q2_T ;

17 r e g [3 1 : 0] E_OUT_T ;

18 i n t e g e r f l a g ;

19 i n t e g e r loop1 ;

20

21 a s s i g n D=D_T ;

22 a s s i g n Z= Z_T ;

I.8 Reversible Register 32-bit Testbench 115

23 a s s i g n E_OUT = E_OUT_T ;

24 a s s i g n E_IN = E_IN_T ;

25 i n i t i a l b e g i n

26

27 f l a g =0;

28 Z_T = 32 ’ b00000000000000000000000000000000 ;

29 D_T = 32 ’ b00000000000000000000000000000000 ;

30

31 E_IN_T = 0 ;

32

33 loop1 = 0 ;

34 end

35 a lways b e g i n

36 # 3 ; / / P r o p a g a t i o n

37 loop1 = loop1 +1;

38 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

39 E_IN_T <= 0 ;

40 #10 ;

41 E_IN_T <= 1 ;

42 #10 ;

43 E_IN_T <= 0 ;

44 #10 ;

45 E_IN_T <= 1 ;

46 #10 ;

47 D_T= 32 ’ b 00101011101010111010100101100100;

I.8 Reversible Register 32-bit Testbench 116

48 D_T= 32 ’ b 00101011101010111010100101100100;

49 $ d i s p l a y (" The g i v e n i n p u t : %b , " , D) ;

50 E_IN_T <= 0 ;

51 #10 ;

52 E_IN_T <= 1 ;

53 #10 ;

54 E_IN_T <= 0 ;

55 #10 ;

56 E_IN_T <= 1 ;

57 #10 ;

58 $ d i s p l a y (" The r e c e i v e d o u t p u t 1 : %b " , Q1) ;

59 $ d i s p l a y (" The r e c e i v e d o u t p u t 2 : %b " , Q2) ;

60 E_IN_T <= 0 ;

61 #10 ;

62 E_IN_T <= 1 ;

63 #10 ;

64 E_IN_T <= 0 ;

65 #10 ;

66 E_IN_T <= 1 ;

67 #10 ;

68

69 loop1 = loop1 +1;

70 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

71 D_T= 32 ’ b 11111111101010111010100101100100;

72 $ d i s p l a y (" The g i v e n i n p u t : %b , " ,D) ;

I.8 Reversible Register 32-bit Testbench 117

73 E_IN_T <= 0 ;

74 #10 ;

75 E_IN_T <= 1 ;

76 #10 ;

77 E_IN_T <= 0 ;

78 #10 ;

79 E_IN_T <= 1 ;

80 #10 ;

81 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b " , Q1) ;

82 E_IN_T <= 0 ;

83 #10 ;

84 E_IN_T <= 1 ;

85 #10 ;

86 E_IN_T <= 0 ;

87 #10 ;

88 E_IN_T <= 1 ;

89 #10 ;

90 loop1 = loop1 +1;

91 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

92 D_T= 32 ’ b 00101011101010111010100101111111;

93 $ d i s p l a y (" The g i v e n i n p u t : %b , " , D) ;

94 E_IN_T <= 0 ;

95 #10 ;

96 E_IN_T <= 1 ;

97 #10 ;

I.8 Reversible Register 32-bit Testbench 118

98 E_IN_T <= 0 ;

99 #10 ;

100 E_IN_T <= 1 ;

101 #10 ;

102 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b " , Q1) ;

103 / / $ d i s p l a y (" The e x p e c t e d o u t p u t : %b " , Q1_T) ;

104 $ d i s p l a y (" The e x p e c t e d o u t p u t : %b " , D) ;

105 E_IN_T <= 0 ;

106 #10 ;

107 E_IN_T <= 1 ;

108 #10 ;

109 E_IN_T <= 0 ;

110 #10 ;

111 E_IN_T <= 1 ;

112 #10 ;

113

114 loop1 = loop1 +1;

115 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

116 D_T= 32 ’ b 00101011101010111010100101100101;

117 $ d i s p l a y (" The g i v e n i n p u t : %b , " , D) ;

118 E_IN_T <= 0 ;

119 #10 ;

120 E_IN_T <= 1 ;

121 #10 ;

122 E_IN_T <= 0 ;

I.8 Reversible Register 32-bit Testbench 119

123 #10 ;

124 E_IN_T <= 1 ;

125 #10 ;

126 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b " , Q1) ;

127 E_IN_T <= 0 ;

128 #10 ;

129 E_IN_T <= 1 ;

130 #10 ;

131 E_IN_T <= 0 ;

132 #10 ;

133 E_IN_T <= 1 ;

134 #10 ;

135

136 loop1 = loop1 +1;

137 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

138 D_T= 32 ’ b 00101011111110111010100101100100;

139 $ d i s p l a y (" The g i v e n i n p u t : %b , " , D) ;

140 E_IN_T <= 0 ;

141 #10 ;

142 E_IN_T <= 1 ;

143 #10 ;

144 E_IN_T <= 0 ;

145 #10 ;

146 E_IN_T <= 1 ;

147 #10 ;

I.8 Reversible Register 32-bit Testbench 120

148 $ d i s p l a y (" The r e c e i v e d o u t p u t : %b " , Q1) ;

149

150 E_IN_T <= 0 ;

151 #10 ;

152 E_IN_T <= 1 ;

153 #10 ;

154 E_IN_T <= 0 ;

155 #10 ;

156 E_IN_T <= 1 ;

157 #10 ;

158

159

160

161 end

162 endmodule

Listing I.8: Register 32-bits Testbench

I.9 Reversible Register 32-bit Testbench 2 121

I.9 Reversible Register 32-bit Testbench 2

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "BXC_REG_TESTBENCH" "

f u n c t i o n a l "

2

3

4 module BXC_REG_TESTBENCH (D, Z , E_IN , E_OUT , Q1 , Q2) ;

5 o u t p u t [3 1 : 0] D;

6 o u t p u t [3 1 : 0] Z ;

7 o u t p u t [3 1 : 0] E_IN ;

8 i n p u t [3 1 : 0] Q1 ;

9 i n p u t [3 1 : 0] Q2 ;

10 i n p u t [3 1 : 0] E_OUT ;

11

12 r e g [3 1 : 0] D_T ;

13 r e g [3 1 : 0] Z_T ;

14 r e g [3 1 : 0] E_IN_T ;

15 r e g [3 1 : 0] Q1_T ;

16 r e g [3 1 : 0] Q2_T ;

17 r e g [3 1 : 0] E_OUT_T ;

18 r e g [3 1 : 0] c l k ;

19 i n t e g e r f l a g ;

20 i n t e g e r loop1 ;

21 i n t e g e r c n t ;

22 / / a s s i g n Q2 = Q2_T ;

I.9 Reversible Register 32-bit Testbench 2 122

23 / / a s s i g n Q1 = Q1_T ;

24 a s s i g n D=D_T ;

25 a s s i g n Z= Z_T ;

26 a s s i g n E_OUT = E_OUT_T ;

27 a s s i g n E_IN = c l k ;

28 i n i t i a l b e g i n

29

30 f l a g =0;

31 Z_T = 32 ’ b00000000000000000000000000000000 ;

32 D_T = 32 ’ b00000000000000000000000000000000 ;

33

34 c l k = 0 ;

35 c n t = 0 ;

36 loop1 = 0 ;

37 end

38 a lways @(posedge c l k)

39

40 b e g i n

41 # 3 ; / / P r o p a g a t i o n

42 loop1 = loop1 +1;

43 $ d i s p l a y (" T e s t %d Begin " , loop1) ;

44

45 $ d i s p l a y (" I n p u t = %d , Rece ived Outpu t = %d , " , D, Q1) ;

46 $ d i s p l a y (" I n p u t = %b , Rece ived Outpu t = %b , " , D, Q1) ;

47 i f (D != Q1)

I.9 Reversible Register 32-bit Testbench 2 123

48 $ d i s p l a y ("ERROR: R e s u l t (%d) != A c t u a l _ R e s u l t (%d) \ n " , Q1 , D)

;

49

50 D_T <= ($random & 32 ’ h f f f f) ;

51

52 c n t <= c n t + 1 ;

53 @(negedge c l k) ;

54 i f (c n t > 30)

55 $ f i n i s h ;

56

57

58

59 end

60 a lways

61 #10 c l k = ~ c l k ;

62

63 endmodule

Listing I.9: Register 32-bits Testbench 2

I.10 Reversible Multiply Accumulate Testbench 124

I.10 Reversible Multiply Accumulate Testbench

1 / / V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "

BXC_MultiplyAccumulate_TESTBENCH " " f u n c t i o n a l "

2

3

4 module BXC_MultiplyAccumulate_TESTBENCH (E_IN , Weights , X,

B ia se s , E_OUT , R e s u l t , R e s u l t 2) ;

5 o u t p u t [3 1 : 0] E_IN ;

6 o u t p u t [1 5 : 0] Weights ;

7 o u t p u t [1 5 : 0] X;

8 o u t p u t [3 1 : 0] B i a s e s ;

9 i n p u t [3 1 : 0] E_OUT ;

10 i n p u t [3 1 : 0] R e s u l t ;

11 i n p u t [3 1 : 0] R e s u l t 2 ;

12

13

14 w i r e [1 5 : 0] Weights ;

15 w i r e [1 5 : 0] X;

16 w i r e [3 1 : 0] B i a s e s ;

17

18 r e g [1 5 : 0] we igh t s , x ;

19 r e g [3 1 : 0] b i a s e s ;

20 r e g [3 1 : 0] c l k ;

21

I.10 Reversible Multiply Accumulate Testbench 125

22

23 i n t e g e r c n t ;

24 w i r e [3 1 : 0] r = w e i g h t s * x ;

25 w i r e [3 1 : 0] A c t u a l _ R e s u l t = r + b i a s e s ;

26 a s s i g n Weights = w e i g h t s ;

27 a s s i g n X = x ;

28 a s s i g n B i a s e s = b i a s e s ;

29 a s s i g n E_IN = c l k ;

30

31 i n i t i a l

32 b e g i n

33 w e i g h t s = 0 ;

34 x = 0 ;

35 b i a s e s = 0 ;

36 c l k = 0 ;

37 c n t = 0 ;

38 end

39

40 a lways @(posedge c l k)

41 b e g i n

42 $ d i s p l a y (" Weights = %d , X = %d , B i a s e s = %d , R e s u l t = %d ,

R e s u l t 2 = %d , A c t u a l R e s u l t = %d " , Weights , X, B ia se s ,

R e s u l t , R e s u l t 2 , A c t u a l _ R e s u l t) ;

43 $ d i s p l a y (" Weights = %b , X = %b , B i a s e s = %b , R e s u l t = %b ,

R e s u l t 2 = %b , A c t u a l R e s u l t = %b " , Weights , X, B ia se s ,

I.10 Reversible Multiply Accumulate Testbench 126

R e s u l t , R e s u l t 2 , A c t u a l _ R e s u l t) ;

44 i f (R e s u l t != A c t u a l _ R e s u l t)

45 $ d i s p l a y ("ERROR: R e s u l t (%d) != A c t u a l _ R e s u l t (%d) \ n " , R e s u l t

, A c t u a l _ R e s u l t) ;

46

47 w e i g h t s <= ($random & 16 ’ h f f) ;

48 x <= ($random & 16 ’ h f f) ;

49 b i a s e s <= ($random & 32 ’ h f f) ;

50 c n t <= c n t + 1 ;

51 @(negedge c l k) ;

52 i f (c n t > 30)

53 $ f i n i s h ;

54 end

55

56 a lways

57 #10 c l k = ~ c l k ;

58

59

60 endmodule

Listing I.10: Multiply Accumulate Testbench

I.11 Reversible Multiply Accumulate Code 127

I.11 Reversible Multiply Accumulate Code

1 / / s y s t e m V e r i l o g HDL f o r " b x c 7 4 8 3 _ b x c _ l i b " , "

BXC_Mul t ip lyAccumula te_Ver i log "

2 / / " s y s t e m V e r i l o g "

3

4 i m p o r t " DPI−C" f u n c t i o n s t r i n g g e t e n v (i n p u t s t r i n g env_name) ;

5

6 module BXC_MultiplyAccumulate_TESTBENCH (E_IN , Weights , X,

B ia se s , E_OUT , R e s u l t ,

7 R e s u l t 2) ;

8

9 o u t p u t [3 1 : 0] E_IN ;

10 o u t p u t [1 5 : 0] Weights ;

11 o u t p u t [1 5 : 0] X;

12 o u t p u t [3 1 : 0] B i a s e s ;

13 i n p u t [3 1 : 0] E_OUT ;

14 i n p u t [3 1 : 0] R e s u l t ;

15 i n p u t [3 1 : 0] R e s u l t 2 ;

16

17

18 r e g [1 5 : 0] Weights ;

19 r e g [1 5 : 0] X;

20 r e g [3 1 : 0] B i a s e s ;

21

I.11 Reversible Multiply Accumulate Code 128

22 r e g [3 1 : 0] c l k ;

23

24 p a r a m e t e r samples = 16384 ;

25 p a r a m e t e r wb = 1024 ;

26

27 / / s i m u l a t i o n p a s s e s

28 p a r a m e t e r maxcnt = 128 ;

29

30 r e g [1 5 : 0] weights_m [0 : wb − 1] ;

31 r e g [1 5 : 0] x_m [0 : samples − 1] ;

32 r e g [3 1 : 0] b ia ses_m [0 : wb − 1] ;

33

34 i n t e g e r cn t , i , e r r c n t ;

35

36 w i r e [3 1 : 0] r = Weights * X ;

37 w i r e [3 1 : 0] A c t u a l _ R e s u l t = r + B i a s e s ;

38

39 a s s i g n E_IN = c l k ;

40

41 i n i t i a l

42 b e g i n

43 $ w r i t e ("pwd = %s \ n " , g e t e n v ("PWD")) ;

44 f o r (i = 0 ; i < samples ; i = i + 1)

45 b e g i n

46 weights_m [i] = 0 ;

I.11 Reversible Multiply Accumulate Code 129

47 x_m [i] = 0 ;

48 b iases_m [i] = 0 ;

49 end

50 Weights = 0 ;

51 X = 0 ;

52 B i a s e s = 0 ;

53 c l k = 0 ;

54 c n t = 0 ;

55 e r r c n t = 0 ;

56 $readmemh (" . . / . . / . . / . . / . . / m n i s t / weights_m . t " , weights_m) ;

57 $readmemh (" . . / . . / . . / . . / . . / m n i s t / x_m . t " , x_m) ;

58 $readmemh (" . . / . . / . . / . . / . . / m n i s t / b i a ses_m . t " , b i a ses_m) ;

59 f o r (i = 0 ; i < 16 ; i = i + 1)

60 b e g i n

61 $ d i s p l a y (" weights_m[%d] = %h " , i , weights_m [i]) ;

62 $ d i s p l a y ("x_m[%d] = %h " , i , x_m [i]) ;

63 $ d i s p l a y (" b ia ses_m [%d] = %h " , i , b i a ses_m [i]) ;

64 end

65 end

66

67 a lways @(posedge c l k)

68 b e g i n

69 $ d i s p l a y (" ++++ Count = %d ++++" , c n t) ;

70 $ d i s p l a y (" Weights = %d , X = %d , B i a s e s = %d , R e s u l t = %d ,

R e s u l t 2 = %d , A c t u a l R e s u l t = %d " , Weights , X, B ia se s ,

I.11 Reversible Multiply Accumulate Code 130

R e s u l t , R e s u l t 2 , A c t u a l _ R e s u l t) ;

71 $ d i s p l a y (" Weights = %b , X = %b , B i a s e s = %b , \ n R e s u l t = %b ,

R e s u l t 2 = %b , A c t u a l R e s u l t = %b " , Weights , X, B ia se s ,

R e s u l t , R e s u l t 2 , A c t u a l _ R e s u l t) ;

72 i f (R e s u l t !== A c t u a l _ R e s u l t)

73 b e g i n

74 $ d i s p l a y ("ERROR: R e s u l t (%d) != A c t u a l _ R e s u l t (%d) \ n " , R e s u l t

, A c t u a l _ R e s u l t) ;

75 e r r c n t = e r r c n t + 1 ;

76 end

77 $ d i s p l a y (" =========== ") ;

78

79 Weights <= weights_m [c n t] ;

80 X <= x_m [c n t] ;

81 B i a s e s <= b iases_m [c n t] ;

82 c n t <= c n t + 1 ;

83

84 @(negedge c l k) ;

85 i f (c n t > maxcnt)

86 b e g i n

87 i f (e r r c n t == 0)

88 b e g i n

89 $ d i s p l a y (" >>>> TEST PASSED <<<") ;

90 end

91 e l s e

I.11 Reversible Multiply Accumulate Code 131

92 b e g i n

93 $ d i s p l a y (" >>>> TEST FAILED <<<") ;

94 $ d i s p l a y (" >>>> E r r o r Count = %d <<<<" , e r r c n t) ;

95 end

96 $ f i n i s h ;

97 end

98 end

99

100 a lways

101 #10 c l k = ~ c l k ;

102

103 endmodule / / BXC_MultiplyAccumulate_TESTBENCH

Listing I.11: Multiply Accumulate Code

I.11 Reversible Multiply Accumulate Code 132

I.12 Reversible Register 32-bit Results 133

I.12 Reversible Register 32-bit Results

Figure I.1: Reversible 32-bit Register Simulation Results

I.12 Reversible Register 32-bit Results 134

I.13 Reversible Carry Look Ahead Adder 32-bit Results 135

I.13 Reversible Carry Look Ahead Adder 32-bit Results

Figure I.2: Reversible 32-bit Carry Look Ahead Adder Simulation Results

I.13 Reversible Carry Look Ahead Adder 32-bit Results 136

I.14 Reversible Carry Look Ahead Adder 16-bit Results 137

I.14 Reversible Carry Look Ahead Adder 16-bit Results

Figure I.3: Reversible 16-bit Carry Look Ahead Adder Simulation Results

I.14 Reversible Carry Look Ahead Adder 16-bit Results 138

I.15 Reversible Carry Look Ahead Adder 4-bit Results 139

I.15 Reversible Carry Look Ahead Adder 4-bit Results

Figure I.4: Reversible 4-bit Carry Look Ahead Adder Simulation Results

I.15 Reversible Carry Look Ahead Adder 4-bit Results 140

I.16 Reversible 16-bit Multiplier Results 141

I.16 Reversible 16-bit Multiplier Results

Figure I.5: Reversible 16-bit Multiplier Simulation Result

I.16 Reversible 16-bit Multiplier Results 142

I.17 Reversible 8-bit Multiplier Results 143

I.17 Reversible 8-bit Multiplier Results

Figure I.6: Reversible 8-bit Multiplier Simulation Results

I.17 Reversible 8-bit Multiplier Results 144

I.18 Reversible 4-bit Multiplier Results 145

I.18 Reversible 4-bit Multiplier Results

Figure I.7: Reversible 4-bit Multiplier Simulation Results

I.18 Reversible 4-bit Multiplier Results 146

I.19 Reversible 2-bit Multiplier Results 147

I.19 Reversible 2-bit Multiplier Results

Figure I.8: Reversible 2-bit Multiplier Simulation Results

I.19 Reversible 2-bit Multiplier Results 148

I.20 Reversible Multiply Accumulate Results 149

I.20 Reversible Multiply Accumulate Results

Figure I.9: Reversible Multiply Accumulate Simulation Results

	Design of Reversible Quantum Logic Structures in CMOS Technology
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals
	1.2 Thesis Contributions
	1.3 Organization

	2 Background Research
	3 Theory
	3.1 Schrödinger's Equation
	3.2 Bloch Sphere
	3.3 Energy Conservation

	4 Quantum Notations and Quantum Gates
	4.1 Hilbert Spaces and Dirac Notation
	4.1.0.1 Ket
	4.1.0.2 Bra

	4.2 Quantum Gates
	4.2.0.1 Identity (I) Gate
	4.2.0.2 Pauli-X (X) Gate
	4.2.0.3 Pauli-Y (Y) Gate
	4.2.0.4 Pauli-Z (Z) Gate
	4.2.0.5 Phase (S, P) Gate
	4.2.0.6 Hadamard (H) Gate
	4.2.0.7 CNOT Gate
	4.2.0.8 Toffoli Gate
	4.2.0.9 SWAP Gate
	4.2.0.10 Fredkin Gate

	5 Cell Library
	5.0.1 Inverter
	5.0.2 Reversible NAND
	5.0.3 Reversible NOR
	5.0.4 CNOT
	5.0.5 SWAP
	5.0.6 Toffoli Gate
	5.0.7 Reversible Full Adder
	5.0.8 Fredkin Gate
	5.0.9 Reversible D-Latch
	5.0.10 Reversible 32-bit Register
	5.0.11 Reversible 32-bit Carry Look Ahead Adder
	5.0.12 Reversible 16-bit Multiplier

	6 Testing Components
	6.0.1 Inverter Test
	6.0.2 Reversible NAND Test
	6.0.3 Reversible NOR Test
	6.0.4 CNOT Test
	6.0.5 SWAP Test
	6.0.6 Toffoli Test
	6.0.7 Reversible Full Adder Test
	6.0.8 Fredkin Test
	6.0.9 D-Latch Test
	6.0.10 Reversible 32-bit Register Test
	6.0.11 Reversible 32-bit Carry Look Ahead Adder Test
	6.0.12 Reversible 16-bit Multiplier Test

	7 Reversible Multiply Accumulate Block
	7.1 Algorithm and the Implementation

	8 Results and Discussion
	8.1 Results
	8.2 Discussion

	9 Conclusion
	9.1 Future Work

	References
	I Testbench Code and Simulation Results
	I.1 Reversible Carry Look Ahead Adder 4-bit Testbench
	I.2 Reversible Carry Look Ahead Adder 16-bit Testbench
	I.3 Reversible Carry Look Ahead Adder 32-bit Testbench
	I.4 Reversible Multiplier 2-bit Testbench
	I.5 Reversible Multiplier 4-bit Testbench
	I.6 Reversible Multiplier 8-bit Testbench
	I.7 Reversible Multiplier 16-bit Testbench
	I.8 Reversible Register 32-bit Testbench
	I.9 Reversible Register 32-bit Testbench 2
	I.10 Reversible Multiply Accumulate Testbench
	I.11 Reversible Multiply Accumulate Code
	I.12 Reversible Register 32-bit Results
	I.13 Reversible Carry Look Ahead Adder 32-bit Results
	I.14 Reversible Carry Look Ahead Adder 16-bit Results
	I.15 Reversible Carry Look Ahead Adder 4-bit Results
	I.16 Reversible 16-bit Multiplier Results
	I.17 Reversible 8-bit Multiplier Results
	I.18 Reversible 4-bit Multiplier Results
	I.19 Reversible 2-bit Multiplier Results
	I.20 Reversible Multiply Accumulate Results

