DESIGN OF ROTATING ELECTRICAL MACHINES

Juha Pyrhönen Department of Electrical Engineering, Lappeenranta University of Technology, Finland

Tapani Jokinen Department of Electrical Engineering, Helsinki University of Technology, Finland

Valéria Hrabovcová Department of Power Electrical Systems, Faculty of Electrical Engineering, University of Žilina, Slovak Republic

Translated by Hanna Niemelä Department of Electrical Engineering, Lappeenranta University of Technology, Finland

John Wiley & Sons, Ltd

Contents

About the Authors Preface Abbreviations and Symbols		xi
		xiii
		xv
1	Principal Laws and Methods in Electrical Machine Design	1
1.1	Electromagnetic Principles	1
1.2	Numerical Solution	9
1.3	The Most Common Principles Applied to Analytic Calculation	12
	1.3.1 Flux Line Diagrams	17
	1.3.2 Flux Diagrams for Current-Carrying Areas	22
1.4	Application of the Principle of Virtual Work in the Determination	
	of Force and Torque	25
1.5	Maxwell's Stress Tensor; Radial and Tangential Stress	33
1.6	Self-Inductance and Mutual Inductance	36
1.7	Per Unit Values	40
1.8	Phasor Diagrams	43
	Bibliography	45
2	Windings of Electrical Machines	47
2.1	Basic Principles	48
	2.1.1 Salient-Pole Windings	48
	2.1.2 Slot Windings	52
	2.1.3 End Windings	53
2.2	Phase Windings	54
2.3	Three-Phase Integral Slot Stator Winding	56
2.4	Voltage Phasor Diagram and Winding Factor	63
2.5	Winding Analysis	71
2.6	Short Pitching	72
2.7	Current Linkage of a Slot Winding	81
2.8	Poly-Phase Fractional Slot Windings	92
2.9	Phase Systems and Zones of Windings	95
	2.9.1 Phase Systems	- 95
	2.9.2 Zones of Windings	98

2.10 Symmetry Conditions	99
2.11 Base Windings	102
2.11.1 First-Grade Fractional Slot Base Windings	103
2.11.2 Second-Grade Fractional Slot Base Windings	104
2.11.3 Integral Slot Base Windings	104
2.12 Fractional Slot Windings	105
2.12.1 Single-Layer Fractional Slot Windings	105
2.12.2 Double-Layer Fractional Slot Windings	115
2.13 Single- and Two-Phase Windings	122
2.14 Windings Permitting a Varying Number of Poles	126
2.15 Commutator Windings	127
2.15.1 Lap Winding Principles	131
2.15.2 Wave Winding Principles	134
2.15.3 Commutator Winding Examples, Balancing Connectors	137
2.15.4 AC Commutator Windings	140
2.15.5 Current Linkage of the Commutator Winding and	
Armature Reaction	142
2.16 Compensating Windings and Commutating Poles	145
2.17 Rotor Windings of Asynchronous Machines	147
2.18 Damper Windings	150
Bibliography	152
3 Design of Magnetic Circuits	153
3.1 Air Gap and its Magnetic Voltage	159
3.1.1 Air Gap and Carter Factor	159
3.1.2 Air Gaps of a Salient-Pole Machine	164
3.1.3 Air Gap of Nonsalient-Pole Machine	169
3.2 Equivalent Core Length	171
3.3 Magnetic Voltage of a Tooth and a Salient Pole	173
3.3.1 Magnetic Voltage of a Tooth	173
3.3.2 Magnetic Voltage of a Salient Pole	177
3.4 Magnetic Voltage of Stator and Rotor Yokes	177
3.5 No-Load Curve, Equivalent Air Gap and Magnetizing Current	
of the Machine	180
3.6 Magnetic Materials of a Rotating Machine	183
3.6.1 Characteristics of Ferromagnetic Materials	187
3.6.2 Losses in Iron Circuits	193
3.7 Permanent Magnets in Rotating Machines	200
3.7.1 History and Characteristics of Permanent Magnets	200
3.7.2 Operating Point of a Permanent Magnet Circuit	205
3.7.3 Application of Permanent Magnets in Electrical Machines	213
3.8 Assembly of Iron Stacks	219
3.9 Magnetizing Inductance	221
Bibliography	224

4 Flux Leakage	225
4.1 Division of Leakage Flux Components	227
4.1.1 Leakage Fluxes Not Crossing an Air Gap	227
4.1.2 Leakage Fluxes Crossing an Air Gap	228
4.2 Calculation of Flux Leakage	230
4.2.1 Air-Gap Leakage Inductance	230
4.2.2 Slot Leakage Inductance	234
4.2.3 Tooth Tip Leakage Inductance	245
4.2.4 End Winding Leakage Inductance	246
4.2.5 Skewing Factor and Skew Leakage Inductance	250
Bibliography	253
5 Resistances	255
5.1 DC Resistance	255
5.2 Influence of Skin Effect on Resistance	256
5.2.1 Analytical Calculation of Resistance Factor	256
5.2.2 Critical Conductor Height	265
5.2.3 Methods to Limit the Skin Effect	266
5.2.4 Inductance Factor	267
5.2.5 Calculation of Skin Effect Using Circuit Analysis	267
5.2.6 Double-Sided Skin Effect	274
Bibliography	280
6 Main Dimensions of a Rotating Machine	281
6.1 Mechanical Loadability	291
6.2 Electrical Loadability	293
6.3 Magnetic Loadability	294
6.4 Air Gap	297
Bibliography	300
7 Design Process and Properties of Rotating Electrical Machines	301
7.1 Asynchronous Motor	313
7.1.1 Current Linkage and Torque Production of an	
Asynchronous Machine	315
7.1.2 Impedance and Current Linkage of a Cage Winding	320
7.1.3 Characteristics of an Induction Machine	327
7.1.4 Equivalent Circuit Taking Asynchronous Torques and Harmonics	
into Account	332
7.1.5 Synchronous Torques	337
7.1.0 Selection of the Slot Number of a Cage Winding	339
7.1.7 Construction of an Induction Motor	342
7.1.6 Cooling and Duty Types	343
7.1.9 Examples of the Parameters of Three-Phase Industrial	0.40
Induction Motors	348

7.1.10 Asynchronous Generator	351
7.1.11 Asynchronous Motor Supplied with Single-Phase Current	353
7.2 Synchronous Machine	358
7.2.1 Inductances of a Synchronous Machine in Synchronous Operation	
and in Transients	359
7.2.2 Loaded Synchronous Machine and Load Angle Equation	370
7.2.3 RMS Value Phasor Diagrams of a Synchronous Machine	376
7.2.4 No-Load Curve and Short-Circuit Test	383
7.2.5 Asynchronous Drive	386
7.2.6 Asymmetric-Load-Caused Damper Currents	391
7.2.7 Shift of Damper Bar Slotting from the Symmetry Axis of the Pole	392
7.2.8 V Curve of a Synchronous Machine	394
7.2.9 Excitation Methods of a Synchronous Machine	394
7.2.10 Permanent Magnet Synchronous Machines	395
7.2.11 Synchronous Reluctance Machines	400
7.3 DC Machines	404
7.3.1 Configuration of DC Machines	404
7.3.2 Operation and Voltage of a DC Machine	405
7.3.3 Armature Reaction of a DC Machine and Machine Design	409
7.3.4 Commutation	411
7.4 Doubly Salient Reluctance Machine	413
7.4.1 Operating Principle of a Doubly Salient Reluctance Machine	414
7.4.2 Torque of an SR Machine	415
7.4.3 Operation of an SR Machine	416
7.4.4 Basic Terminology, Phase Number and Dimensioning of	
an SR Machine	419
7.4.5 Control Systems of an SR Motor	422
7.4.6 Future Scenarios for SR Machines	425
Bibliography	427
	150
8 Insulation of Electrical Machines	429
8.1 Insulation of Rotating Electrical Machines	431
8.2 Impregnation Varnishes and Resins	436
8.3 Dimensioning of an Insulation	440
8.4 Electrical Reactions Ageing Insulation	443
8.5 Practical Insulation Constructions	444
8.5.1 Slot Insulations of Low-Voltage Machines	445
8.5.2 Coil End Insulations of Low-Voltage Machines	445
8.5.5 Pole winding Insulations	446
8.5.4 Low-Voltage Machine Impregnation	447
8.5.5 Insulation of High-Voltage Machines	447
8.0 Condition Monitoring of Insulation	449
8./ Insulation in Frequency Converter Drives	453
Bibliography	455

9 Heat Transfer	457
9.1 Losses	458
9.1.1 Resistive Losses	458
9.1.2 Iron Losses	460
9.1.3 Additional Losses	460
9.1.4 Mechanical Losses	460
9.2 Heat Removal	462
9.2.1 Conduction	463
9.2.2 Radiation	466
9.2.3 Convection	470
9.3 Thermal Equivalent Circuit	476
9.3.1 Analogy between Electrical and Thermal Quantities	476
9.3.2 Average Thermal Conductivity of a Winding	477
9.3.3 Thermal Equivalent Circuit of an Electrical Machine	479
9.3.4 Modelling of Coolant Flow	488
9.3.5 Solution of Equivalent Circuit	493
9.3.6 Cooling Flow Rate	495
Bibliography	496
Appendix A	497
Appendix B	501
Index	503

ix