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ABSTRACT

Runs rules are often used to increase the sensitivity of a Shewhart control chart. In this work,

plots of various runs rules schemes are given to simplify the determination of control limits

based on a desired in-control average run length (ARL0).
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INTRODUCTION

The advantage of a Shewhart X̄ control chart is its

simplicity and its ability to detect large process average

shifts quickly. However, the Shewhart chart, which

signals an out-of-control condition when a single point

falls beyond a 3-sigma limit, is also known for its

insensitivity to small process average shifts. The average

run length (ARL) is usually used to evaluate the

performance of a Shewhart control chart. The ARL is the

average number of points that must be plotted before a

point indicates an out-of-control condition. For a

Shewhart control chart, the ARL can be calculated

easily from (Montgomery, 1996)

ARL ¼
1

r
ð1Þ

where r is the probability that any single point exceeds

the control limits. To illustrate, for the X̄ chart with

3-sigma limits, r ¼ 0:0027 is the probability that a single

point falls outside the limits when the process is in-

control. Therefore, the in-control ARL is:

ARL0 ¼
1

r
¼

1

0:0027
< 370:4

Several proposals on runs rules have been made so far.

Although these proposals increase the sensitivity of a

Shewhart control chart in detecting small process

average shifts, they do so at the expense of significant

increases in the type-I error (Klein, 2000). In the same

reference, Klein suggested two different schemes: the

two-of-two and the two-of-three schemes. The designs of

both schemes are based on the Markov chain approach.

The two schemes perform better than the standard
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Shewhart chart and can be designed to have the same in-

control ARL as that of the standard Shewhart chart.

The design of the two-of-two scheme is simpler than the

two-of-three scheme since its in-control ARL is given by

Eq. (2) (Klein, 2000):

M14 ¼
1 þ p*

2ð p*Þ2
ð2Þ

In the above equation, M14 is the in-control ARL and

p* ¼ pL ¼ pU; where pL denotes the probability of a

single point falling in the lower region and pU in the

upper region. However, the design of the two-of-three

scheme is more complicated as it involves a linear

system of seven equations shown below (Klein, 2000):

M18 ¼ 1 þ ð pÞM18 þ ð pUÞM28 þ ð pLÞM38

M28 ¼ 1 þ ð pÞM58 þ ð pLÞM48

M38 ¼ 1 þ ð pÞM68 þ ð pUÞM78

M48 ¼ 1 þ ð pÞM68

M58 ¼ 1 þ ð pÞM18 þ ð pLÞM38

M68 ¼ 1 þ ð pÞM18 þ ð pUÞM28

M78 ¼ 1 þ ð pÞM58 ð3Þ

Here, M18 is the in-control ARL. Finding the control

limit, which is needed to obtain a desired in-control

ARL, requires the additional constraints: pL ¼ pU and

pL þ pU þ p ¼ 1; where p denotes the probability of a

single point falling in the center region. Solving the

constraints in Eq. (3) plus these additional constraints

for pL or pU based on a fixed value of M18 is

extremely difficult and thus not practical for quality-

control engineers in their daily work.

Therefore, a more user-friendly approach is

proposed in this article. In addition, more superior runs

rules schemes are proposed. The values of pU or pL

based on a desired in-control ARL for all the proposed

schemes are easily determined from the respective plots

given. A sensitivity analysis can also be carried out to

increase the accuracy of the values of pU or pL obtained

from the plots. Thus, practitioners can determine the

control limits for a selected scheme based on a desired

in-control ARL without much difficulty.

DESIGN APPROACH USING PLOTS OF

IN-CONTROL ARL VERSUS pU (OR pL)

Figures 1, 3, 5, and 7 give plots of ARL vs. pU (or

pL) (since pU ¼ pL) based on in-control ARL values

between 100 and 1000 for the 2-of-3, 2-of-4, 3-of-3,

and 3-of-4 schemes, respectively, while Figs. 2, 4, 6,

and 8 give the corresponding plots for in-control ARL

values from 1000 to 2000 for the above four schemes.

The plots in Figs. 1 and 2 are constructed from points

(ARL0, pU [or pL ]) obtained using Mathematica 4.0

based on the linear system in Eq. (3). Here, ARL0

denotes the in-control ARL. As for plots in Figs. 3–8,

they are constructed using the same method based on

the corresponding linear systems for each scheme

given in the Appendix.

To use the proposed procedure, the following steps

are recommended:

(i) Choose the desired scheme based on the

magnitude of shift that is important for

a quick detection. If small shifts are deemed

important for quick detection, then

choose scheme 3-of-4. However, if bigger

shifts are to be detected quickly, then select

scheme 2-of-2. Finally, if shifts of very big

magnitude are important to be detected quickly,

then select the Shewhart control chart scheme

instead.

(ii) Decide on the value of the in-control ARL for

the case in which the process shift is zero.

This corresponds to fixing the false alarm rate

(i.e., the type-I error).

(iii) Based on steps (i) and (ii), determine the value

of pU (or pL) from the corresponding plot.

(iv) Perform a sensitivity analysis by comparing the

value of the in-control ARL obtained based on

the value of pU (or pL) from step (iii) with the

values of the in-control ARL for other values of

pU (or pL) close to the above one. Then, choose

the value of pU (or pL) whose in-control ARL

best matches the desired ARL0. Note that this

step is optional since the value of pU (or pL)

obtained from step (iii) gives an estimate of the

in-control ARL that is almost similar to the

desired in-control ARL. If this step is skipped,

then proceed to step (v).

(v) Based on the value of pU (or pL) from step (iv),

find the control limit by using the standard

Normal tables or from a simple calculation

using a programming language such as SAS

(Statistical Analysis System).
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Figure 2. In-control ARL vs. pU (or pL) for rule 2-of-3 (in-control ARL values between 1000 and 2000).

Figure 1. In-control ARL vs. pU (or pL) for rule 2-of-3 (in-control ARL values between 100 and 1000).
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Figure 4. In-control ARL vs. pU (or pL) for rule 2-of-4 (in-control ARL values between 1000 and 2000).

Figure 3. In-control ARL vs. pU (or pL) for rule 2-of-4 (in-control ARL values between 100 and 1000).
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Figure 6. In-control ARL vs. pU (or pL) for rule 3-of-3 (in-control ARL values between 1000 and 2000).

Figure 5. In-control ARL vs. pU (or pL) for rule 3-of-3 (in-control ARL values between 100 and 1000).
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Figure 8. In-control ARL vs. pU (or pL) for rule 3-of-4 (in-control ARL values between 1000 and 2000).

Figure 7. In-control ARL vs. pU (or pL) for rule 3-of-4 (in-control ARL values between 100 and 1000).
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EXAMPLE

The following steps are taken to design a 3-of-4

scheme with an average false alarm rate of not greater

than 1 in 600:

Step 1: The desired in-control ARL is 600.

Step 2: From the plot in Fig. 7 and the curve

associated with it, the value of pU (or pL)

corresponding to an in-control ARL value of

600 is determined to be approximately 0.069.

This approximation can be made from the curve

using a pencil and a ruler.

Step 3: A sensitivity analysis is then performed,

and its results are given in Table 1. Note that a

sensitivity analysis can be carried out using

Mathematica 4.0 by finding the other in-control

ARL values from the corresponding matrix

algebra, m (see Appendix) based on values of

pU (or pL) that are close to 0.069. The matrix

algebra, m represents the linear system in Eq.

(A.3), is also given in the Appendix. Note that in

the Appendix, pU is denoted by u, pL by k, and p

by the same letter. An example of the output

obtained for the case u ¼ k ¼ 0:06896 and p ¼

1 2 k 2 u is shown in Fig. 9. Here, the value of

the in-control ARL that we are interested in is

shown as the last entry in line 1 of the output. Its

value is 600.082, which means an average of

one false out-of-control signal in approximately

600 observations. This is the ARL value from

the starting state 1 to the absorbing (out-of-

control) state 26.

Step 4: From Table 1, the value of pU (or

pL) ¼ 0.06896 is found to have the closest in-

control ARL to our desired value 600. Based on

this value of pU (or pL), the control limits are

^1.4836 from the standard Normal tables.

Table 1. Sensitivity analysis for the 3-of-

4 scheme based on pU (or pL) ¼ 0.069.

pU/pL In-control ARL

0.069 599.098

0.06899 599.343

0.06898 599.589

0.06897 599.835

0.06896 600.082

Figure 9. The ARL values for the 3-of-4 scheme for the various states based on k ¼ u ¼ 0:06896 and p ¼ 1 2 k 2 u:
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PERFORMANCES OF THE RUNS

RULES SCHEMES

A simulation study is conducted to evaluate the

performances of the various schemes. Computer

programs are written using the SAS (Version 6.12)

programming language. Results are given in Tables 2–4

for in-control ARLs of 370, 500, and 1000, respectively.

The determination of the control limits for a standard

Shewhart control chart (i.e., the 1-of-1 scheme) based on

the above three in-control ARL values can be done easily

using standard Normal tables. For example, if the in-

control ARL is 500, then the probability that a point falls

outside the center region is pU þ pL ¼ 1
500

¼ 0:002:
Hence, pU (or pL) ¼ 0.001 and, from the standard

Normal tables, the control limits are ^3.09. Note that the

control limits for the other schemes are determined based

on the method discussed in the previous section. The

ARL profiles for all the schemes in Tables 2–4 are based

on process average shifts from zero (in-control) to out-of-

control values of up to six-sigma.

As expected, all the schemes performed better than

the standard Shewhart control chart for small to moderate

process average shifts (see the bold faced ARL values in

Tables 2–4). The 3-of-4 scheme has the best overall

performance, followed by the 3-of-3 and the 2-of-4

schemes for small to moderate process average shifts.

Note also that the 2-of-4, 3-of-3, and 3-of-4 schemes

perform better than the other two schemes suggested by

Klein (2000). However, for large process average shifts,

the standard Shewhart performs slightly better than the

other schemes. This is only a small concern since the

standard Shewhart can detect large shifts, the earliest by

one observation ahead of the 2-of-2, 2-of-3, and 2-of-4

schemes and by two observations ahead of the 3-of-3 and

3-of-4 schemes. On the contrary, for small process

average shifts, the difference in the time of detecting an

out-of-control signal between the standard Shewhart and

the other schemes are quite significant.

APPLICATION

To illustrate the proposed procedure in real working

situations, simulated data with known properties are

used. Thirty observations are generated, as shown in

Table 2. ARL profiles based on in-control ARL 370.

Shewhart 2-of-2 2-of-3 2-of-4 3-of-3 3-of-4

Control limits

Shift ^3 ^1.781 ^1.929 ^2.011 ^1.2 ^1.392

0 375.6942 368.9999 370.9544 367.9462 370.9259 375.6688

0.2 311.2865 278.0977 267.8767 265.0058 260.1067 249.6439

0.4 200.8238 152.4105 141.8001 139.2316 130.8848 116.8499

0.6 118.8520 79.7316 72.8887 70.3019 65.3161 57.1153

0.8 71.4727 43.7537 40.0956 38.5194 35.9541 30.9231

1 44.0847 26.0346 23.3690 22.5946 21.4363 18.6225

1.2 27.6007 16.4331 14.6154 14.2008 13.9222 12.1751

1.4 18.1069 10.8979 9.9428 9.7403 9.9001 8.6923

1.6 12.3450 7.7931 7.1649 7.0558 7.3666 6.6233

1.8 8.6633 5.8888 5.4140 5.4016 5.8625 5.3295

2 6.3096 4.5900 4.3037 4.3295 4.9011 4.5377

2.2 4.7255 3.7564 3.5948 3.6231 4.2796 4.0285

2.4 3.6656 3.2135 3.1043 3.1244 3.8685 3.6707

2.6 2.9129 2.8370 2.7673 2.7961 3.5695 3.4457

2.8 2.3826 2.5749 2.5192 2.5635 3.3781 3.2933

3 2.0069 2.3923 2.3571 2.3911 3.2413 3.1913

3.5 1.4421 2.1495 2.1249 2.1534 3.0631 3.0558

4 1.1880 2.0416 2.0395 2.0520 3.0146 3.0147

4.5 1.0726 2.0112 2.0088 2.0123 3.0027 3.0022

5 1.0245 2.0015 2.0024 2.0029 3.0002 3.0004

5.5 1.0057 2.0001 2.0002 2.0005 3.0000 3.0000

6 1.0014 2.0000 2.0000 2.0000 3.0000 3.0000
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Table 3. ARL profiles based on in-control ARL 500.

Shewhart 2-of-2 2-of-3 2-of-4 3-of-3 3-of-4

Control limits

Shift ^3.09 ^1.851 ^1.995 ^2.076 ^1.2608 ^1.449

0 504.4192 498.3582 501.0706 493.7532 507.1547 507.4956

0.2 415.4434 364.5605 355.1243 350.7271 341.5392 329.0058

0.4 263.5408 195.3699 181.9076 176.2584 163.8272 146.8434

0.6 154.2100 99.7721 90.3505 87.3447 80.3150 69.5863

0.8 89.7071 53.7457 48.7604 46.4805 42.3397 36.6257

1 54.7631 30.8248 27.7530 26.5227 24.9177 21.4054

1.2 33.9694 19.2224 17.1589 16.3689 15.7250 13.5938

1.4 21.9063 12.4159 11.2158 10.9519 10.9468 9.5045

1.6 14.6785 8.6895 7.8598 7.7976 7.9982 7.1335

1.8 10.1128 6.4491 5.9194 5.8785 6.2368 5.6356

2 7.2587 5.0009 4.6593 4.6268 5.1470 4.7240

2.2 5.3632 4.0089 3.7927 3.8315 4.4373 4.1534

2.4 4.0956 3.3714 3.2482 3.2652 3.9710 3.7616

2.6 3.2133 2.9551 2.8810 2.8892 3.6502 3.5021

2.8 2.5826 2.6553 2.5989 2.6287 3.4301 3.3326

3 2.1611 2.4521 2.4111 2.4408 3.2797 3.2170

3.5 1.5138 2.1715 2.1484 2.1745 3.0778 3.0660

4 1.2227 2.0494 2.0437 2.0597 3.0197 3.0166

4.5 1.0879 2.0134 2.0112 2.0149 3.0030 3.0026

5 1.0299 2.0025 2.0024 2.0035 3.0002 3.0004

5.5 1.0071 2.0003 2.0004 2.0008 3.0000 3.0000

6 1.0019 2.0000 2.0000 2.0000 3.0000 3.0000

Table 4. ARL profiles based on in-control ARL 1000.

Shewhart 2-of-2 2-of-3 2-of-4 3-of-3 3-of-4

Control limits

Shift ^3.29 ^2.0026 ^2.141 ^2.219 ^1.394 ^1.575

0 999.6642 1008.3300 999.4830 990.6290 1009.91 1014.27

0.2 814.0900 700.1159 693.9343 675.6902 651.6131 628.4106

0.4 491.9208 349.0751 321.9579 312.3122 285.7709 255.5132

0.6 276.6994 169.0419 150.5389 146.1836 130.3835 111.2154

0.8 156.4401 85.8652 75.7744 72.3462 64.3844 54.1093

1 90.0255 46.8022 41.7294 39.2269 35.3305 29.5563

1.2 54.8066 27.5242 24.0643 23.0240 21.0889 17.9095

1.4 33.9794 17.1546 15.0865 14.4417 13.7476 11.7889

1.6 21.9081 11.3147 10.1256 9.9006 9.8184 8.4850

1.8 14.6785 8.0366 7.2603 7.1452 7.3125 6.4852

2 10.1128 6.0480 5.4493 5.4622 5.8317 5.2471

2.2 7.2587 4.7045 4.0855 4.3680 4.8771 4.4835

2.4 5.3632 3.8252 3.5881 3.6432 4.2668 3.9909

2.6 4.0956 3.2601 3.0698 3.1418 3.8593 3.6488

2.8 3.2133 2.8703 2.7817 2.8069 3.5660 3.4265

3 2.5826 2.5997 2.5286 2.5720 3.3701 3.2797

3.5 1.7164 2.2296 2.1943 2.2284 3.1142 3.0907

4 1.3127 2.0771 2.0677 2.0835 3.0291 3.0240

4.5 1.1286 2.0186 2.0176 2.0233 3.0051 3.0044

5 1.0483 2.0047 2.0045 2.0058 3.0008 3.0008

5.5 1.0136 2.0007 2.0008 2.0009 3.0000 3.0000

6 1.0032 2.0000 2.0000 2.0001 3.0000 3.0000
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Table 5. Observations 1 to 20 are generated from a

Nð0; 1Þ distribution to simulate an in-control process with

a mean zero. Observations 21 to 30 are generated from a

Nð1; 1Þ distribution to simulate an out-of-control process

with a permanent shift in the process mean. It is clearly

shown that the mean has increased by one standard

deviation for each observation from 21 to 30.

These values are plotted on a standard Shewhart

control chart (see Fig. 10) with 3-sigma control limits

(i.e., ^3 since s ¼ 1) with a false alarm rate of 0.0027

for a point falling outside the ^3s limits when the

process is in-control. Thus, the in-control ARL (ARL0)

is 1
0:0027

< 370:4: The control limits for the 2-of-2, 2-of-

3, 2-of-4, 3-of-3, and 3-of-4 schemes are determined

based on this in-control ARL value to be ^1.78, ^1.93,

^2.01, ^1.20, and ^1.39, respectively (see Fig. 10).

Note that the control limits for the 2-of-2 scheme are

determined using Eq. (1), while the control limits for the

other schemes are determined based on the proposed

procedure.

Table 5. Simulated values for 30 observations.

Observation No., i Xi

Observation

No., i Xi

1 1.40419 16 20.91188

2 21.42641 17 21.24454

3 0.62378 18 20.93233

4 1.48897 19 20.97555

5 0.45396 20 0.73460

6 0.65258 21 2.40419

7 21.76759 22 20.42641

8 20.81356 23 1.62378

9 20.22403 24 2.48897

10 0.53134 25 1.45396

11 20.081560 26 1.65258

12 1.33234 27 20.76759

13 1.14637 28 0.18644

14 20.72117 29 0.77597

15 1.81601 30 1.53134

Figure 10. Control chart for the plotted 30 observations.
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From Fig. 10, it is noticed that no out-of-control

signal is detected based on the control limits of the

standard Shewhart and the 2-of-2 and 2-of-3 schemes.

However, both the 2-of-4 and 3-of-4 schemes signal an

out-of-control at observation 24, while the 3-of-3 scheme

detects an out-of-control signal at observation 25. This

simple example shows that runs rules schemes can

significantly increase the speed and probability of

detecting permanent shifts in the process mean, which

may otherwise be left undetected by the standard

Shewhart scheme. Furthermore, the control limits of any

of the schemes discussed in this article can be easily

determined based on a desired false alarm rate.

CONCLUSION

In this article, a simple and practical approach for

designing runs rules schemes based on a desired type-I

error is proposed. Due to its simplicity, quality-control

engineers may find this approach user-friendly and hence

useful in industrial settings. Practitioners who have been

using the standard Shewhart control chart may find the

3-of-4 scheme attractive due to its favorable ARL

properties.

APPENDIX

The notations used here are pU ¼ u; denoting the

probability of a single point falling in the upper

region; pL ¼ k in the lower region; and p in the center

region. Note that the additional constraints required to

solve the in-control ARL of each of the following

schemes are pL ¼ pU and pL þ pU þ p ¼ 1: All

Mathematica 4.0 programs that come with the

following schemes can be obtained from the author

upon request.

The 2-of-3 Scheme

The expected number of transitions from each of the

states to the absorbing state are represented by the linear

system in Eq. (3). This linear system can also be

represented by the matrix algebra in Fig. 11.

Note that the above matrix is typed using

Mathematica 4.0, and running this program for a k ¼ u

value of our choice gives the corresponding in-control

ARL value.

The 2-of-4 Scheme

The Markov chain for this scheme consists of

14 states with the first 13 of them as transient. The

states are:

State (OOO): has three successive points between

both control limits;

State (OOU): has the first two points between both

control limits and the third above the upper

control limit (UCL);

State (OUO): has the first and third points between

both control limits and the second above the

UCL;

State (UOO): has the first point above the UCL and

the second and third between both control

limits;

State (OOL): has the first two points between both

control limits and the third below the lower

control limit (LCL);

State (OLO): has the first and third points between

both control limits and the second below the

LCL;

State (LOO): has the first point below the LCL and

the second and third between both control

limits;

State (OUL): has the first point between both

control limits, the second above the UCL, and

the third below the LCL;

Figure 11. Matrix algebra for the linear system in Eq. (3).
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Table 6. Transition probabilities for Markov chain with 13 transient states.

States at time t þ 1

States at time t 1 (OOO) 2 (OOU) 3 (OUO) 4 (UOO) 5 (OOL) 6 (OLO) 7 (LOO) 8 (OUL) 9 (OLU) 10 (UOL) 11 (ULO) 12 (LOU) 13 (LUO) 14 (OOC)

1 (OOO) p pU pL

2 (OOU) p pL pU

3 (OUO) P pL pU

4 (UOO) p pL pU

5 (OOL) p pU pL

6 (OLO) p pU pL

7 (LOO) p pU pL

8 (OUL) p pU þ pL

9 (OLU) p pU þ ;pL

10 (UOL) p pU þ pL

11 (ULO) p pU þ pL

12 (LOU) p pU þ pL

13 (LUO) P pU þ pL

14 (OOC) 1
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State (OLU): has the first point between both

control limits, the second below the LCL, and

the third above the UCL;

State (UOL): has the first point above the UCL, the

second between both control limits, and the

third below the LCL;

State (ULO): has the first point above the UCL, the

second below the LCL, and the third between

both control limits;

State (LOU): has the first point below the LCL, the

second between both control limits, and the

third above the UCL;

State (LUO): has the first point below the LCL, the

second above the UCL, and the third between

both control limits;

State (OOC): the absorbing state, has two of four

points either below the LCL or above the UCL.

The transition probabilities of the Markov chain for

this scheme are given in Table 6. The expected number of

transitions from each of the states to the absorbing state

can be determined by solving the linear system in

Eq. (A.1). Here, M1(14) is the in-control ARL for this

scheme.

M1ð14Þ ¼ 1 þ ð pÞM1ð14Þ þ ð pUÞM2ð14Þ

þ ð pLÞM5ð14Þ

M2ð14Þ ¼ 1 þ ð pÞM3ð14Þ þ ð pLÞM8ð14Þ

M3ð14Þ ¼ 1 þ ð pÞM4ð14Þ þ ð pLÞM10ð14Þ

M4ð14Þ ¼ 1 þ ð pÞM1ð14Þ þ ð pLÞM5ð14Þ

M5ð14Þ ¼ 1 þ ð pÞM6ð14Þ þ ð pUÞM9ð14Þ

M6ð14Þ ¼ 1 þ ð pÞM7ð14Þ þ ð pUÞM12ð14Þ

M7ð14Þ ¼ 1 þ ð pÞM1ð14Þ þ ð pUÞM2ð14Þ

M8ð14Þ ¼ 1 þ ð pÞM11ð14Þ

M9ð14Þ ¼ 1 þ ð pÞM13ð14Þ

M10ð14Þ ¼ 1 þ ð pÞM6ð14Þ

M11ð14Þ ¼ 1 þ ð pÞM7ð14Þ

M12ð14Þ ¼ 1 þ ð pÞM3ð14Þ

M13ð14Þ ¼ 1 þ ð pÞM4ð14Þ ðA:1Þ

This linear system can also be represented by the matrix

algebra in Fig. 12 using Mathematica 4.0.

The 3-of-3 Scheme

The Markov chain for this scheme consists of

10 states with the first 9 states as transient. The states are:

State (OO): has two successive points between

both control limits;

State (OU): has a first point between both control

limits and the second above the UCL;

State (OL): has a first point between both control

limits and the second below the LCL;

State (UL): has a first point above the UCL and the

second below the LCL;

Figure 12. Matrix algebra for the linear system in Eq. (A.1).
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State (LU): has a first point below the LCL and

the second above the UCL;

State (UO): has a first point above the UCL and the

second between both control limits;

State (LO): has a first point below the LCL and

the second between both control limits;

State (UU): has two successive points above the

UCL;

State (LL): has two successive points below the

LCL;

State (OOC): the absorbing state, has three

successive points either below the LCL or

above the UCL.The transition probabilities of

the Markov chain for this scheme are given in Table 7.

Equation (A.2) gives the expected number of

transitions from each of the states to the absorbing

state. Here, M1(10) is the in-control ARL for this scheme.

M1ð10Þ ¼ 1 þ ð pÞM1ð10Þ þ ð pUÞM2ð10Þ

þ ð pLÞM3ð10Þ

M2ð10Þ ¼ 1 þ ð pÞM6ð10Þ þ ð pUÞM8ð10Þ þ ð pLÞM4ð10Þ

M3ð10Þ ¼ 1 þ ð pÞM7ð10Þ þ ð pUÞM5ð10Þ þ ð pLÞM9ð10Þ

M4ð10Þ ¼ 1 þ ð pÞM7ð10Þ þ ð pUÞM5ð10Þ þ ð pLÞM9ð10Þ

M5ð10Þ ¼ 1 þ ð pÞM6ð10Þ þ ð pUÞM8ð10Þ þ ð pLÞM4ð10Þ

M6ð10Þ ¼ 1 þ ð pÞM1ð10Þ þ ð pUÞM2ð10Þ þ ð pLÞM3ð10Þ

M7ð10Þ ¼ 1 þ ð pÞM1ð10Þ þ ð pUÞM2ð10Þ þ ð pLÞM3ð10Þ

M8ð10Þ ¼ 1 þ ð pÞM6ð10Þ þ ð pLÞM4ð10Þ

M9ð10Þ ¼ 1 þ ð pÞM7ð10Þ þ ð pUÞM5ð10Þ ðA:2Þ

The linear system in Eq. (A.2) can be represented by the

matrix algebra in Fig. 13 using Mathematica 4.0.

The 3-of-4 Scheme

The Markov chain for this scheme consists of

26 states. Fourteen of the state descriptions are similar to

that of the 2-of-4 scheme given earlier. The remaining

12 states are:

Table 7. Transition probabilities for Markov chain with 10 transient states.

States at time t þ 1

States at time t 1 (OO) 2 (OU) 3 (OL) 4 (UL) 5 (LU) 6 (UO) 7 (LO) 8 (UU) 9 (LL) 10 (OOC)

1 (OO) p pU pL

2 (OU) pL p pU

3 (OL) pU p pL

4 (UL) pU p pL

5 (LU) pL p pU

6 (UO) p pU pL

7 (LO) p pU pL

8 (UU) pL p pU

9 (LL) pU p pL

10 (OOC) 1

Figure 13. Matrix algebra for the linear system in Eq. (A.2).
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Table 8. Transition probabilities for Markov chain with 26 transient states.

States at time t þ 1

States at

time t

1

(OOO)

2

(OOU)

3

(OUO)

4

(UOO)

5

(OOL)

6

(OLO)

7

(LOO)

8

(OUU)

9

(UOU)

10

(UUO)

11

(OLL)

12

(LOL)

13

(LLO)

14

(OUL)

15

(UOL)

16

(LOU)

17

(OLU)

18

(ULO)

19

(LUO)

20

(UUL)

21

(ULU)

22

(LUU)

23

(LLU)

24

(LUL)

25

(ULL)

26

(OOC)

1 (OOO) p pU pL

2 (OOU) p pU pL

3 (OUO) p pU pL

4 (UOO) p pU pL

5 (OOL) p pL pU

6 (OLO) p pL pU

7 (LOO) p pU pL

8 (OUU) p pL pU

9 (UOU) p pL pU

10 (UUO) p pL pU

11 (OLL) p pU pL

12 (LOL) p pU pL

13 (LLO) p pU pL

14 (OUL) p pU pL

15 (UOL) p pL pU

16 (LOU) p pU pL

17 (OLU) p pU pL

18 (ULO) p pL pU

19 (LUO) p pU pL

20 (UUL) p pL pU

21 (ULU) p pL pU

22 (LUU) p pL pU

23 (LLU) p pU pL

24 (LUL) p pU pL

25 (ULL) p pU pL

26 (OOC) 1
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State (OUU): has the first point between both

control limits and the second and third above the

UCL;

State (UOU): has the first and third points above

the UCL and the second between both control

limits;

State (UUO): has the first two points above the

UCL and the third between both control limits;

State (OLL): has the first point between both

control limits and the second and third below

the LCL;

State (LOL): has the first and third points below the

LCL and the second between both control

limits;

State (LLO): has the first two points below the LCL

and the third between both control limits;

State (UUL): has the first two points above the

UCL and the third below the LCL;

State (ULU): has the first and third points above the

UCL and the second below the LCL;

State (LUU): has the first point below the LCL and

the second and third above the UCL;

State (LLU): has the first two points below the LCL

and the third above the UCL;

State (LUL): has the first and third points below the

LCL and the second above the UCL;

State (ULL): has the first point above the UCL and

the second and third below the LCL.The

transition probabilities of the Markov chain for this

scheme are given in Table 8.

The expected number of transitions from each of the

states to the absorbing state is given in Eq. (A.3).

M1ð26Þ ¼ 1 þ ð pÞM1ð26Þ þ ð pUÞM2ð26Þ

þ ð pLÞM5ð26Þ

M2ð26Þ ¼ 1 þ ð pÞM3ð26Þ þ ð pUÞM8ð26Þ þ ð pLÞM14ð26Þ

M3ð26Þ ¼ 1 þ ð pÞM4ð26Þ þ ð pUÞM9ð26Þ þ ð pLÞM15ð26Þ

Figure 14. Matrix algebra for the linear system in Eq. (A.3).
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M4ð26Þ ¼ 1 þ ð pÞM1ð26Þ þ ð pUÞM2ð26Þ þ ð pLÞM5ð26Þ

M5ð26Þ ¼ 1 þ ð pÞM6ð26Þ þ ð pUÞM17ð26Þ

þ ð pLÞM11ð26Þ

M6ð26Þ ¼ 1 þ ð pÞM7ð26Þ þ ð pUÞM16ð26Þ

þ ð pLÞM12ð26Þ

M7ð26Þ ¼ 1 þ ð pÞM1ð26Þ þ ð pUÞM2ð26Þ þ ð pLÞM5ð26Þ

M8ð26Þ ¼ 1 þ ð pÞM10ð26Þ þ ð pLÞM20ð26Þ

M9ð26Þ ¼ 1 þ ð pÞM3ð26Þ þ ð pLÞM14ð26Þ

M10ð26Þ ¼ 1 þ ð pÞM4ð26Þ þ ð pLÞM15ð26Þ

M11ð26Þ ¼ 1 þ ð pÞM13ð26Þ þ ð pUÞM23ð26Þ

M12ð26Þ ¼ 1 þ ð pÞM6ð26Þ þ ð pUÞM17ð26Þ

M13ð26Þ ¼ 1 þ ð pÞM7ð26Þ þ ð pUÞM16ð26Þ

M14ð26Þ ¼ 1 þ ð pÞM18ð26Þ þ ð pUÞM21ð26Þ

þ ð pLÞM25ð26Þ

M15ð26Þ ¼ 1 þ ð pÞM6ð26Þ þ ð pUÞM17ð26Þ

þ ð pLÞM11ð26Þ

M16ð26Þ ¼ 1 þ ð pÞM3ð26Þ þ ð pUÞM8ð26Þ þ ð pLÞM14ð26Þ

M17ð26Þ ¼ 1 þ ð pÞM19ð26Þ þ ð pUÞM22ð26Þ

þ ð pLÞM24ð26Þ

M18ð26Þ ¼ 1 þ ð pÞM7ð26Þ þ ð pUÞM16ð26Þ

þ ð pLÞM12ð26Þ

M19ð26Þ ¼ 1 þ ð pÞM4ð26Þ þ ð pUÞM9ð26Þ þ ð pLÞM15ð26Þ

M20ð26Þ ¼ 1 þ ð pÞM18ð26Þ þ ð pLÞM25ð26Þ

M21ð26Þ ¼ 1 þ ð pÞM19ð26Þ þ ð pLÞM24ð26Þ

M22ð26Þ ¼ 1 þ ð pÞM10ð26Þ þ ð pLÞM20ð26Þ

M23ð26Þ ¼ 1 þ ð pÞM19ð26Þ þ ð pUÞM22ð26Þ

M24ð26Þ ¼ 1 þ ðpÞM18ð26Þ þ ð pUÞM21ð26Þ

M25ð26Þ ¼ 1 þ ð pÞM13ð26Þ þ ð pUÞM23ð26Þ ðA:3Þ

The matrix algebra typed using Mathematica 4.0 that

corresponds to the above linear system is given in Fig. 14.
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