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Abstract 
 

In this work, Design of second order sliding mode control has been developed to control the diabetic glucose concentration level under 

disturbing meal has been controlled using three sliding mode controllers. A comparative study of three sliding mode controllers is made 

in terms of robustness characteristics due to meal feeding. The first is the classical sliding mode controller, the second is integral sliding 

mode controller and the third is the second order sliding mode controller. Due to their characteristic features of disturbance rejection, all 

the three sliding mode controllers are presented here for comparison. The Bergman minimal mathematical model is used to describe the 

dynamic behavior of blood glucose concentration due to insulin regulator injection. Simulations, based on MATLAB/Simulink, were 

performed to verify the performance of each controller. It has been shown that integral and second order sliding mode controllers are the 

best of all in terms of disturbance rejection capability. 
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1. Introduction 

Diabetes mellitus is the human disease which results from the 

presence of the high level of blood sugar for prolonged period due 

to inadequate generation of insulin in blood [1]. 

    In the human body, the beta cells in the pancreas are responsible 

for reproducing the insulin, which regulates glucose consumption. 

In diabetes, beta cells fail to produce enough insulin concentration 

in blood of the human body, which becomes incapable of control-

ling the glucose level. 

With type 1 diabetes, the patient body cannot produce sufficient 

insulin and doses of insulin have to be injected in the human body 

to regulate blood glucose level. The patient serves to complete the 

glucose level control system. Unless the patient with diabetes 

mellitus gave sufficient insulin, serious problems may arise such 

as damage to nerve or brain, amputation and probably causes 

death [2].  

The concentration of glucose level in the blood of normal human 

body is in the range (70-110) mg/dL. Diabetes can be recognized 

in a human being if its body is unable to control the normal inter-

action between glucose and insulin. As such, it is necessary to 

regulate the level of blood glucose by injecting the insulin [3], [4]. 

    In general, the closed loop glucose regulation system consists of 

three main elements; glucose sensor, insulin pump and control 

techniques for generating the necessary insulin dosage based on 

the glucose measurements [5].  Figure (1) shows the block dia-

gram of closed loop system for glucose level control.   
Several approaches have been earlier considered the design feed-

back controllers for insulin-glucose control. Recent research in the 

orbit of insulin regulation system contained highly advanced con-

trol theory, that orbit sample represented by Reinforcement Learn-

ing Algorithm as in [7], new module for the multivariable adaptive 

like in [8], Model-based falsification has dealt with the problem in 

[9], Robust glucose control via μ-synthesis has presented in [10], 

Hybrid Newton Observer has been assessed in Analysis of Glu-

cose Regulation System in [11], Terminal Synergetic Control has 

been employed in the field as in [12], Backstepping sliding mode 

Gaussian insulin injection control also presented in [13] and lastly 

Super twisting control algorithm has presented in [14].  

 

 

 

 

 

 

 

Figure 1. Block diagram of closed-loop insulin regulation system [6]. 

Biomedical applications managed by advanced control theory 

such the Insulin regulation systems are still struggling for new 

aspects for improving and enhancing the performance and robust-

ness and that was the motivation of the present work [15],[16]. 

This work contribution is to introduce a design and comparison 

study among robust Insulin regulation system based on three slid-

ing mode controllers under meal disturbance. The compared con-

trollers are the classical sliding mode, integral sliding mode and 

the recent second order sliding mode.  
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2. Mathematical Model  

  Bergman minimal mathematical model is the most common 

referenced model in the literature. It approximates the dynamic 

behavior of a diabetic patient’s blood glucose concentration to the 
insulin injection. The main advantage of using Bergman minimal 

model is that the number of parameters is minimum and it de-

scribes the relation between main two factors, insulin and glucose 

concentrations, without getting into biological complicated details. 

In the present work, the nonlinear three-state minimal model of 

Bergman is considered [1], [17], [18]; 

 �̇�(𝑡) = −𝑝1𝐺(𝑡) − 𝑋(𝑡)(𝐺(𝑡) + 𝐺𝐵) + ℎ(𝑡) �̇�(𝑡) = −𝑝2𝑋(𝑡) + 𝑝3𝑌(𝑡)                                                          (1)                         �̇�(𝑡) = −𝑝4(𝑌(𝑡) + 𝑌𝐵) + 𝑖(𝑡) 𝑉𝐿⁄  
 

where 𝐺(𝑡) is plasma glucose deviation, [mg/ldL], 𝑋(𝑡) is remote 

compartment insulin utilization (1/min) and  𝑌(𝑡) is plasma insu-

lin deviation (mU/dL). The control variable 𝑖(𝑡) is the exogenous 

insulin infusion rate (mU/min), while the disturbance ℎ (𝑡) repre-

sents the exogenous glucose infusion rate (mg/dL.min). 

   The physical parameters 𝐺𝐵  and 𝑌𝐵  are the basal glucose level 

(𝑚𝑔/𝑑𝐿), and basal insulin level (𝑚𝑈/𝑙𝑑𝐿), respectively, and 𝑉𝐿 

is the insulin distribution volume (𝑑𝐿). The model parameters are 𝑝1 (1 𝑚𝑖𝑛⁄ ), 𝑝2 (1 𝑚𝑖𝑛⁄ ), 𝑝3 (𝑑𝐿 (𝑚𝑈 𝑚𝑖𝑛2⁄ )) and 𝑝4 (1 𝑙𝑚𝑖𝑛⁄ ).  

   If the unmeasurable variable 𝑋(𝑡) is assumed a slow variable, 

then �̇�(𝑡) = 0.From Eq.(1), the expression 𝑋(𝑡) = (𝑝3/𝑝2) 𝑌 (𝑡) 

can be found. Substitution this expression into the first equation, 

the model of Eq. (1) is reduced to the following [17]: 

 �̇�(𝑡) = −𝑝1𝐺(𝑡) − 𝑝3𝑝2 𝑌(𝑡) (𝐺(𝑡) + 𝐺𝐵) + ℎ(𝑡) �̇�(𝑡) = −𝑝4(𝑌(𝑡) + 𝑌𝐵) + 𝑖(𝑡) 𝑉𝐿⁄                                               (2) 

 

The linearization of Eq.(2) is performed by taking the variation of 𝐺(𝑡) = 𝐺𝑜 + 𝛿𝐺(𝑡)  and 𝑌(𝑡) = 𝑌𝑜 + 𝛿𝑌(𝑡)  around equilibrium 

points (𝐺𝑜, Y0, ℎ𝑜, 𝑖𝑜). The perturbed version of Eq. (2) is given by;  

  𝛿�̇� = (−𝑝1 −  𝑝3𝑝2  𝑌𝑜)  𝛿𝐺(𝑡) − (𝐺0 + 𝐺𝐵) 𝑝3𝑝2 𝛿𝑌(𝑡)  𝛿�̇�(𝑡) = −𝑝4 𝛿𝑌(𝑡) + 𝛿 𝑖(𝑡) 𝑉𝐿⁄                                                  (3) 

 

If 𝛿𝐺(𝑡) is defined as the first state variable 𝑥1(𝑡), 𝛿𝑌(𝑡) is set as 

second state variable  𝑥2(𝑡) and 𝑢(𝑡) is assigned to control input 

variation 𝛿𝑖(𝑡), then the previous equation can be written in the 

following state space form,  

 �̇�(𝑡) = [−𝑝1 −  𝑝3 𝑌𝑜𝑝2 − (𝐺0 + 𝐺𝐵) 𝑝3𝑝20 −𝑝4 ] 𝒙(𝑡) + [ 01 𝑉𝐿⁄ ]  𝑢(𝑡)
+ [10]  ℎ(𝑡) 𝒚(𝑡) = [1 00 1] 𝒙(𝑡)                                                                      (4)   

                  

     For control objectives, the linearization in state space of the 

above model is taken at the equilibrium points with the specified 

values; ℎ𝑜 = 0 , 𝑖𝑜 = 𝑝4 𝑌𝐵 𝑉𝐿 , 𝐺𝑜 = 0 . Therefore, the obtained 

linearized model can be written as [1]; 

 �̇�(𝑡) = [−𝑝1 − 𝐺𝐵  𝑝3 𝑝2⁄0 −𝑝4 ] 𝑥(𝑡) + [10  01 𝑉𝐿⁄ ] 𝑢𝑡(𝑡) , 

 𝑦(𝑡) = [1 00 1] 𝑥(𝑡)                                                                    (5)      
                                                                                                            

 

where 𝑢𝑡(𝑡) = [ℎ(𝑡) 𝑢(𝑡)]𝑇 . Equation (5) can be written in 

compact form as; 

 �̇�(𝑡) = 𝑨 𝑥(𝑡) + 𝑩 𝑢(𝑡)                                                             (6) 

 𝑦(𝑡) = 𝑪 𝑥(𝑡) 

 

It is easily to show that the linearized model of Eq.(5) is complete-

ly controllable.  

3. Sliding Mode Control Design  

Three structures of sliding controllers will be presented and de-

signed for controlling the glucose level in human blood under 

meal disturbance. These suggested controllers are classic, integral 

and second sliding mode controllers. Later, the performance of 

such controllers will be verified and compared to each other using 

Matlab/Simulink. 

3.1. Classical Sliding Mode Controller  

     Sliding mode control is a discontinuous feedback control strat-

egy which forces the system states to reach and remain on a spe-

cific surface within the state space (called sliding surface). The 

first stage of design is the selection of the discontinuity surface 

such that sliding motion would exhibit desired properties [19]. Let 

us define a surface 𝑠 in the state space as follows; 

 𝑠 = 𝑥2 + 𝑐 𝑥1                                                                                 (7) 

 

A controller design is required to enforce the system trajectories 

follow the surface 𝑠 = 0, then Eq.(7) becomes 

 𝑥2 + 𝑐𝑥1 = 0                                                                                 (8)   

 

From Eq. (5), one can find that 

 �̇�1 = −𝑝1𝑥1 − (𝐺𝐵  𝑝3 𝑝2⁄ ) 𝑥2                                                      (9) 

 

Rearranging the above equation results in 

 𝑥2 = − 𝑝2 (𝑝1𝑥1 + �̇�1) (𝐺𝐵 𝑝3)⁄                                                (10) 

 

Substituting 𝑥2 from the above equation into Eq.(8) results in 

 − 𝑝2 (𝑝1𝑥1 + �̇�1) (𝐺𝐵 𝑝3)⁄ + 𝑐𝑥1 = 0                                       (11) 

 

or, 

 �̇�1 + (𝑝1 − 𝑐 𝐺𝐵 𝑝3 𝑝2⁄ ) 𝑥1 = 0                                                 (12) 

 

The time solution of the above solution is given by 

 𝑥1 = 𝑥1(0) 𝑒−(𝑝1−𝑐 𝐺𝐵 𝑝3 𝑝2⁄ ) 𝑡                                                    (13) 

 

such that (𝑝1 − 𝑐 𝐺𝐵 𝑝3 𝑝2⁄ ) > 0. 

Equation (13) tells that if state trajectories of the system are en-

forced to stay moving on the surface 𝑠 = 0, then 𝑥1 will tend to 

zero exponentially after a finite time interval forced to move, then 𝑥1 will tend exponentially to zero after a finite time interval; i.e.,  

 𝑥1(𝑡 = ∞) = 0 → 𝐺(𝑡) = 0                                                      (14) 

 

To guarantee the approach of state trajectories to the surface 𝑠 = 0, 

the following reaching condition has to be achieved 

 𝑠�̇� < 0                                                                                        (15) 

 

Since �̇� = �̇�2 + 𝑐�̇�1, then 

 𝑠�̇� = 𝑠 [�̇�2 + 𝑐�̇�1] = 𝑠 [−𝑝4𝑥2 + 𝑢(𝑡) 𝑉𝐿⁄ − 𝑐 𝑝1𝑥1 −                                                        𝑐 𝐺𝐵(𝑝3 𝑝2)⁄ 𝑥2 + 𝑐 ℎ(𝑡)]        (16) 

 

If one assumes that the control defined as a discontinuous function 

for the surface 𝑠 as below 
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 𝑢(𝑡) = −𝑘 ∗ 𝑠𝑖𝑔𝑛(𝑠)                                                                (17) 

 

Substituting for the control 𝑢(𝑡) in Eq.(16), we have 

 𝑠�̇� = −𝑝4 𝑠 𝑥2 − 𝑘 𝑠 𝑠𝑖𝑔𝑛(𝑠) 𝑉𝐿⁄ − 𝑐 𝑝1 𝑠 𝑥1 −                                       𝑐 𝐺𝐵 (𝑝3 𝑝2⁄ ) 𝑠 𝑥1 + 𝑠 𝑐 ℎ(𝑡)                  (18) 

 

Using the fact that 𝑠 ∗ 𝑠𝑖𝑔𝑛(𝑠) = |𝑠| and from linear algebra, the 

inequality 𝑎𝑏 ≤ |𝑎||𝑏| holds and results in the following; 

 𝑠�̇� ≤ |𝑠| {|𝑝4||𝑥2| − 𝑘 𝑉𝐿⁄ + 𝑐 |𝑝1||𝑥1| + 𝑐 𝐺𝐵|𝑝3 𝑝2⁄ | 𝑥1 +                                      𝑐 |ℎ(𝑡)|} < 0                                             (19) 

 

Solving for 𝑘, we have  

 𝑘 > 𝑉𝐿  {|𝑝4||𝑥2| + 𝑐 |𝑝1||𝑥1| + 𝑐 𝐺𝐵 |𝑝3 𝑝2⁄ | 𝑥1 + 𝑐 |ℎ(𝑡)|𝑚𝑎𝑥}                                   

                                                                                                   (20)  

3.2. Integral Sliding Mode Control  

   In what follows, integral sliding mode controller is designed for 

control and disturbance rejection of glucose systems. Starting with 

rewriting the control law as follows [19] 

 𝑢 = 𝑢0 + 𝑢1                                                                               (21) 

 

where the design of controller component 𝑢0 is devoted to make 

the system trajectory track a specified trajectory 𝑥0  in the state 

space which is based on optimal LQR controller, while the design 

of 𝑢1 is dedicated to cancelling the disturbance ℎ(𝑡).  

    Rewriting Eq.(4) by separating the control input 𝑖(𝑡) from dis-

turbance ℎ(𝑡) and then substituting the control signal from Eq.(21) 

to have; 

 �̇� = 𝑨 𝑥(𝑡) + 𝑩𝑢  𝑢0(𝑡) + 𝑩𝑢 𝑢1(𝑡) + 𝑳 ℎ(𝑡)                           (22) 

 

where  𝑳 = [1 0]𝑇 and 𝑩𝑢 = [0 1 𝑉𝐿⁄ ]𝑇. 

The first stage of design is to select the discontinuity surface 𝑠 

such that sliding motion would exhibit desired properties. The 

surface 𝑠 is defined in the state space as follows 

 𝑠 = 𝑠0 + 𝑧                                                                                  (23) 

 

where the variable 𝑧 stands for the integral part which attempts to 

cancel the disturbance and 𝑠0  represent the desired path in the 

state space given by  

 𝑠0 = 𝑪 𝑥                                                                                     (24) 

 

In order to hold the system trajectories moving on a specified 

trajectory 𝑠0, the time derivative of the surface 𝑠 has to be equal 

zero. This means that the system trajectory will stay on surface 𝑠0 

and never leave it. 

 �̇� = �̇�0 + �̇� = 𝑪 �̇� + �̇� = 0                                                         (25) 

 

or, 

 �̇� = 𝑪 [𝑨 𝑥(𝑡) + 𝑩𝑢  𝑢0(𝑡) + 𝑩𝑢 𝑢1(𝑡) + 𝑳 ℎ(𝑡)] + �̇� = 0       (26)          

 

To ensure that 𝑠(𝑡) = 𝑠0(𝑡) for all 𝑡 > 0, the following condition 

should be satisfied 

 𝑩𝑢 𝑢1(𝑡) = −𝑳 ℎ(𝑡)                                                                   (27) 

 

Substitute in �̇� we get �̇� = −𝑪 [𝑨 𝑥(𝑡) + 𝑩𝑢  𝑢0(𝑡)]                                                     (28) 

or, 𝑧 = −𝑪 ∫ [𝑨 𝒙(𝑡) + 𝑩𝑢  𝑢0(𝑡)]𝑡𝑡0 𝑑𝑡                                            (29) 

 

Substituting for 𝑧 into surface equation 𝑠 will guarantee all system 

trajectories to remain on the surface 𝑠 even with existence of ex-

ternal disturbances. If 𝑢1  is considered as a nonlinear function 

such as given by,  

 𝑢1 = −𝑘1 𝑠𝑖𝑔𝑛(𝑠)                                                                      (30) 

 

where 𝑘1 is the discontinuous controller gain, then the control law 

can be rewritten as follows; 

 𝑢 = 𝑢0 + 𝑢1 𝑢 = −𝐾 𝑥 − 𝑘1 𝑠𝑖𝑔𝑛(𝑠)                                                             (31) 

 

To ensure tt �̇� = 0 for ∀𝑡 ≥ 0 in Eq. (26), the following condition 

has to be satisfied 

 𝑪 𝑩𝑢 𝑢1(𝑡) = −𝑪 𝑳 ℎ(𝑡)                                                           (32) 

 

Multiplying out the matrices in the above equation results in, 

 − 𝑘1𝑠𝑖𝑔𝑛(𝑠) 𝑉𝐿⁄ = ℎ(𝑡)                                                            (33) 

 

Taking the worst case disturbance  ℎ(𝑡)𝑚𝑎𝑥 , the integral sliding 

mode gain 𝑘1 can be evaluated as follows 

 𝑘1 ≥ 𝑉𝐿 ℎ(𝑡)𝑚𝑎𝑥                                                                        (34) 

 

3.3. Second Order Sliding Mode Control  

The derivation of the second order sliding mode controller (2-

SMC) is based on the direct Lyapunov method, which is also used 

to prove the asymptotic stability. The advantages of the 2-SMC 

over the first order one are that it enhance the overall performance 

and reference tracking even when external disturbances are pre-

sent. It has faster reaching phase, which means less effect of pa-

rameters uncertainties and disturbances, which leads to stability 

improvement [19]. The 2-SMC has a smoother control action 

when compared to first-order sliding mode control, 2-SMC has 

small chattering and faster convergence while maintains robust-

ness [20], [21]. 

  The problem in 2-SMC is not to keep the sliding function equal 

to zero, but also its second derivative as well; this means that the 

control action is still acting in the second derivative of the sliding 

surface [20]. 

  Direct Lyapunov approach is used to prove the stability of the 

closed loop system. According to Lyapunov, one can ensure the 

global asymptotic stability if the derivative of the Lyapunov func-

tions is negative. In sliding mode theory, this condition is also 

known as reaching condition [19]: 

 �̇� < 0, 𝑠(𝑡) ≠ 0, �̇�(𝑡) ≠ 0                                                       (35) 

 

Put the system in the following form 

 �̇�1 = −𝑝1𝑥1 − (𝐺𝐵 𝑝3 𝑝2⁄ ) 𝑥2 + ℎ(𝑡)         �̇�2 = −𝑝4𝑥2 + 𝑢 𝑉𝐿⁄                                                                   (36) 

 

The proposed surface function is 

 𝑠 = 𝑥1                                                                                         (37) 

 

Differentiate 𝑠 twice 

 �̇� = �̇�1 = −𝑝1𝑥1 − (𝐺𝐵 𝑝3 𝑝2⁄ ) 𝑥2 + ℎ(𝑡) 

 �̈� = −𝑝1�̇�1 − (𝐺𝐵 𝑝3 𝑝2⁄ ) �̇�2 + ℎ̇(𝑡) 

   = −𝑝1[−𝑝1𝑥1 − (𝐺𝐵 𝑝3 𝑝2⁄ ) 𝑥2 + ℎ(𝑡)] −                                                  (𝐺𝐵 𝑝3 𝑝2⁄ )[−𝑝4𝑥2 + 𝑢 𝑉𝐿⁄ ] + ℎ̇(𝑡) 

   = 𝑝12 𝑥1 +  (𝐺𝐵  𝑝3 (𝑝1 + 𝑝4) 𝑝2⁄ ) 𝑥2 − 𝑝1ℎ(𝑡) + ℎ̇(𝑡) −                                                  (𝐺𝐵 𝑝3 (𝑝2 𝑉𝐿⁄ )) 𝑢             (38) 
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Eq.(38) can be written as; 

 �̈� = 𝜓(𝑡) − 𝑔𝑢                                                                           (39) 

 

where, 𝜓(𝑡) = 𝑝12 𝑥1 +  (𝐺𝐵 𝑝3 (𝑝1 + 𝑝4) 𝑝2⁄ ) 𝑥2 − 𝑝1ℎ(𝑡) + ℎ̇(𝑡) 

and 𝑔 = (𝐺𝐵 𝑝3 (𝑝2 𝑉𝐿⁄ ). The proposed control action is 

 𝑢 = 𝜆1𝑠 + 𝑘𝑠 𝑠𝑖𝑔𝑛 (�̇�)                                                               (40) 

 

Substituting Eq. (40) into Eq. (39) gives 

 �̈� = 𝜓(𝑡) − 𝜆1𝑔𝑠 − 𝑘𝑠 𝑔 𝑠𝑖𝑔𝑛(�̇�)                                              (41) 

 

Let �̂�1 = 𝜆1𝑔, �̂�𝑠 = 𝑘𝑠 𝑔 then Eq. (41) becomes  

 �̈� =  𝜓(𝑡) − �̂�1𝑠 − �̂�𝑠 𝑠𝑖𝑔𝑛(�̇�)                                                   (42) 

 

Let the candidate Lyapunov function be 

 𝑉 = 12 �̂�1𝑠2 + 12 𝜆2�̇�2                                                                   (43) 

 

To have an asymptotic stable system,  �̇� should be less than or 

equal to zero; i.e.,  
 �̇� = �̂�1𝑠 �̇� + 𝜆2�̇� �̈� 

    = �̂�1𝑠�̇� + 𝜆2�̇� [ 𝜓(𝑡) − �̂�1𝑠 − �̂�𝑠𝑠𝑖𝑔𝑛(�̇�)] 
    = �̂�1𝑠 �̇� + 𝜆2 𝜓(𝑡) �̇� − �̂�1 𝜆2𝑠 �̇� − 𝜆2 �̂�𝑠 |�̇�| 
     ≤ �̂�1|𝑠||�̇�| + 𝜆2|𝜓(𝑡)||�̇�| − �̂�1𝜆2|𝑠||�̇�| − 𝜆2�̂�𝑠|�̇�| 
      ≤ −|�̇�| (|𝑠|(�̂�1𝜆2 − �̂�1) + 𝜆2(�̂�𝑠 − |𝜓(𝑡)|))                      (44) 
                                                     
 

 

The above equation is satisfied if the following conditions holds 

 
 

  �̂�1𝜆2 − �̂�1 ≥ 0     ⇒ 𝜆2 ≥ 1                                                      (45) 

 �̂�𝑠 − |𝜓(𝑡)| ≥ 0    ⇒ �̂�𝑠 ≥ |𝜓(𝑡)|                                             (46)                                                                                

 

By the above conditions, the negative semi-definite of Lyapunov 

function derivative is assured and the global asymptotic stability is 

guaranteed. In the control action law a hyperbolic tangent function 

has been used instead of sign function to avoid chattering [19]–
[21]. 

4. Sliding Mode Control Design  

The effectiveness of suggested controllers against meal disturb-

ance is verified via simulations based on MATLAB-Simulink. 

Figure (2) shows meal disturbance function behavior, which rep-

resents the exogenous glucose infusion. Figure (3) referred in 

Appendix shows the Simulink modeling of insulin regulator sys-

tem based on sliding mode controllers for glucose level control 

against disturbing meal. The behavior of meal disturbance is saved 

inside a look-up table (see Appendix A). The model parameters 

are listed below [1]: 

 

 

 

 

 

 

 

 
Figure 2. Disturbance meal function (exogenous glucose infusion). 

 

  𝑝1 = 0.028,   𝑝2 = 0.025,    𝑝3 = 0.00013,   𝑝4 = 0.093,  

  𝐺𝑏 = 110, 𝑌𝑏 = 1.5,  𝑖0 = 16.67.  

Based on the above values, the design parameter 𝑲 is calculated 

using Eq.(20). Then, the value of 𝑲 is equal −2.307. 

The design parameters for the second order sliding mode control-

ler are 

                𝜆1 = 1.8,   𝐾𝑠 = 8 

 

Figure (4) shows the glucose level under meal disturbance of Fig-

ure (2) with the three controllers. Classical sliding mode controller 

(SMC) gives performance of maximum glucose level does not 

exceed 123 (mg/dL); i.e, the controller permits 11.18% change 

over the basal glucose level. The glucose level of integral sliding 

mode controller is 119.2 (mg/dL) which means a percentage 

change of 8.36% above the basal level. It is evident from the fig-

ure that second order sliding mode controller shows the best ro-

bustness characteristics than all the above controllers with glucose 

level of 119 (mg/dL) which indicate a percentage change of 8.18% 

above the basal level, this percentage is the minimum one as com-

pared to others. 

     Figure (5) shows the insulin rate resulting from each controller. 

It has been shown that the more robust controller, the higher level 

of insulin rate which is taken by human body. This physically 

indicates that more robust controller of requires more insulin rate 

to be injected; this is the price of robustness.  It can be noticed 

from Figure (5) that the 2-SMC has less insulin rate than ISMC 

even though the basal level of 2-SMC is less than that of ISM. 

This shows 2-SMC is able to achieve better performance while 

maintaining control action at a reasonable level. 
 

 
Figure 4. Plasma glucose level 

 

 
Figure 5. Insulin rate resulting from controllers 

 

5. Conclusion   

In this paper, three different types of controllers were presented 

for the problem of blood glucose concentration level control. The 

simulated results have shown that the designed controllers could 

successfully control the glucose level successfully and retain the 

glucose level back to its basal level. However, the robustness of 

the controllers against meal variation differs from a controller to 

another.  

Both the integral and second order sliding mode controllers seem 

to have approximately the same performance characteristics in 

terms of disturbance rejection capability. These controllers are 

both preventing the glucose level to exceed 120 mg/dl. However, 
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the second order sliding mode controller could keep the glucose 

level to lower value than the others under the same meal charac-

teristics.  On the other hand, the results have been demonstrated 

that the classical sliding mode controller delivered the worst per-

formance at the glucose level exceeds the value of 122 mg/dl. 

Even so, it has been shown that if the second order sliding mode 

controller has been well designed it would have the lowest insulin 

infusion compared to other controllers. Thus the second order 

controller outperforms others in terms of robustness and insulin 

saving.  
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Appendix (A) 

Figure (3) shows the Simulink modeling of sliding mode control-

lers for glucose level control system against disturbing meal. Ta-

ble below lists the data of disturbing meal behavior  

 

 
Figure 3. Simulink modeling of sliding mode controllers 

 

Table 1:  Disturbance meal function 
Time (t) 

[min] 

Glucose (h(t)) 

(mg/(dL.min)) 

0 0 

25 0.185 

50 0.495 

75 0.765 

100 0.975 

150 1.07 

175 0.82 

200 0.575 

225 0.335 

250 0.225 

275 0.145 

300 0.098 

325 0.06 

350 0.035 

375 0.02 

400 0.01 

450 0.005 

1000 0 

 


