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A novel series-fedmicrostrip patch array antenna for 37/39GHz beamforming is proposed. To improve the antennabandwidth, two
of the patches are modi
ed with truncated corners in the diagonal direction.�is truncation generates two degenerate resonances
which result in a �attened frequency response of the input impedance.�en, the recessedmicrostrip feeds for the other two patches
are designed to yield a proper current distribution for radiation while maintaining minimal return loss, wide bandwidth, and low
sidelobes. �ough the individual patch antenna is elliptically polarized due to the truncated corners, a phased array with linear
polarization can still be obtained by alternately deploying le�-handed and right-handed elliptically polarized patches. For validation
of the proposed design, an array is fabricated with 16 elements on a substrate with 10 mil thickness and �� =2.2. �e beamforming
capability of the proposed array is also demonstrated. �e experiment results agree well with the simulation and show that the
antenna gain and the return loss bandwidth can be more than 21 dBi and 8%, respectively.

1. Introduction

Recent researches have shown that millimetre-wave spec-
trum is capable of providing the capacity required for future
wireless data applications including cellular systems [1, 2],
LAN [3], 
xed access, and backhaul [4]. In the next genera-
tion of the International Mobile Telecommunications (IMT),
themillimetre-wave technique has been among one of the key
technologies [5]. �e Federal Communications Commission
(FCC) has taken the initiative to approve the use of several
bands in millimetre spectrum for 5G systems [6]. To take
advantage of the large bandwidth in millimetre wave, the
system gain has to be signi
cantly increased to compensate
the severe propagation losses which are intrinsic in this
spectrum. Active phased array with beamforming capability
is an e�ective approach to achieve high performance for 5G
millimetre-wave systems. �e cost to implement an active
array, however, may be quite high. Fortunately, the contin-
uous advancement of device technology makes it possible to
build such an array cost-e�ectively [1].

Various types of antenna arrays have been proposed
for 28, 37, and 39 GHz systems [7–15]. In [7], a 28-GHz
4×2 circular-polarization microstrip antenna subarray is
designed. In [8], a 28-GHz 16-element mesh-grid patch
antenna array is realized on a multilayer FR4 with low radia-
tion e�ciency. In [9], a switchable phased array composed of
three subarrays of patch antennas is proposed for coverage
extension. Each subarray can cover ± 40∘ scanning range
by controlling phase shi�er assemblies (PSA). In [10], a
28/38 GHz dual-band microstrip printed slot antenna array
is proposed. In [11], 2×2 and 3×3 series-fed patch arrays for
28-GHz beam-steering applications are designed. In [12], a
37-GHz dual-polarized 2×2 subarray antenna is realized by
substrate-integrated waveguide (SIW) on low-temperature
co
red ceramic (LTCC). Due to low pro
le, light weight,
and readiness for both fabrication and integration, it can be
seen that microstrip antennas are suitably employed for the
5G millimetre-wave systems. Series-fed structures are o�en
used in many millimetre-wave patch array antennas [13–15],
especially for the systems in the 37/39-GHz band, because
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Table 1: Comparison of reference.

Ref elements f0,(GHz) BW,(%) SLL,(dB) Scan EIRP,(dB)

[7] 8 28 4.7

[9] 8 21.5 3.2 ±40∘
[10] 8 28/38 5 ±20∘
[16] 5 5 2.4

[17] 48 60 2.5 7 ±32∘
[20] 64 28 13 ±30∘ 37

[21] 32 29 21 ±50∘ 41

�is work 64 37.5 8 25 ±40∘ 48
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Figure 1: (a) �e proposed and (b) the conventional series-fed array of microstrip patches.

the less complexity of the feeding circuits is preferred for the
antenna gain enhancement. From the comparison in Table 1
[7, 9, 10, 16, 17], it can be seen that the impedance bandwidths
of the series-fed antenna arrays range from 2.4% to 5%. �e
bandwidth of microstrip antenna on a thin laminate tends
to be narrow, o�en less than 3% [18, 19]. For the band from
37 to 38.6 GHz, the bandwidth is required to be at least
4.3% [6]. A multitude of structures may be used to increase
the bandwidth of microstrip antenna, for example, stacked
patches [19].However, the structure complexity can o�en lead
to extra loss.

Base station antennas are generally required to have
high gain, beam steering, or multibeam capability for multi-
frequency applications. Active electronically scanned arrays
(AESAs) are a promising technology to address the 5G base
station antenna design. AESAs can shi� the beam with agility
while exhibiting real-time beam control, low side-lobe, high
gain, wide scan angle, wide bandwidth, and MIMO capa-
bilities [20, 21]. A comparison of the important parameters
such as frequency, number of elements, bandwidth (BW),
side-lobe level (SLL), scan coverage, and e�ective isotropic
radiated power (EIRP) has been summarized in Table 1.

�e focus of the paper is on developing a 37/39GHz
active phased array with the beamforming capability in the
azimuthal direction. In the vertical direction, the patches
are combined by a series-fed con
guration which yields
a 
xed beam shape in the elevation direction. Also, the

return loss bandwidth of the array will be more than 8%.
�e outline of this paper is as follows. Section 2 describes
the modi
ed series-fed patch antenna featuring improved
bandwidth and low loss. �e procedure to increase the
bandwidth is given and demonstrated by a series-fed antenna
with four patches. �e formation of a 16-element array based
on the designed four-patch array is addressed. �e weighting
coe�cients required in the beamforming system are also
discussed. In Section 3, the simulation and experiment results
are presented and compared. Finally, a conclusion is given in
Section 4.

2. Antenna Array Design

2.1. Bandwidth-Enhanced Series-Fed Microstrip Patches. �e
proposed and the conventional series-fed array of microstrip
patches are illustrated in Figures 1(a) and 1(b), respectively.
In the 
gure, four resonant patches are connected using
a single straight transmission line. �e frequency response
of the input impedance of a single patch is simulated and
shown in Figure 2. When the patch is not perturbed as in
Figure 1(b), one resonance is observed at 37.4 GHz. If the
opposite corners are truncated as in Figure 1(a), the resonance
splits into two degenerate modes [18, 22]. A patch on the
Duroid 5880 substrate with �� = 2.2, h (thickness)=10 mil,W4

= 2.5mm, and L4 = 2.56mm is designed and simulated. It can
be shown in Figure 2 that larger truncation (t) leads to more
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Figure 2: Simulated performances of the truncated patch antennas. (a) Return loss, (b) Re(Z), and (c) Im(Z).

mode separation and wider bandwidth. �e radiated 
elds
excited by these two modes, which are perpendicular to each
other, are not linearly polarized. Nevertheless, pure linear
polarization can be achieved when le�-handed and right-
handed elliptical polarizations are adequately combined [23].

As shown in Figure 1(a), the two patches at the end of
the array are arranged to produce y-directed linear polar-
ization and retain the enhanced bandwidth. �e formation
of the array can be designed to further lessen the cross-
polarization radiation, which will be discussed later. �e
width of the patch may be varied to achieve the desired
radiation conductance [24–28]. To build a linear array with
beamforming capability, however, the patch width has to
be limited to less than the element spacing, usually �/2,
to avoid the unwanted mutual coupling between patches
due to proximity. �e input impedance of the edge-fed
patch can be adjusted by using an inset feed recessed a
distance from the edge [16]. Furthermore, at the 
rst patch,
a quarter-wavelength transformer can be employed as the
feed line which can ease the realization of the required input
impedance.

When the width of the connecting line is 
xed, W0 = 0.2
mm, the dimensions of the series-fed patches are U1 =0.63,
U2 =0.12, L1 = 2.74, L2 = 2.74, L3 = 2.56, L4 = 2.56, W1 = 2.2,
W 2 = 2.2, W3 = 2.5, W 4 = 2.5, t = 0.4, and D1 = D2 = D3 =
3, all in mm.�e simulated values of the input impedance of
the patches are given as follows: Z1 = 150.8, Z2 = 150.8, Z3 =
262.5, and Z4 = 262.7ohm, respectively.

Figure 2(a) shows that 6.6% bandwidth can be achieved
for the corner-truncated patch compared to only 2.6% band-
width for the rectangular one, if 10-dB return loss is speci
ed.
At resonance of 38.2GHz as shown in Figures 2(b) and 2(c),
the real part of the input impedance is 54.6 ohm and the
image part of the input impedance is -3.4 ohm, which is
approximately matched to the input impedance Z0 = 50 ohm.

�e layouts of four kinds of series-fed antennas are
illustrated in Figure 3. �e transmission line between two
adjacent patches is of about one half-wavelength (D0 = 4mm).
For layouts (a) and (b) as shown in Figure 3, an inset feed
is used for the 
rst patch. �e width and the depth of the
symmetrical rectangular notches can be tuned for impedance
matching. Figure 4 shows that 6.6% bandwidth can be
achieved for layout (a) compared to only 1.7% bandwidth for
layout (b), if 10-dB return loss is speci
ed. Without the inset
for the 
rst patch, layouts (c) and (d) cannot achieve 10-dB
return loss requirement because of high input impedance.

�e simulated H-plane and E-plane radiation patterns
are plotted in Figures 5(a) and 5(b), respectively. It can
be seen that the antenna gain can be at least 10 dBi with
the 
rst sidelobe suppression more than 13 dB. �e H-
plane cross-pol isolation, however, is only 10 dB. �e cross-
pol performance can be improved by the array formation
described in Section 2.2.

2.2. Array Design to Reduce Cross-Polarization. In the forma-
tion of a linear array based on the proposed series-fed patch
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Figure 3: �e layouts of four kinds of series-fed antennas (a)∼(d) with the le�-handed and the right-handed elliptical polarization types.
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Figure 4: Series feed layout (a)∼(d) return loss simulation.

antennas, le�-handed and right-handed elliptical polariza-
tion patches are alternately used, as shown in Figure 3(a), for
further reducing the cross-polarization radiation. For these
two elliptical polarization types, the electric 
eld can be, in
general, respectively, expressed as

�⇀� = �0 (	
�⇀� � + �⇀� �) (1a)

�⇀� = �0 (−	
�⇀� � + �⇀� �) (1b)

where 
 can be regarded as the residual axial ratio, |�⇀��|/|�⇀��|,
for a single series-fed antenna. Figure 6 shows the geometrical
layout of a linear array with even number of elements. �e
array factor can be expressed as [29]

�
∑
�=1
���⇀����(2	/
)�� sin(��−�

�
�) (2)

where an, En, and �’a denote the complex weighting, element
pattern, and the beam direction, respectively. IfN is even, the
pattern can be shown to be

�/2
∑
�=1
2 (���⇀�� + ��+1−��⇀��+1−�) cos [2�� (

� + 1
2 − �)� sin (�� − �



�)] (3)

where d is the element spacing. �e x-directional electric

elds of the n-th and (N+1–n)-th elements can cancel with
each other if the elliptical polarization types are di�erent and
the following condition is satis
ed:

�� = ��+1−� (4)

�e cross-polarization radiation can be therefore reduced in
the main beam direction. �e condition of (4) for amplitude
weightings can be readily achieved in various beamforming
applications, for example, the well-known Taylor and Bayliss
beams [29, 30]. It is noted that the azimuthal pattern is
symmetric in theory when (4) is applied. Figure 7 shows the
simulated H-plane and E-plane patterns of the 4×2 series-fed
antennas, that is, n = 2. In Figure 7, it can be seen that the
cross-polarization radiation is insigni
cant.

3. Beamforming Simulation and
Experiment Results

Figure 8 shows the photograph of the fabricated 4×16 array
based on the proposed series-fed patch antennas with the
spacing dx = 4 mm. For accommodating transmit/receive
module (TRM) to be installed from behind, an additional
section of 50-ohm microstrip line, 4.47 mm in length, is
alternately employed to connect the array and the probe feed.
�is extra microstrip line is compensated by the TRM, which
integrates millimeter-wave components including a power
ampli
er (PA), a low-noise ampli
er (LNA), an attenuator, a
phase shi�er, and switches. �e least signi
cant bits (LSB) of
the phase shi�er and the attenuator correspond to 11.25∘ and
1 dB, respectively.
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Figure 5: Simulated co-pol and cross-pol patterns of the proposed 4×1 series-fed antenna: (a) H-plane and (b) E-plane.

Table 2: �e bit steps of the TR modules for the gains and phases.

Control state
Attenuator
@38GHz

Phase shi�er
@38GHz

Transmit gain
@38GHz

Receive gain
@38GHz

00000 0 70.43 27.1 23.4

00001 -1.13 60.04 25.97 22.27

00010 -1.88 45.82 25.22 21.52

00100 -3.65 24.37 23.45 19.75

01000 -7.24 -20.22 19.86 16.16

10000 -14.82 -113.8 12.28 8.58

11111 -30.21 79.41 -3.11 -6.81

X

Y
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d

P(r,  , )
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Figure 6:�e geometrical layout of a linear array with even number
of elements.

Each series-fed patch array is connected to a TR module
through K type semirigid cable assembly, as shown in
Figure 9. Figure 10 shows the feeding network of the array.
In this network, a WR28 2-way power combiner is used to
connect two WR28 8-way power combiners each of which
connects eight TR modules.

�e T/R modules fabricated by Transcom, as shown in
Figure 11, are designed for the active phased array application.
Power ampli
ers are used to achieve the output power up
to 0.5W. �e noise 
gure of the low-noise ampli
er (LNA)
is less than 6.8dB. �e 5-bit HMC939 attenuator and the
5-bit TGP2102 phase shi�er are employed to adjust the
amplitude and the phase with 1dB and 11.25∘ resolution,

respectively. �ey are located in the common arm of trans-
mit and receive path. A digital compensation algorithm is
applied to increase the phase accuracy within ±5.625∘ and
the amplitude accuracy within ±0.5dB. �ese algorithms are
implemented by FPGAand�ashmemorywith a lookup table.
�e transmitter P1dB and the receiver gain are 27.1dBm and
23.4dB, respectively. �e typical values for gain and phase are
shown in Table 2.

�e probe feed of 15-mil in length is the pin extended
from the center of a 50-ohm coaxial structure integrated with
the back-plate. �is con
guration results in good isolation
between TRM and antennas which, in turn, avoid a�ecting
the radiation pattern. �e measured return losses are shown
in Figure 12(a) for the 1st, 7th, 8th, and 16th elements in
Figure 8 which are located at the border and the middle of
the array. �ese four elements exhibit the e�ects of di�erent
degrees of mutual coupling from the adjacent elements. �e
return losses are below -10 dB from 36 to 39 GHz. It is
observed that the measured bandwidth can be slightly more
than 8%. Figure 12(b) shows the experiment results of the
isolation between the adjacent elements, which are at least
20dB.

In the phased array, the uncorrelated amplitude and
phase errors of each element caused by active devices and
discontinuities can be corrected by near-
eld alignment
[31]. In this measurement procedure, an iterative process is
developed to optimally set the states of the 5-bit phase shi�ers
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Figure 7: Simulated antenna patterns of the proposed 4×2 series-fed array antennas with reduced cross-polarization: (a) H-plane and (b)
E-plane.

Figure 8: �e photograph of the fabricated 4×16 array.

Figure 9: �e connection of antennas and TR modules.

Figure 10: �e photograph of the fabricated power combiner.

(a)

(b)

Figure 11: �e photographs of the Transcom T/R modules (a) top
view, (b) side view.

and attenuators until the measured gain and phase of each
antenna can converge within ±0.5 dB and ±5.625∘, respec-
tively. Figures 13(a) and 14(a) present themeasurements of the
antenna patterns of the aligned 4×16 array with the uniform
and low-sidelobe distributions, respectively. For the pattern
with low sidelobes, the weighting coe�cients are assigned to
–13, –14, –6, –5, –3, –1, –1, 0, 0, –1, –1, –3, –5, –6, –14, and –13
dB for n = 1∼16. It is noted that the E-plane patterns shown in
Figures 13(b) and 14(b) exhibit a similar performance.

Figures 15(a) and 16(a) present the simulated and themea-
sured results of the transmitting patterns with the uniform
distribution for 37.6GHzwith beam steering along horizontal
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Figure 12: Measured and simulated antenna performances of the 4×16 series-fed array antennas: (a) return loss and (b) isolation.
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Figure 13:�emeasurement of the transmitting pattern of the aligned 4×16 array with the uniform distribution: (a) H-plane and (b) E-plane.
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Figure 14: �e measurement of the receiving pattern of the aligned 4×16 array with low sidelobes: (a) H-plane and (b) E-plane.
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Figure 15: �e simulation of the scanned H-plane patterns: (a) transmitting patterns with uniform distribution and (b) receiving patterns
with low sidelobes.
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Figure 16:�emeasurements of the scannedH-plane patterns: (a) transmitting patterns with uniform distribution and (b) receiving patterns
with low sidelobes.

directions by every 10∘ in the range of ± 20∘. �e main beam
of the boresight exhibits the beamwidth of 5.5∘ while the 
rst
sidelobe rejection is approximately –13 dB. When the main
beam scans to ±20∘, the beamwidth becomes 6.5∘ and the
scan loss is about 1 dB. Figures 15(b) and 16(b) present the
simulation andmeasurement of the receiving patterns for 37.6
GHz with beam steering along horizontal directions by every
20∘. �e main beam of the boresight exhibits the beamwidth
of 7.9∘ with 25 dB sidelobe rejection. When the main beam
scans to ± 40∘, the beamwidth becomes 10∘ and the scan loss
is about 2.1dB.�e sidelobe rejection is only 18 dBmainly due
to the induced variations of the active devices in TRM.

Figures 17(a) and 17(b) show the H-plane and E-plane
cross-polarization for the antenna with low-sidelobe weight-
ings. In both cases, it can be seen that the cross-polarization
is generally less than -20 dB. It is found that the rectangular
patches arranged on the peripheral of the array antenna can
reduce the cross-polarization radiation.

�emeasured gain curve of the 4×16 array is in agreement
with the predicted gain obtained from the HFSS simulation
as shown in Figure 18. �e measured gain of array is
approximately 21∼22 dBi a�er the near-
eld alignment is
achieved. It can be seen that the measured receiver gain stays
fairly constant from 37 to 39 GHz.

4. Conclusion

In the paper, a novel con
guration of microstrip series-fed
patch array has been designed to enhance the bandwidth.
Compared with the conventional one, this novel con
gura-
tion has been veri
ed to have a 21-dBi gain for 8% bandwidth
by experiment. �e proposed antenna can be used for 37/39
bandswhich is under the consideration for 5G applications. A
4 × 16 planar array has been prototyped and shown to exhibit
good radiation characteristics in beam steering and sidelobe
suppression. �is active antenna o�ering high gain, good
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Figure 17: �e measured cross-polarization of the antenna with low-sidelobe weightings: (a) H-plane and (b) E-plane.
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cross-polarization isolation, and �exible radiation patterns is
suitable for millimetre-wave beamforming applications.
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