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Abstract

This paper introduces an enhanced deep learning-based (DL) antenna selection

approach for optimum sparse linear array selection for direction-of-arrival (DOA)

estimation applications. Generally, the antenna selection problem yields a combination

of subarrays as a solution. Previous DL-based methods designated these subarrays as

classes to fit the problem into a classification problem to which a convolutional neural

network (CNN) is employed to solve it. However, these methods sample the

combination set randomly to reduce computational cost related to the generation of

training data, and it often leads to sub-optimal solutions due to ill-sampling issues.

Hence, in this paper, we propose an improved DL-based method by constraining the

combination set to retain the hole-free subarrays to enhance the method’s

performance and sparse subarrays rendered. Numerical examples show that the

proposed method yields sparser subarrays with better beampattern properties and

improved DOA estimation performance than conventional DL techniques.
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1 Introduction

The design of sparse or non-uniform arrays for DOA estimation-based applications has

received tremendous attention due to their ability to resolve O(M2) sources given M

sensors only. One of the well-known techniques for realizing sparse arrays for DOA

estimation applications is array thinning or antenna selection [1–3]. Conventionally, the

antenna selection problem is cast as either optimum placement of a given number of

antenna elements or selecting an optimum subset of antennas or subarray [4]. Regard-

less of the formulation, it has been reported in [4–6] that an optimum subarray can

preserve a large physical aperture and enables high angular resolution of target local-

ization. Moreover, it reduces the energy and computation costs exerted otherwise on

the radio-frequency (RF) system front-end [7–9]. Despite the merits, the art of select-

ing an optimum subarray from a uniform array is not a trivial matter, and it requires

careful consideration of the selection technique depending on the choice of the selection

criteria [4–11].

The traditional formulation of antenna selection involves either combinatorial or con-

vex optimization problem formulations. As such, convex relaxation and combinatorial
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optimization algorithms are used to obtain optimum subarray while minimizing or maxi-

mizing a specific objective function [4–8]. However, such methods involve search-based,

and greedy-based algorithms, which are computationally expensive [7]. Learning-based

optimization techniques have recently been adopted to solve optimization problems such

as antenna selection due to less computationally complex solutions than their conven-

tional counterparts [9–11]. For instance, a support vector machine (SVM) together with

an artificial neural network (ANN) was introduced in [9] to realize sparse array con-

figurations that maximize signal-to-interference-plus-noise ratio (SINR) using sensing

environmental features extracted from capon-beamformer.

Moreover, [10] proposed a deep learning-based (DL) sparse array selection technique

to realize sparse arrays given sample covariance matrix as an input. The method in [10]

utilizes a convolutional neural network (CNN) model to predict the best subarray sensor

indices, which minimizes the Cramér-Rao bound (CRB) of DOA estimation. In particu-

lar, [10] focused on a single source DOA estimation problem on both 1-dimensional (1D)

and 2-dimensional (2D) arrays. The approach was extended to multiple sources problems

in [11]. Moreover, [11] presents further results on the DOA estimation performance of

the rendered sparse arrays using two distinctive DOA estimation methods: the fast itera-

tive soft-thresholding algorithm (FISTA) [12] and multiple signal classification algorithm

(MUSIC) [13].

The simulation results in [10] show that the proposed DL-based selector yields sub-

optimal 1D sparse subarray compared to 2D random and circular subarrays. The realized

1D sparse subarray has sensors located at the end of each side of the uniform linear array

(ULA) grid. It was observed in [9] that there is a trade-off between the distribution of

sensors in a sparse array and the size of the peak sidelobe levels (PSL), which dictates the

variance of DOA estimation. Thus, the linear sparse subarray realized in [10] exhibits high

PSLs, hence the poor DOA estimation performance. In this work, we aim to take advan-

tage of the less computation complexity of DL-based algorithms and consider properties

of non-uniform sparse linear arrays that control sparse arrays’ performance to improve

the DL-based selector and corresponding sparse linear arrays.

In this paper, we introduce an enhanced DL-based antenna selection approach. The

proposed approach takes advantage of beampattern properties of sparse arrays with a

near hole-free or hole-free difference coarray and its impact on peak sidelobe levels

and variance DOA estimates. Since picking M antennas out of N-element ULA yields

NCM possible subarrays, which are considered classes and form the training samples

for DL-based selector, we constrain such subarrays to retain a hole-free difference coar-

ray, and the resulting subarrays are used to generate the training dataset. A basic CNN

model is employed to classify sparse arrays, which minimize CRB of DOA estimation

using the realized dataset. Numerical examples show that the proposed method yields

sparser arrays with improved beampattern properties and DOA estimation performance

compared to the original large ULA and other well-known sparse arrays.

Notations Throughout the paper, we use lowercase and uppercase bold characters to

denote vectors and matrices, respectively, i.e., IK represents the K × K identity matrix.

Operators (·)T and (·)H stand for transpose and the conjugate transpose of a vector or

matrix in that order. And vec(·) denotes vectorization operator, and diag(·) represents

a diagonal matrix. Moreover, ⊙ and E [·] denote the Khatri-Rao product and statistical
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expectation operator respectively. The calligraphic letter Zi denotes a position set of ith

array whereas G and L consist of all subarrays and optimized subarrays in that order.

Moreover, the cardinalities of setG andL are given by non-bold capital letters G and L for

|G| and |L|, respectively. The operator (·)C(·) represents combination whereas functions

∠{·}, Re{·} and Im{·} indicate the phase, real and imaginary parts of a complex argument

in that order.

2 Preliminaries

Consider a ULA with N sensors with interelement spacing of znao, zn ∈ Z for n =

1, 2, . . . ,N where Z denotes the set of sensor positions of the physical array. Assuming

that D uncorrelated narrowband sources are impinging on the array from far field direc-

tions θ1, θ2, ..., θd , for d = 1, 2, ...,D. Then, the dth source steering vector can be expressed

as

a(θd) =
[

1, ejz2aoκsin(θd), . . . , ejzMaoκsin(θd)
]T

, (1)

where κ = 2π/λ, ao = 1/λ and λ is the carrier’s frequency wavelength. As such, the

received signal vector can be expressed as

x(t) = As(t) + n(t), (2)

where s(t) and n(t) are the source signal vector and the noise vector at tth snapshot.

respectively. And,A = [a(θ1),a(θ2), . . . ,a(θD)] is the array steeringmatrix. Moreover, the

noise is assumed to be additive white Gaussian noise (AWGN) and that the source signals

and the noise are uncorrelated [14–16]. Thus, the corresponding covariance matrix of

x(t) can be expressed as

Rx = E
[

x(t)xH(t)
]

= ARsA
H + σ 2

n IN , (3)

where Rs = diag(ρ1, ρ2, . . . , ρD) is the signal covariance matrix such that ρi for i =

1, 2, . . . ,D denote the signal power powers, and σ 2
n denotes additive noise power. Follow-

ing [17–21], vectorizing (3) yields

y = vec(Rx) = Bcp + σ 2
n vec(IN ), (4)

where Bc = (A∗ ⊙A), p is the source signal and y becomes the new received signal vector

based on coarray model [17]. Note that Bc denotes the new steering matrix of the coarray

model whose sensor locations are defined as a difference between the sensor positions of

Z i.e., Qu = {n1 − n2|n1, n2 ∈ Z} [18]. Cleaning-off duplicate components of Bc yields

an extended steering matrix denoting a virtual ULA of size O(N2) given N sensors. As a

result, applying a coarray based DOA estimator, i.e., coarray MUSIC, on (4), it is possible

to estimate more sources than number of sensors [17, 19].

Note that the unique element in set Qu is defined as difference coarray Q. Thus, the

number that element or lag q(q ∈ Qu) occurs in setQ is known as weight functionw(q). If

w(q1) > 1 then q1 is a redundant lag (R). Else, ifw(q1) = 0, then the coarray has a hole (H)

or missing sensor at lag q1. Figure 1 illustrates the coarray properties of a typical sparse

array Z =[ 0, 1, 2, 6]. From Fig. 1a, the central contiguous segment of sensors is termed

the central ULA segment (U). Furthermore, if the holes does not exist in the coarray, then

the coarray retains a large U. Otherwise, the coarray size shrinks [17–20].
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Fig. 1 Coarray properties of a sparse linear arrayZ . a The physical arrayZ (top) and difference coarray

(bottom). b A weight function of sparse arrayZ . The circles denote physical sensors, the filled circle denotes

a virtual sensor and the cross represents a missing sensor or hole

3 Methods

This section introduces the methods used in work. Antenna selection problem for-

mulation is introduced first, followed by a review of the relationship between coarray,

sparse arrays, and minimum sidelobe level. This is followed by the proposed approach,

corresponding training data generation procedures, and the CNN structure.

3.1 Antenna selection problem formulation

Given a ULA with N elements, the number of possible combinations M elements can be

picked from the ULA is defined as [7]

G = NCM =
N !

M! (N − M)!
. (5)

As in [10], all possible subarrays in (5) are considered as classes. Assuming that set

G contains all classes in (5), and that each g ∈ G is associated with xm and ym, for

m = 1, . . . ,M in xy-plane, then the gth class consisting of all antenna elements in gth

subarray can be denoted as Zg =
{

z
g
1, z

g
2, . . . , z

g
M

}

. As a result, G can be redefined as

G = {Z1,Z2, . . . ,ZG} [10]. The assumptions above transform the antenna selection prob-

lem from a combinatorial optimization framework to a ML classification framework.

Any ML or DL-based classification algorithm can be employed to classify the desired

class (subarray) using appropriate metrics that characterize the best class (sparse sub-

array configuration in our case). However, this is possible if labels for the classes are

known [11].

3.2 Coarray, sparse arrays, andminimum sidelobe level

In sparse array processing, it is well-known that for efficient spatial sampling purposes,

an array whose coarray has no redundancy or holes is considered as a perfect array

[7, 19]. Assuming no holes exist (H = 0), a perfect array aperture can be defined as

|Za| =
N(N − 1)

2
, (6)

where |Za| is the array aperture and N is the number of antennas. Unfortunately, such an

array does not exist for N > 4 [20]. Alternatively, one can construct a sparse array with

no holes but retains the largest possible aperture, i.e., |Za| to approximate the perfect

array. Consequently, several methods have been proposed in [7, 19, 20] for designing of

minimum redundancy array as well as minimum hole arrays. Here, the former is the array

that minimizes (R|H = 0,N = constant) for a given N elements, whereas the latter

minimizes holes in the coarray.
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Fig. 2 Beampattern responses of 20−element ULA, 20−element conventional DL array, 20−element

PSL-constrained array and 20−element sparse array with a hole-free difference coarray

These arrays are attractive due to their good beampattern properties—PSLs and narrow

main lobe [7]. For instance, Fig. 2 compares the beampattern responses of ULA, a con-

ventional DL proposed in [10], PSL-constrained array proposed in [8], and sparse array

with a hole-free difference coarray. It can be observed that the beampattern response of

conventional DL shows high PSLs as compared to that of PSL-constrained and sparse

array with a hole-free difference coarray which shows well suppressed PSLs. Although

the relationship between the two concepts is not directly proved here, the connection

was thoroughly investigated in [7, 19–21], and sparse array with hole-free coarray or with

minimum redundancy and minimum holes were recommended as the best solution for

array thinning because of their narrow main lobe and minimum PSLs. Hence, inspired by

beampattern properties of MRA and MHA as well as the work in [8], we aim to impose

a hole-free constraining term on the solution set G which is used to create the training

dataset in a bid to improve the performance DL-based antenna selection technique.

3.3 Proposed DL-based antenna selection approach

Motivated by beampattern properties ofMHAs andMRAs [7], we extend and enhance the

DL-based antenna selection technique proposed in [10]. By taking advantage of essential

sensor properties of the array as introduced in [19, 20], we constrain the subarrays in the

solution set (5) to retain a hole-free difference coarray as a means of enforcing sensor

distribution within subarrays that form the feature space.

The idea is given a solution set G which consists of subarrays as possible solutions to

a NCM antenna selection problem. We intend to use all g ∈ G which retains a hole-free

difference coarray only to generate the training dataset and discard the rest. As a result,

we implement a basic search algorithm to search through G and reserve all g ∈ G with

a hole-free difference array, i.e., Qg = QULA and omit those without, i.e., Qg �= QULA

whereQg andQULA are difference coarrays of aM- sensor subarray g ∈ G and N- sensor

ULA respectively. The steps above are summarized in Algorithm 1.

In other words, the difference coarray as a constraint on every g ∈ G can be expressed in

terms of essential property of sensors of an array. For multiple sensors failure or omission,

the essential property states that
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Algorithm 1 Implemenation of a hole-free difference coarray constraint on G

Input: Total number of sensors N , number of sensors to be selectedM.

Output: L

1: Compute G using (5)

2: for g ∈ G do

3: ifQg �= QULA then

4: L ← g.

5: end if

6: end for

7: return L

Property 1 (k-essential property [19]) S ⊂ Z is said to be k-essential when (1) |S| = k,

and (2) the difference coarray changes when S is removed from Z i.e. Q̂ �= Q where Q̂ and

Q are difference coarrays of Z\S and Z respectively.

This entails that N − M sensors, which are not essential for the preservation of the N-

sensor array’s difference coarray, can be discarded out N-sensor array without changing

the array aperture and difference coarray. Therefore, we can reformulate the property 1

and define it with respect to the antenna selection problem as follows

Property 2 Let Q be the difference coarray of a physical subarray Zg such that Zg �

g ∈ G. If G consists of all possible subarrays as solutions to an (N ,M) antenna selection

problem, then for all g ∈ G, g is essential with respect to ZULA if the difference coarray of

the large arrayZN changes when g is removed, that is, ifZg = ZULA\g, then Q̀ �= Q where

Q̀ andQ are difference coarrays of Zg and ZULA respectively.

Note that the use of hole-free subarrays will not only assist in the realization of sparser

subarrays with the well-distributed sensors but also sparse arrays with improved beam-

pattern characteristics [7]. As a result, instead of using (5) as in [10] when preparing the

training dataset, we resolve to use L, output from Algorithm 1. Henceforth, for clarity

sake, we refer to the implementation using L as the proposed method and the one using

G or a portion of (5) as conventional method [10].

3.4 Training dataset generation for antenna selection problem

In this section, we consider training dataset generation–input data samples and cor-

responding labels or ground truths. Basically, the feature space is comprised of angle,

real and imaginary components of a sample covariance matrix R̂. Thus, the input data

is N × N × 3 real-valued matrices {H}3i=1 whose (i, j)−th entry consists of [H1]i,j =

∠[ R̂]i,j, [H2]i,j = Re[ R̂]i,j and [H3]i,j = Im[ R̂]i,j denoting the phase, real and imaginary

components of sample covariance matrix R̂ [10].

To generate input-out training dataset pairs, we need to determine subarrays with the

best performance within the solution setL to act as ground truths or labels. For simplicity,

like [10], we assume the CRB as a benchmark of determining the best array configurations.

Therefore, we assume that the received signal vector at lth subarray with M elements is

defined as
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xl(t) = Alsl(t) + nl(t), (7)

where Al is the subarray steering matrix, sl(t) denotes the signal vector and nl(t) is the

noise vector corresponding to the lth subarray position set Zl at the tth snapshot. Like

(2), we assume that sl(t) and nl(t) are spatially and temporarily uncorrelated [14, 16].

Furthermore, we assume constant signal variance σ 2
s and noise variance σ 2

n . Hence, the

signal-to-noise ratio (SNR) in dB is expressed as SNR = 10 log10
(

σ 2
s /σ 2

n

)

.

Therefore, following assumptions in [15], the CRBθ for every l ∈ L can be expressed as

C(θ ,Zl) =
σ 2
n

2T

[

ℜ

{

(

BHP⊥
AB

)

⊙
(

RsA
H
l R

−1
l AlRs

)T
}]−1

, (8)

where P⊥
A = I − Al

(

AH
l Al

)−1
AH
l is the orthogonal projection onto the null space of AH

l ,

B = [b(θ1), b(θ2), . . . , b(θD)] such that b(θi) = ∂
∂θi

Al(θi) for i = 1, 2, . . . ,D and

Rl = E
[

xl(t)x
H
l (t)

]

= AlRsA
H
l + σ 2IM. (9)

Next, for various DOAs, we construct sample covariance matrices Rl for l = 1, 2, . . . , L

and compute CRBs for all l ∈ L. Then, subarrays with lowest CRBs for various DOAs

selected and save into W . Here, wi ∈ W for i = 1, 2, . . . ,W represents class labels such

that w is defined as

w = argmin
l=1,2,...,L

C(θd,Zl). (10)

Following (10) and realization of W , we construct input-output data pairs as (H,w)

where H is the real-value input data obtained from the covariance matrix and w ∈ W

is the label representing the best subarrays sensor positions for the sample covariance

matrix R̂ [10]. The above training dataset generation procedures are summarized in

Algorithm 2.

Algorithm 2 Training dataset generation

Input: Total number of given antennas N , number of antennas to be selected M, num-

ber of snapshots T , number of different DOA angles D, number of signals and noise

realizations Q and SNRTRAIN

Output: Training dataDTRAIN

1: Compute Gl using Algorithm 1

2: Generate Dθ DoA angles θd for d = 1, 2, . . . ,Dθ .

3: Generate Q different realizations of subarray output,
{

X i
d

}Q

i=1
for d = 1, . . . ,Dθ

X i
d =

[

xid(1), x
i
d(2), . . . , x

i
d(T)

]

,

where xid(t) = a(d)s(i)(t) + n(i)(t), s(i)(t) ∼ CN
(

0, σ 2
s I

)

and n(i)(t) ∼ CN
(

0, σ 2
n

)

4: Construct sample covariance matrix R̂ and M × M covariance matrices R
(i,d)

l for l =

1, 2, . . . , L.

5: Compute CRB values C(θd,Zl) for all l ∈ L and select subarrays with the lowest CRB

values using (10). Then, construct the set of labels asW .

6: Compute input-output pairs as
(

R̂
(i,d)

,w
(i)
d

)

for d = 1, . . . ,Dθ and for i = 1, . . . ,Q.

7: Calculate the input-output pairs to form the training dataset as

DTRAIN =
[(

R̂
(1,1)

,w
(1)
1

)

,
(

R̂
(2,1)

,w
(2)
1

)

, . . . ,
(

R̂
(Q,1)

,w
(Q)
1

)

,
(

R̂
(1,2)

,w
(1)
2

)

,

. . . ,
(

R(Q,Dθ ),w
Q
Dθ

)]

where the size of the training dataset is P = QDθ .



Wandale and Ichige EURASIP Journal on Advances in Signal Processing         (2021) 2021:17 Page 8 of 14

3.5 Convolutional neural network architecture

In this work, we adopt a general CNN structure consisting of 9 sections as in [10]. In

general terms, the first layer (1st layer) accepts the 2D input and the last output layer (9th

layer) is a classification layer with l units where a softmax function is used to obtain the

probability distribution of the classes [22]. The second (2nd layer) and the fourth (4th

layer) layers are max-pooling layers with 2 × 2 kernel to reduce the dimension whereas

the third (3rd layer) and the fifth (5th layer) layers are convolutional layers with 64 filters

of size 3 × 3.

Finally, the seventh (7th layer) and the eighth (8th layer) layers are fully connected layers

with 1024 units. Note that the rectified linear units (ReLU) are used after each convo-

lutional and fully connected layers such that ReLU(x) = max(x, 0) [11]. Furthermore,

during the training phase, 90% and 10% of the data are allocated for training and vali-

dation purposes, respectively. The stochastic gradient descent with momentum (SGD) is

used with a learning rate of 0.03 and a mini-batch of 500 for 50 epochs [10].

4 Results and discussion

In this section, we perform a series of numerical simulations to evaluate the performance

of the proposed antenna selection approach as well as the performance of the realized

DL-based sparse linear arrays. First, we train our CNN model and predict sparse arrays.

This is followed by sparse array performance evaluations in terms of array configuration,

beampattern characteristics, and DOA estimation performance.

We measure the DOA estimation performance of the arrays using root-mean-square-

error (RMSE), which can be expressed as

RMSE =

√

√

√

√

1

DC

D
∑

d=1

C
∑

c=1

(

θ̂
(c)
d − θ

(c)
d

)2
, (11)

where, θ
(c)
d is the dth DOA in the cth simulation trial, and θ̂

(c)
d is the corresponding angle

estimate. Moreover, for performance comparison purposes, we consider the following

conventional sparse linear arrays with sensor positions defined as

ZDA = [ 0, 1, 2, 3, 4, 15, 16, 17, 18, 19] ,

ZPSA = [ 0, 2, 5, 6, 8, 11, 13, 15, 16, 19] ,

ZNA = [ 0, 1, 2, 3, 7, 11, 15, 19, 23, 27] ,

ZMRA = [ 0, 1, 4, 10, 16, 22, 28, 33, 35] ,

where DA is the conventional DL-based array proposed in [10] for a (20, 10) antenna

selection problem, PSA is the PSL-constrained array proposed in [8],M1 = 3 andM2 = 7

nested array [18] and 10−element MRA [21] in that order. Note that all conventional

sparse arrays share the same number of sensorsM = 10 but differs in aperture sizes.

4.1 Sparse array selection using DL-based method

In this example, we aim to select a 10−element (M = 10) sparse array from a 20−element

ULA (N = 20) using the proposed DL-based technique. The problem yields 20C10 =

184756 subarrays ,i.e, G. However, after applying Algorithm 1, the instances dropped to

14791 subarrays ,i.e., L. This is followed by selection of the best subarray to calculate
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Table 1 Sample sets versus number of labels for (20, 10) antenna selection problem

Approach Samples/ classes Realized labels

Conventional [21] 184756 71

Proposed 1491 67

W , which was found to consists of 67 subarrays for the proposed method and 71 for the

conventional method. As pointed out in [9–11], the size of W is much less as compared

to that ofL.

Table 1 briefly compares the solution sets against the number of labels realized between

the conventional and the proposed methods. A closer look shows that the number

of labels generated in each case is comparably the same. This indicates that the pro-

posed method does not only helps to enhance the DL-based antenna selection approach

proposed in [10] but also reduces computational load associated with training dataset

annotation.

The CNN model as defined in Section (3.5) was trained for M = 10, N = 20. The

training dataset was generated using SNRTRAIN = 10 dB, TTRAIN = 100 snapshots,

QTRAIN = 120 signal, and noise realisation and (Dθ )TRAIN = 120 DOAs spaced uni-

formly within θ ∈ (−90◦, 90◦). During testing, M, N, and T were kept constant whereas

SNRTEST = 0 dB, Q = 1, and Dθ )TEST = 2 DOAs picked randomly in within the same

range of (−90◦, 90◦).

Figure 3 shows the array configurations of the predicted sparse arrays. We observed

that the array configurations of the proposed method are as sparse as most conventional

sparse arrays. Moreover, the predicted sparse arrays exhibit hole-free difference coarrays

identical to the size of the difference coarray of the original 20-element ULA, i.e., O(N).

This large difference coarray Q enables the predicted sparse arrays to estimate more

uncorrelated sources than the number of sensors.

Fig. 3 Predicted sparse array configurations (top) and their corresponding difference coarrays (bottom).

Here, a original 20-element ULA, b proposed 1 and c proposed 2. The bullets and the crosses represent

physical elements and empty spaces in that order whereas the filled circles denote virtual sensors in the

difference coarray
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Fig. 4 Beampattern comparison among the 20−element ULA, the 10−elements ULA, the 10−element

conventional DL-based array, 10−element PSL-constrained array and the 10−element proposed DL-based

array

4.2 Beampattern response of the proposed sparse arrays

In this section, we evaluate the beampattern responses of the proposed DL-based sparse

arrays in comparison to the responses of conventional sparse arrays. In the example, the

look angle is assumed to be located at θ = 0◦. Figure 4 shows the computed beampattern

responses.

It can be observed in Fig. 4 that the beampattern response of the conventional DL array

shows high PSLs as compared to the PSL-constrained array, which shows well suppressed

PSLs. Moreover, the proposed arrays with hole-free difference coarray yield beampatterns

with well suppressed PSLs such that the PSLs are closer to that of the PSL-constrained

array. This indicates the proposed method’s effectiveness in yielding sparse arrays with

enhanced beampattern properties [7].

4.3 DOA estimation performance of the proposed sparse arrays

In this section, we examine the DOA estimation performance of the predicted sparse

arrays in comparison to conventional DL-based arrays, original 20−element ULA,

10−element ULA, and 10−element PSL-constrained array. We consider D = 3 sources

case where the sources are uniformly distributed between [−60◦ to 60◦], and root-

MUSIC estimator is utilized to calculate RMSE as a function of SNR and number of

snapshots [12]. In the first scenario, we compute RMSE versus SNR with D = 3, 500

snapshots over 1000 trials while varying the SNR from −20 dB to 10 dB. In the second

scenario, we compute RMSE versus the number of snapshots with D = 3, SNR = 0 dB

over 1000 trials while varying the number of snapshots from 50 to 600. Figure 5 shows the

plot of RMSE versus SNR (left) and RMSE versus number of snapshots (right).

As shown in Fig. 5, the proposed sparse arrays show better performances compara-

ble to PSL-constrained and closer to the performance of the original 20-element ULA

throughout the SNR and number of snapshots levels. Moreover, the predicted sparse

arrays performed better than 10−element ULA and conventional DL. The results demon-

strate that the proposed antenna selection approach can be used to thin or select sparse

arrays with few sensors instead of a full array without degrading the estimation accuracy

considerably while reducing the computation cost.
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Fig. 5 RMSE performance of the predicted DL-based sparse arrays

4.4 DOA estimation performance comparison with conventional sparse arrays

In this example, we consider DOA estimation ofmore sources than the number of sensors.

Specifically, we compare the performance of the predicted sparse arrays with MRA, NA,

and the original 20-element ULA. To that end, we consider D = 11 sources case and

the RMSE of DOA estimation as a function of SNR and number of snapshots. Like the

previous example, we compute RMSE versus SNR with D = 11, 1000 snapshots over

500 trials while varying the SNR from −20 dB to 10 dB. Then, we compute RMSE versus

the number of snapshots with D = 11, SNR = 0 dB over 500 trials while varying the

number of snapshots from 50 to 500. Note that the sources were assumed to be distributed

uniformly between [− 60◦, 72◦]. Figure 6 shows the plot of RMSE versus (left) SNR and

(right) number of snapshots.

Figure 6 shows that the predicted sparse arrays exhibit better performances slightly

higher than the performance of the original 20-element ULA, MRA, and NA but better

than the performance of PSL-constrained despite sharing the same size of the aper-

ture. However, the same is not the case with MRA and NA because MRA and NA have

large array aperture as compared to the predicted sparse arrays. Nonetheless, the results

indicate the potential and the effectiveness of the proposed antenna selection technique.

Fig. 6 RMSE performance of the predicted DL-based sparse arrays in comparison to other sparse arrays
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4.5 Computation complexity analysis

The time complexity of DL neural network can be approximated using the complexity of

the convolutional and fully connected layers as [10, 22]

TDL = O

⎛

⎝

Rcl
∑

r=1

DrvrJ r−1
cl J r

cl

⎞

⎠ + O

⎛

⎝

Rfl
∑

r=1

DrJ r
fl

⎞

⎠ , (12)

where for the first termDr , vr ,J r−1
cl , andJ r

cl denote the size of output feature map, 2D fil-

ter size, number of input, and output features of the rth convolutional layers, respectively.

And for the second term, Dr and J r
fl represents the size of 2D input and total number

of units of rth fully connected layer, respectively. Assuming 2 convolutional layers with

64 feature maps with 3 × 3 kernel and 2 fully connected layers, operations with respect

to the first and second terms of (12) can be approximated as
(

N2 ·
(

2 · 9 · 642
))

and
(

2 · 642
(

N2 + 2
))

in that order. Thus, combining the two terms yield
(

642
(

22N2 + 4
))

and the corresponding TDL is O
(

642
(

22N2 + 4
))

which can be further simplified to

O
(

22 · 642N2
)

[22].

In comparison, the order of a convex relaxation algorithm (through the difference of two

convex sets, which is a polynomial-time algorithm) used to design PSL-constrained array

in [8] is almost O
(

N3 + N2L
)

. However, once trained, the DL-based selector requires

very fewmatrix computations to yields the best solution. For instance, running themodels

in MATLAB using a PC with Intel(R) Core (TM)-i5 at 2.60 GHz with 4 GB RAM, the

proposed DL-based method required only 0.0270s (prediction phase only) to predict a

sparse array, whereas the approach in [8] takes almost 0.157s for N = 20 and M = 10

case.

5 Conclusion

This paper presented an enhanced deep learning-based antenna selection approach. The

approach employs a convolutional neural network algorithm to select a sparse subarray

given a sample covariance matrix as input. Motivated by beampattern characteristics of

arrays with hole-free or near hole-free coarrays, we constrained the subarrays used to

generate training target data consisting of hole-free difference coarray to achieve sparse

arrays with large aperture and well-distributed sensors. It has been demonstrated through

numerical examples that the proposedmethod yields sparser arrays with improved beam-

pattern properties and retain hole-free or near hole-free coarrays with well-distributed

sensors. Moreover, the rendered sparse arrays show enhanced DOA estimation per-

formance comparable to that of the original large array and other well-known sparse

arrays.
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