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Abstract— This paper focuses on the synthesis of nonlinear
Model Predictive Controllers that can guarantee robustness
with respect to measurement noise. The input-to-state stability
framework is employed to analyze the robustness of the result-
ing Model Predictive Control (MPC) closed-loop system. It is
illustrated how the obtained robustness result can be employed
to synthesize asymptotically stabilizing observer-based output-
feedback nonlinear MPC controllers for a class of nonlinear
discrete-time systems. The developed theory is illustrated by
applying it to control a Buck-Boost DC-DC converter.

I. INTRODUCTION

One of the problems in Nonlinear Model Predictive

Control (NMPC) that receives increased attention and has

reached a relatively mature stage, consists in guaranteeing

closed-loop stability. The approach usually used to ensure

nominal closed-loop stability in NMPC is to consider the

value function of the NMPC cost as a candidate Lyapunov

function, see the survey [1], for an overview. The stability

results heavily rely on state space models of the system,

and the assumption that the full state of the real system

is available for feedback. However, in practice it is rarely

the case that the full state of the system is available for

feedback. A possible solution to this problem is the use of

an observer. An observer can generate an estimate of the full

state using knowledge of the output and input of the system.

However, nominal stability results for NMPC usually do not

guarantee closed-loop stability of an interconnected NMPC-

observer combination. One of the potential approaches to

guarantee closed-loop stability in the presence of estimation

errors in the state, is to employ (inherent) robustness of the

model predictive controller. In [2] asymptotic stability of

state feedback NMPC is examined in face of asymptotically

decaying disturbances. As stated by the authors of [2],

their results are also useful for the solution of the output

feedback problem, although a formal proof is missing. A

stability result on observer based nonlinear model predictive

control is reported in [3], under the standing assumption

that the NMPC value function and the resulting NMPC

control law are Lipschitz continuous. The stability prob-

lem of observer based nonlinear model predictive control

is revisited in [4], where only continuity of the NMPC

value function is assumed. In [4] robust global asymptotic

stability is shown under the assumption that there are no

state constraints present in the NMPC problem. Other related
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results on observer based nonlinear model predictive control

can be found in [5], [6]. However, in [5], [6] a continuous-

time perspective is taken, while we focus on discrete-time

nonlinear systems.

In this paper we present a framework for the design

of asymptotic stabilizing observer-based output feedback

nonlinear model predictive controllers for nonlinear discrete-

time Lipschitz continuous systems in the presents of input

and state constraints. The framework is based on an obtained

result which enables to infer Input-to-State Stability (ISS),

e.g. see [7], [8] and the references therein, with respect

to measurement noise from ISS with respect to additive

disturbances for input and state constrained systems. This

result allows one to employ all existing NMPC synthesis

techniques that can a priori guarantee ISS with respect to

additive disturbances, in a scenario where the closed-loop

system has to be rendered ISS with respect to measurement

noise. The latter scenario is in particular interesting for

certainty equivalence output feedback (NMPC) controller

design for input and state constrained systems.

The paper is organized as follows. First, some basic

definitions and notations are given in Section II, together

with basic NMPC notions. In Section II-C we briefly explain

the nonlinear observer-based output feedback problem for

NMPC from which the problem set-up follows. In Section IV

we point out how to design a state feedback NMPC con-

troller which is robust (ISS) to state measurement noise or

observation errors, present in, for example, state estimates

generated by an observer. In Section V an illustrative exam-

ple on an constrained output feedback control problem for

a Buck-Boost DC-DC converter is given. Conclusions are

summarized in Section VI.

II. PRELIMINARIES

Let R, R+, Z and Z+ denote the set of real numbers,

the set of non-negative reals, the set of integers and the set

of non-negative integers, respectively. A function γ : R+ 7→
R+ is a K -function if it is continuous, strictly increasing

and γ(0) = 0. A function β : R+ ×R+ 7→ R+ is a K L -

function if, for each fixed k ∈ R+, the function β (·,k) is

a K -function, and for each fixed s ∈ R+, the function

β (s, ·) is non-increasing and β (s,k) → 0 as k → ∞. For any

x ∈ R
n, |x| stands for its Euclidean norm. For any function

φ : Z+ 7→ R
n, we denote ‖φ‖ = sup{|φk| | k ∈ Z+}, where

we use the convention that φk , φ(k). For a set S ⊆ R
n,

we denote by int(S ) its interior. For two arbitrary sets

S ⊆ R
n and P ⊆ R

n, let S ∼ P , {x ∈ R
n | x+P ⊆ S }

denote the Pontryagin difference. For a set S , S n denotes
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the Cartesian product S ×S × . . .×S , where S appears

n times with n ∈ Z≥1. A function g : X × S 7→ R
n with

X ⊆ R
nx and S ⊆ R

ns is (globally) Lipschitz continuous with

respect to x in the domain X×S, if there exists a constant

0 ≤ Lg < ∞ such that for all x1, x2 ∈ X and for all s ∈ S,

|g(x1,s)− g(x2,s)| ≤ Lg|x1 − x2|. The constant Lg is called

the Lipschitz constant of g with respect to x. By the notation

F : X →֒ Y for X ⊆ R
nx and Y ⊆ R

ny , we mean that F is

a set-valued function from X to Y, i.e. F (x) ⊆ Y for each

x ∈ X.

A. Systems theory notions

Consider a non-autonomous system described by the

discrete-time nonlinear difference inclusion

xk+1 ∈ F (xk,vk), k ∈ Z+, (1)

where xk ∈ R
n is the state, vk ∈ V ⊆ R

nv a disturbance at

discrete-time k ∈Z+, respectively. The set V is assumed to be

a known set with 0 ∈V. Furthermore, F : R
n×V →֒R

n is a

set-valued mapping with F (0,0) = {0} and F (ξ ,υ) 6= /0 for

all ξ ∈R
n and all υ ∈V. This guarantees that for each initial

state x0 at time k = 0 and disturbance function v : Z+ 7→ V

there exists a solution, not necessarily unique, to system (1).

The set of corresponding solutions of the difference inclusion

(1) is denoted by SF (x0,v).

Definition II.1 For given sets X ⊆ R
n and V ⊆ R

nv , with

0 ∈ int(X ) and 0 ∈ V, we call system (1) Input-to-state

Stable (ISS) with respect to disturbances v : Z+ 7→ V and

initial states x0 in X , if there exist a K L -function βx and

a K -function γv
x such that for each function v : Z+ 7→ V and

each x0 ∈ X all solutions x ∈ SF (x0,v) satisfy

|xk| ≤ βx(|x0|,k)+ γv
x (‖v‖), ∀k ∈ Z+. (2)

Definition II.2 Given a disturbance set V, a set P ∈ R
n is

called Robust Positively Invariant (RPI) for system (1) if for

all ξ ∈ P it holds that F (ξ ,υ) ⊆ P for all υ ∈ V.

For sufficient conditions for the input-to-state stability prop-

erty in Definition II.1 for system (1), we refer to [9], [8].

Note that ISS of system (1) implies Lyapunov asymptotic

stability for the 0-disturbance system.

B. NMPC notions

Consider the following nominal and perturbed discrete-

time nonlinear systems

xk+1 = f (xk,uk), k ∈ Z+, (3a)

x̃k+1 = f (x̃k,uk)+wk, k ∈ Z+, (3b)

where xk, x̃k ∈ R
n and uk ∈ R

m are the state and the input

at discrete-time k ∈ Z+, respectively. Furthermore, f : R
n ×

R
m 7→ R

n and f (0,0) = 0. The vector wk ∈ W ⊆ R
n denotes

an unknown additive disturbance and W is assumed to be a

known set with 0 ∈ W. The nominal discrete-time nonlinear

system (3a) will be used in an NMPC scheme to make an

N ∈ Z≥1 time steps ahead prediction of the system behavior.

The system given by (3b) represents a perturbed discrete-

time system to which the NMPC controller based on the

nominal model (3a) will be applied. Throughout the paper

we assume that the state and the controls are constrained for

both systems (3a) and (3b) to some compact sets X ⊆ R
n

with 0 ∈ int(X) and U ⊆ R
m with 0 ∈ int(U).

For a fixed N ∈ Z≥1, let xk(x̃k,uk) , [x⊤
k+1|k, . . . ,x

⊤
k+N|k]

⊤

denote the state sequence generated by the nominal system

(3a) from initial state xk|k , x̃k at time k and by applying the

input sequence uk , [u⊤
k|k, . . . ,u

⊤
k+N−1|k]

⊤ ∈ U
N . The class of

admissible input sequences defined with respect to the state

xk ∈ X is UN(x̃k) , {uk ∈ U
N | xk(x̃k,uk) ∈ X

N}.

Let N ∈ Z≥1 be given and let F : R
n 7→ R+ with F(0) = 0

and L : R
n × R

m 7→ R+ with L(0,0) = 0 be continuous

bounded mappings. At time k ∈ Z+, let x̃k ∈ X be given.

The basic model predictive control scenario consists in

minimizing, via optimization, at each time k ∈ Z+ a finite

horizon cost function of the form

J(x̃k,uk) , F(xk+N|k)+
N−1

∑
i=0

L(xk+i|k,uk+i|k), (4)

with prediction model (3a), over all sequences uk in UN(x̃k).
We call a state x̃k ∈X feasible if UN(x̃k) 6= /0. Let X f (N) ⊆ X

denote the set of feasible initial states with respect to the

mentioned optimization problem. Then VMPC : X f (N) → R+,

VMPC(x̃k) , inf
u

[0,N−1]
k

∈UN(x̃k)

J(x̃k,u
[0,N−1]
k ) (5)

is the nonlinear model predictive control value function cor-

responding to the cost (4). If there exists an optimal sequence

of controls u⋆
k , [u⋆⊤

k|k ,u
⋆⊤
k+1|k, . . . ,u

⋆⊤
k+N−1|k]

⊤ that minimizes

(5), see [10], the infimum in (5) is a minimum and VMPC(x̃k) =
J(x̃k,u

⋆
k). However, in practice numerical solvers usually

provide a feasible (non-unique), sub-optimal sequence uk ,

[u⊤
k|k,u

⊤
k+1|k, . . . ,u

⊤
k+N−1|k]

⊤ to the MPC optimization problem

with resulting value function V MPC(x̃) , J(x̃,uk). Then, an

NMPC control law is denoted as

uk ∈ κMPC(x̃k) , uk|k, k ∈ Z+. (6)

The NMPC control law either optimal or sub-optimal can be

substituted in (3b) and yields the closed-loop system

x̃k+1 = f (x̃k,κ
MPC(x̃k))+wk , Fw(x̃k,wk), k ∈ Z+, (7)

with wk ∈ W ⊆ R
n.

C. Observer-based output feedback: A summary

Consider the following system

xk+1 = f (xk,uk), yk = g(xk), k ∈ Z+, (8)

where xk ∈ R
n, uk ∈ R

m and yk ∈ R
ℓ is the state, the control

and the output at discrete-time k ∈Z+, respectively. Further-

more, f is defined as in (3a) and g : R
n 7→ R

ℓ with g(0) = 0.

The observer problem for (8) deals with the question how to

reconstruct the state trajectory x(·,x0,u) on the basis of the

knowledge of the input u and the output y of the system. The

observer design problem in its full generality is a problem

that is not yet fully solved for nonlinear systems of the form

(8). Loosely speaking a full order observer (observer for
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brevity) for system (8) is, for example, a dynamical system

of the form

x̂k+1 , f̂ (x̂,yk,uk), k ∈ Z+ (9)

where x̂ ∈ R
n is an estimate of the state x, and f̂ : R

n×R
ℓ×

R
m 7→ R

n is designed such that the estimation error ek ,

xk − x̂k (at least) asymptotically converges to zero as k → ∞
for all initial conditions x0 and x̂0 in some subset of R

n. In

this paper we will however not deal with the observer design

problem. The focus is on how to synthesize a state feedback

NMPC controller which can handle the presence of state

estimation errors in the state used for feedback. This is of

great importance if a certainty equivalence output feedback

control approach is employed. That is, by lack of knowledge

of the real state xk an estimate of the state x̂k is injected to

a state feedback NMPC controller instead, i.e. uk ∈ κMPC(x̂k).
The state estimate x̂k is obtained by an observer of which the

error dynamics (i.e. the dynamics which describes the error

signal e) is assumed to be asymptotically stable.

III. PROBLEM FORMULATION

In order to obtain an asymptotically stable closed-loop

system, resulting from employing the certainty equivalence

output feedback control approach, we will synthesis an

NMPC controller which is robust, i.e. ISS, with respect to the

estimation errors e induced by the observer. We assume that

the observer, with its asymptotically stable error dynamics,

is initialized in such a way that ek ∈ E ⊆ R
n for all k ∈ Z+,

i.e. x̂0 ∈ X such that ek = (x̂− xk) ∈ E for all k ∈ Z+. Then,

if the controller renders the following system

xk+1 = f (xk,κ
MPC(xk + ek)) , Fe(xk,ek), k ∈ Z+, (10)

ISS with respect to the estimation errors (measurement

noise) e : Z+ 7→ E, it is known that if the estimation error

vanishes, e.g. ek → 0 for k → ∞ also xk → 0 for k → ∞.

This follows directly from the ISS system property given in

Definition II.1. Hence, an asymptotically stable closed-loop

system, resulting from employing the certainty equivalence

output feedback control approach, is obtained. In the next

section we will show how to render (10) ISS with respect to

e : Z+ 7→ E.

IV. ISS NMPC CONTROLLER DESIGN

As explained in the previous section, we seek for NMPC

schemes that renders (10) ISS with respect to the estimation

error e. Rendering system (10) ISS with respect to the estima-

tion error e using NMPC is however difficult. The problem

was considered in [3], where robustness to estimation errors

is shown under the assumption of Lipschitz continuity of the

NMPC value function and control law. A similar result was

obtained more recently in [4], under the milder assumption of

continuity of the NMPC value function and not necessarily

of the NMPC control law. However, in [4] state constraints

are not considered. To the best of the authors’ knowledge,

besides the global results of [4] which holds under the

condition that there are no state constraints considered, no

general practically applicable NMPC schemes are available

in literature that can a priori guarantee ISS of (10) with

respect to the estimation error e as input in the presents of

state constraints. However, due to the result obtained in this

section we can infer ISS of (10) with respect to e from ISS

of (7) with respect to additive disturbances w. This result

then allows us to employ all existing NMPC schemes, e.g.

[2], [9], [11], [12], that can a priori guarantee ISS of (7)

to also establish a priori ISS of (10). To give an example

of an NMPC scheme that is ISS with respect to additive

disturbances, we briefly recall the ISS MPC scheme of [12].

This scheme will also be employed later in Section V to

control a DC- DC converter. Let PV ∈R
pv×n and QV ∈R

qv×n

be full-column rank matrices.

Algorithm IV.1

Step 1) Given the state x̃k at time k ∈ Z+, let xk|k , x̃k and

find a control sequence that satisfies

|PV ( f (xk|k,uk|k))|− |PV xk|k| ≤ −|QV xk|k| (11a)

uk ∈ UN(x̃k) (11b)

and optionally also minimize the cost J(x̃k,uk) in (5).

Step 2) Let

κMPC(x̃k) ,

{
uk|k ∈ U

∣∣ uk satisfies (11)
}
.

Furthermore, let uk with uk ∈ κMPC(x̃k) denote a feasible

sequence of controls with respect to the optimization problem

formulated at Step 1. Apply a control uk = uk|k ∈ κMPC(x̃k) to

the perturbed system (3b), increment k be one and go to

Step 1.

The following result is proven in [12] for the nonlinear

system (3b) in closed-loop with Algorithm IV.1 forming

closed-loop system (7).

Theorem IV.2 [12] Let X f (N) be the set of states x̃k ∈
X for which the optimization problem in Step 1 of Algo-

rithm IV.1 is feasible and let X̃ (N)⊆X f (N) be an RPI set

with 0 ∈ int(X̃ (N)) for closed-loop system (7) perturbed by

additive disturbances w : Z+ 7→W. Then, system (7) is input-

to-state stable with respect to disturbances w : Z+ 7→ W and

initial states x̃0 in X̃ (N).

For ways to compute matrices PV and QV off-line, we refer

the reader to [12]. Now we are ready to state the main

result of this section, which enables one to obtain an NMPC

controller that is ISS with respect to estimation errors e from

an NMPC controller, like the one just presented, that is ISS

with respect to additive disturbances w.

Assumption IV.3 Let the function f (·, ·) be Lipschitz con-

tinuous with respect to its first argument in the domain X×U

with Lipschitz constant L f .

Assumption IV.4 Let W ,
{

ω ∈ R
n | |ω| ≤ λ

}
, for some

λ ∈ R>0. Suppose that system (7) is ISS with respect to

additive disturbances in W and initial states x̃0 in X̃ (N)⊆X

with 0∈ int(X̃ (N)), i.e. there exist a K L -function βx̃ and a

K -function γw
x̃ such that for all x̃0 ∈ X̃ (N) and w : Z+ 7→W

all solutions x̃ ∈ SFw
(x̃0,w) satisfy

|x̃k| ≤ βx̃(|x̃0|,k)+ γw
x̃ (‖w‖), ∀k ∈ Z+. (12)
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Furthermore, assume that X̃ (N) is RPI for system (7)

perturbed by additive disturbances in W.

Theorem IV.5 Suppose Assumptions IV.3 and IV.4 hold. Let

E ,
{

ε ∈ R
n | |ε| ≤ λ/(L f +1)

}
, X (N) , X̃ (N) ∼ E and

suppose 0∈ int(X (N)). Then, the following statements hold.

i) The set X (N) ⊂ X is an RPI set for closed-loop system

(10) perturbed by state measurement errors in E;

ii) The state and input constraints are satisfied for all

trajectories of (10) with initial states x0 in X (N) and

measurement errors in E, i.e. for all x ∈ SFe
(x0,e) with

x0 ∈ X (N) and e : Z+ 7→ E it holds that xk ∈ X(N) and

κ(xk + ek) ⊆ U for all k ∈ Z+;

iii) The closed-loop system (10) is ISS with respect to state

measurement errors in E and initial states x0 in X (N). In

particular, we have that for all x0 ∈ X (N) and e : Z+ 7→ E

all solutions x ∈ SFe
(x0,e) satisfy

|xk| ≤ βx(|x0|,k)+ γe
x (‖e‖), ∀k ∈ Z+, (13)

with βx(|x0|,k) , βx̃(2|x0|,k) and

γe
x (‖e‖) , βx̃(2‖e‖,0)+ γw

x̃ ((L f +1)‖e‖)+‖e‖.

Proof:

i) Let ξ ∈X (N) and ε ∈E. We will show that for all ε ∈E,

f (ξ ,κ(ξ + ε))+ ε ⊆ X̃ (N) (14)

as this yields f (ξ ,κ(ξ + ε)) ⊆ X̃ (N) ∼ E = X (N). Then,

since ξ ∈ X (N) and ε ∈ E are arbitrary, this would prove

that X (N) is RPI. We proceed by observing that

f (ξ ,µ)+ ε = f (ξ̃ ,µ)+ω, ∀µ ∈ κ(ξ̃ ) ⊆ U (15)

with ξ̃ , ξ + ε and ω , f (ξ ,µ)− f (ξ̃ ,µ) + ε . Using the

Lipschitz property of f yields | f (ξ̃ −ε,µ)− f (ξ̃ ,µ)| ≤L f |ε|.

Therefore, it holds that for all ε,ε ∈ E and ξ̃ ∈ X̃ (N)

|ω| = | f (ξ̃ − ε,µ)− f (ξ̃ ,µ)+ ε|, ∀µ ∈ κ(ξ̃ ) ⊆ U,
≤ L f |ε|+ |ε| ≤ L f |ε|+ |ε| ≤ λ .

(16)

The last inequality in (16) shows that ω ∈ W. Together with

the hypothesis of Theorem IV.5, i.e. RPI of X̃ (N) for system

(7) under additive disturbances in W, (15) yields that for all

ε ∈ E and ξ̃ ∈ X̃ (N),

f (ξ ,µ)+ ε ∈ X̃ (N), ∀µ ∈ κ(ξ̃ ) ⊆ U.

Hence, we obtain that for all ε ∈ E (14) holds.

ii) Due to i), it holds that for any x0 ∈ X (N) and any e :

Z+ 7→ E all trajectories x ∈ SFe
(x0,e) satisfy xk ∈ X (N) ⊆

X, xk +ek ∈ X̃ (N) ⊆ X for all k ∈ Z+ and thus uk ∈ κ(xk +
ek) ⊆ U for all k ∈ Z+.

iii) Let x0 in X (N), e : Z+ 7→ E and x ∈ SFe
(x0,e). We

perform the following coordinate change on (10)

xk = x̃k − ek, ∀k ∈ Z+, (17)

which gives

x̃k+1 ∈ f (x̃k − ek,κ(x̃k))+ ek+1, k ∈ Z+, (18)

or
x̃k+1 ∈ f (x̃k,κ(x̃k))+wk, k ∈ Z+, (19)

where

wk , f (x̃k − ek,uk)− f (x̃k,uk)+ ek+1, for some

uk ∈ κ(x̃k) ⊆ U, ek,ek+1 ∈ E and x̃k ∈ X̃ (N).
(20)

Hence,

wk ∈ W ,

{
f (ξ̃ − ε,µ)− f (ξ̃ ,µ)+ ε

∣∣ µ ∈ κ(ξ̃ ) ⊆ U,

ε,ε ∈ E, ξ̃ ∈ X̃ (N)
}

.

We claim that W⊆W. Indeed, if ω ∈W, then we can utilize

the Lipschitz property of f to obtain that for all ε,ε ∈ E

and ξ̃ ∈ X̃ (N) (16) holds, which implies that W ⊆ W and

therefore wk ∈W for all k ∈Z+. Due to the fact that wk ∈W

for all k ∈ Z+ and that item ii) in the proof, i.e. xk +ek ∈ X̃

for all k ∈ Z+, holds, we obtain that x̃k ∈ X̃ (N) for all k ∈
Z+. As a consequence, the hypothesis in Theorem IV.5 shows

that (19) is ISS w.r.t. additive disturbance w : Z+ 7→ W and

initial conditions x̃0 ∈ X̃ . Hence, we have that (12) holds

true. Via (20) and utilizing the Lipschitz property of f in a

similar manner as in (16), we obtain that for all uk ∈ κ(x̃k)⊆

U, ek,ek+1 ∈ E, x̃k ∈ X̃ (N) and k ∈ Z+

|wk| ≤ | f (x̃k − ek,uk)− f (x̃k,uk)+ ek+1|

≤ | f (x̃k − ek,uk)− f (x̃k,uk)|+‖e‖

≤ (L f +1)‖e‖.

(21)

Substituting the last inequality in (21) into (12) yields for all

k ∈ Z+

|x̃k| ≤ βx̃(|x̃0|,k)+ γe
x̃ (‖e‖), (22)

where γe
x̃ (‖e‖) = γw

x̃ ((L f +1)‖e‖). Applying (17) and prop-

erty (22) yields

|xk| = |x̃k − ek| ≤ |x̃k|+ |ek| ≤

≤ βx̃(|x0 + e0|,k)+ γe
x̃ (‖e‖)+ |ek|

≤ βx̃(|x0|+ |e0|,k)+ γex
x̃ (‖e‖)+‖e‖

≤ βx̃(2|x0|,k)+βx̃(2|e0|,k)+ γe
x̃ (‖ex‖)+‖e‖

≤ βx̃(2|x0|,k)+βx̃(2‖e‖,0)+ γe
x̃ (‖e‖)+‖e‖

= βx(|x0|,k)+ γe
x (‖e‖).

V. OUTPUT FEEDBACK CONTROL OF A BUCK-BOOST

DC-DC CONVERTER

In this section we illustrate Algorithm IV.1, where instead

of xk we use x̂k for feedback. The estimate x̂k is generated

by an observer having asymptotically stable error dynamics.

The resulting output-based NMPC scheme is employed to

control a Buck-Boost DC-DC converter power circuit. Buck-

Boost circuits are very important and they are widely used

in relevant applications, ranging from hybrid and electric

vehicles to solar plants, etc. An schematic view of the circuit

is given in Fig. 1. A discrete-time nonlinear averaged model

of the converter has been developed in [13], i.e.

xm
k+1 =

[
xm

1,k + T
L

xm
2,k −

T
L
(xm

2,k −Vin)u
m
k

−T
C

xm
1,k + T

C
xm

1,kum
k +(1− T

RC
)xm

2,k

]
, ym

k = xm
2,k,

(23)
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Fig. 1. A schematic representation of a Buck-Boost converter.

where xm
k = [xm

1,k xm
2,k]

⊤ ∈ R
2, ym

k ∈ R and um
k ∈ R are the

state the output and control, respectively. xm
1 represents the

current flowing through the inductor, xm
2 the voltage across

the capacitor and um represents the duty cycle (i.e. the

fraction of the sampling period during which the transistor is

kept ON). The sampling period T corresponds to a sampling

frequency of 10[kHz], the inductance L = 4.2×10−3[H], the

capacitance C = 2200[µF ], the load resistance R = 165[Ω]
and the source input voltage is equal to Vin = 15[V ]. The

control objective is to reach a desired steady state value of the

output voltage, i.e. xss
2 , as fast as possible and with minimum

overshoot. In practice only the output, i.e. output voltage xm
2,k,

is available for feedback, so output based controllers with a

stability guarantee are needed. At the same time, constraints

on the current xm
1,k must be fulfilled. The output based MPC

framework, as proposed in this paper, is used to design a

controller for this task. From xss
2 one can obtain the steady

state duty cycle and inductor current as follows:

uss =
xss

2

xss
2 −Vin

, xss
1 =

xss
2

R(uss −1)
. (24)

Furthermore, the following physical constraints must be

fulfilled at all times k ∈ Z+:

xm
1,k ∈ [0.01,5], xm

2,k ∈ [−20,0], um
k ∈ [0.1,0.6]. (25)

To implement the proposed MPC scheme we perform first

the following coordinate transformation on (23)

x1,k = xm
1,k − xss

1 , x2,k = xm
2,k − xss

2 , uk = um
k −uss. (26)

This is done in order to obtain a model of the form (8) with

f (0,0) = 0. We obtain then the following vector fields f and

g, defining a nonlinear model of form (8):

f (xk,uk) =

[
x1,k +αx2,k +(β − T

L
x2,k)uk

(T
C

x1,k + γ)uk +(1− T
RC

)x2,k +δx1,k

]
,

g(xk) = x2,k.

(27)

The constants α , β , γ and δ depend on the fixed steady state

value xss
2 as follows

α =
T

L
(1−

xss
2

xss
2 −Vin

), β =
T

L
(Vin − xss

2 ),

γ =
T

RCVin

xss
2 (xss

2 −Vin) and δ =
T

C

(
xss

2

xss
2 −Vin

−1

)
.

Using (26) and (24), the constraints given in (25) can be

converted to:

X =
{

x ∈ R
2
∣∣ x1 ∈ [bx1 ,b

x1 ], x2 ∈ [bx2 ,b
x2 ]

}

U =
{

u ∈ R
∣∣u ∈ [bu,b

u
]
}

,
(28)

where

bx1 = 0.01−
1

RVin

xss
2 (xss

2 −Vin), b
x1 = 5−

1

RVin

xss
2 (xss

2 −Vin),

bx2 = −20− xss
2 , b

x2 = −xss
2 ,

bu = 0.1−
xss

2

xss
2 −Vin

and b
u
= 0.6−

xss
2

xss
2 −Vin

.

The control objective can now be formulated as to sta-

bilize (27) around the equilibrium (0,0) while fulfilling the

constraints given in (28).

1) Controller: The ISS (w.r.t. additive disturbances)

NMPC scheme from Section IV is employed to design the

NMPC controller. The method in [12] is applied to find a

matrix PV which defines the proposed ISS Lyapunov function

V (x) = |PV x|. For QV =
[

0.1 0
0 0.1

]
we have obtained PV =[

2.4545 4.9275
5.6292 −6.0353

]
. The employed NMPC costs defined by F and

L are given as F = |Pxk+N|k| and L = |Qxk+i|k|+ |Ruuk+i|k|.
To achieve good performance, the NMPC cost matrices

have been chosen as follows: P =
[

5 0
0 10

]
, Q =

[
2 0
0 6

]
and

Ru = 0.001. Further we chose the prediction horizon to be

N = 5. To conclude about ISS w.r.t. ex (possibly induced by

an observer) we rely on Theorem IV.5.

2) Observer: For the observer design we employ the

proposed extended observer design methodology proposed

in [14]. For the considered system, defined by f and g,

we can obtain an observer with asymptotically stable error

dynamics. Due to the scope of the paper and space limitations

we will not go into further details concerning the observer

design. For more details on the employed observer design

methodology in relation to NMPC we refer the reader to [15],

[16]. However, in order to provide the reader with results

that can be reproduced, we give the functions that define an

observer from the used observer design methodology, and

refer to [15] for more details on this issue.

The following functions fz and hz define the employed

observer on the domain X×U

fz(yk−1,yk,uk−1,uk) =



0

(( T
C (ϖ+αyk−1+(β− T

L yk−1)uk−1)+γ)uk

+(1− T
RC )(( T

C ϖ+γ)uk−1+(1− T
RC )yk−1+δϖ)+δ (ϖ+αyk−1

+(β− T
L yk−1)uk−1))


 ,

with

ϖ =
RC(yk − γuk−1 − yk−1)+Tyk−1

R(Tuk−1 +δC)
,

and

hz(zn,k) = zn,k. (29)

For observer gains ℓ1 = 0.1 and ℓ2 = 0.1 we have an observer

with asymptotically stable error dynamics.

3) Simulation: Simulation results for the closed-loop sys-

tem, i.e. NMPC controller interconnected with the observer

and the system, are given in Fig. 2 and Fig. ??. Note that

although the NMPC controller and observer computations

were performed for the transformed system, defined by

(27), we chose to present all variables in Fig. 2 in original

coordinates (corresponding to (23)), in order to preserve the
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physical meaning of the results. For the obtained simulation

the system was initialized with xm
0 = [0.01 0]T and the

observer was initialized with ẑ0 = [0.1 0.2]T , u−1 = 0 and

y−1 = 0 (see [14]). Note the estimation errors ex1,k and ex2,k

converge to zero and the desired steady state value xss
2 of

system (23) is reached within reasonable time without any

overshoot. Moreover, the constraints (25) are satisfied at all

times.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

0.2

0.4
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

0
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1

1.5

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

−4

−3

−2

−1

0

um

xm
1

xm
2

time [s]

Duty cycle [-]

Inductor current [A]

Output voltage [V]

Fig. 2. The state and control trajectories are represented by the solid lines.
The dashed and dotted lines represent the constraints and the desired steady
state values (xss

1 = 0.0307[A], xss
2 = −4[V ], uss = 0.2105[−]), respectively.

VI. CONCLUSIONS

We propose a framework for the design of (local) asymp-

totically stabilizing observer-based output feedback model

predictive controllers for nonlinear discrete time Lipschitz

continuous systems with input and state constraints. The

main result on which the framework is based, is the ability

to infer ISS with respect to measurement noise (e.g. presence

of observer errors in the state) from ISS with respect to

additive disturbances for the considered class of systems.

Furthermore, a case study on the output-based control of a

Buck-Boost DC-DC power converter is presented.
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