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The performance of switching junctions in two-dimensional discrete-soliton networks is analyzed theoretically
by coupled-mode theory. Our analysis can be used for the design of routing junctions with specified oper-
ational characteristics. Appropriately engineering the intersection site can further improve the switching
efficiency of these junctions. Our analytical results are verified by numerical simulations. © 2001 Optical
Society of America

OCIS codes: 190.5530, 190.4390.
In recent years, discrete solitons in nonlinear lattices
have received considerable attention in many branches
of science.1 In optics, nonlinear waveguide arrays pro-
vide an excellent system where these entities can be
experimentally studied and possibly used for all-opti-
cal applications.2,3 In the latter context, discrete soli-
tons (DSs) are self-trapped states that exist as a result
of the balance between linear coupling effects and ma-
terial nonlinearity.4 –8

Recently we investigated the propagation behavior
of DSs in two-dimensional networks of nonlinear wave-
guide arrays.9 More specifically, we have shown that
this family of solitons can be employed to realize intel-
ligent functional operations such as routing, blocking,
logic functions, and time gating. These DSs can be
navigated anywhere in the network along preassigned
array pathways that act as soliton wires. Even more
importantly, DSs can be routed at array intersections
by use of vector/incoherent interactions with other dis-
crete solitons.9 In essence, these intersections behave
as DS switching junctions. Clearly, because switch-
ing junctions are important elements in such two-
dimensional DS networks, their analysis and design
are issues that need to be addressed.

In this Letter, by employing coupled-mode theory,
we analyze the performance of switching junctions
in two-dimensional DS networks. The properties of
these junctions, i.e., routing efficiency, ref lection, and
leakage losses, are obtained as a function of the DS
phase speed and the intensity of the solitons that
control the routing process. Our theoretical analysis
can be used to design routing junctions with specific
operational characteristics. In addition, we show
that, by appropriate engineering of the intersection
site, the switching efficiency of these junctions can be
further improved. Our analytical results are verified
by numerical simulations.

Let us consider an array of nonlinear weakly guiding
waveguides made from identical elements separated
by distance D. Each waveguide is of the step-index
type with a radius r and is single mode at the oper-
ating wavelength. For illustration, let l0 � 1.5 mm,
n2 � 1.5, D � 2 3 1023, r � 5.3 mm, and D � 15.9 mm,
where D � �n1 2 n2��n1 and where n1 and n2 are the
core and the cladding refractive indices, respectively.
For this set of values, the coupling coefficient between
adjacent waveguides is c � 0.279 mm21. The array is
0146-9592/01/241978-03$15.00/0
taken to be Kerr nonlinear. In addition, we assume
that two different optical waves are interacting inco-
herently or vectorially in this array system.10,11 In
this case, these two mutually incoherent fields evolve
according to
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where f �x, y� represents the normalized two-dimen-
sional index distribution of the waveguide array,
k0 � 2p�l0, and gI0 is the maximum nonlinear index
change induced by the soliton at the input. Moreover,
for simplicity, the self- and cross-phase modulation
coefficients in Eqs. (1) were taken here to be equal
(Manakov interaction). The discrete soliton states
of each field [in the absence of the other, say, U fi 0
and V � 0 in Eqs. (1)] are found numerically by
relaxation methods. As an initial condition of the
iterative scheme we use the DS solutions obtained
from coupled-mode theory.12

The operation of a DS switching junction involves
two different soliton families: the so-called “signals”
and “blockers.” These two families serve as the ba-
sic building elements in this system. A signal DS is
a moderately confined state, extending over f ive to
seven sites in a nonlinear waveguide array. In this
limit, a DS is known to be highly mobile within the
lattice, and its envelope profile is approximately de-
scribed by a hyperbolic secant function, i.e., C�n� �
C0 sech�nD�x0�exp�ianD�. x0 is related to the spa-
tial width of this DS, n � 0, 61 . . . is the number of
waveguide sites, and a describes the phase tilt that
is necessary for this soliton to move along the chain in
the transverse plane �x, y�. A blocker DS is a strongly
confined state that resides almost entirely in one wave-
guide. This class of soliton is highly immobile. Fig-
ures 1(a) and 1(b) depict a typical signal and a typical
blocker DS, respectively. Let us now assume that a
© 2001 Optical Society of America
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Fig. 1. (a) Moderately confined signal DS; (b) strongly
confined DS blocker; (c) routing a signal DS at a T junction
when a blocker is positioned at site A; (d) routing a signal
DS at an X junction when a blocker is positioned at A and
another at B.

blocker is placed at the entry of a particular pathway
in the vicinity of a junction, as shown in Figs. 1(c) and
1(d). In that case, a signal DS (mutually incoherent to
the blocker), when it is approaching the junction from
the left, is effectively rerouted to the unblocked branch,
as shown schematically in Figs. 1(c) and 1(d). More
importantly, this happens elastically; i.e., the output
signal DS remains virtually unaffected after it goes
through the junction, whereas the blocker remains in
its preassigned position during this interaction. It is
important to note that, had the blocker(s) not been
positioned at the junction, the signal DS would have
been totally disintegrated into ref lected and transmit-
ted dispersive waves.

To analyze the switching eff iciency of this junction,
we use the coupled-mode theory or the tight-binding
approximation.13 A 120± junction is shown in Fig. 2
with a blocker placed at the input of the lower branch.
The DS enters the junction from the left arm. The
presence of the blocker soliton nonlinearly induces a
change Db1 in the propagation constant at the site m �
1, as can be computed from11

Db1 �
k0

R R
gI0jEb�x, y�j2 jE0�x, y�j2dxdyR R

jE0�x, y�j2dxdy
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where Eb�x, y� is the normalized mode profile of
the blocker and E0�x, y� is the f ield mode of the
unperturbed waveguide. Let us also assume for
generality that the waveguide at the intersection is
different, i.e., that its propagation constant deviates
from the rest of the waveguides by Db0. In addition,
we consider the finite coupling effects k among the
three sites n � 61 and m � 1. For the set of values
given above, k�c � 0.035 for a 120± junction. From
coupled-mode theory, the f ield amplitudes an at every
discrete site (except at n � 0, 61 and m � 1) obey
i�daj�dz� 1 c�aj11 1 aj21� � 0. At these four sites,
the fields evolve according to
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where the subscript of aj refers to the n line, whereas
that of am�j refers to the lower m branch. By
considering an incident and a ref lected compo-
nent for n # 21, we can write an � exp�imz� 3
�exp�ianD� 1 r exp�2ianD��, where r is the f ield
ref lection coeff icient. The transmitted wave for
n $ 1 obeys an � t exp�imz�exp�ianD�, whereas
the wave leaking from the blocker (for m $ 1) is
described by am � l exp�imz�exp�iamD�, where t and
l are the transmission and the leakage coefficients,
respectively. At the junction �n � 0�, the f ield varies
according to a0 � Q exp�imz�. By substituting the
appropriate forms into i�dan�dz� 1 c�an11 1 an21� � 0
(except at n � 0, 61 and m � 1), we find that the
propagation eigenvalue is given by m � 2c cos�aD�.
Using this result in Eqs. (3), we can then solve this
linear system for the four unknowns, r, t, l, and Q.

Figure 3(a) depicts the power transmission coeffi-
cient T � jtj2 of a 120± junction as function of the
normalized detuning parameter Db1�c (induced by the
blocker) for two phase speeds aD. T was obtained by
solution of Eqs. (3) under the condition that Db0 � 0.
In addition, for the same junction, Fig. 3(b) shows the
power ref lection and leakage coefficients R � jrj2 and
L � jlj2 as a function of the same parameters when
again Db0 � 0. In all cases, T 1 R 1 L � 1. Note
that, in the absence of a blocker �Db1 � 0�, Figs. 3(a)
and 3(b) indicate that T � L � 34% and R � 32% when
aD � 0.6 (and Db0 � 0). In other words, in this case
the junction is extremely lossy. However, these losses
are dramatically reduced when the amplitude of the
blocker DS (or Db1) is increased, as is clearly shown in
Fig. 3(a). For a blocker state that induces a maximum

Fig. 2. 120± Y junction with a blocker placed at the entry
of the lower arm �m � 1�. The signal DS travels along the
n line.
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Fig. 3. (a) Transmission coeff icient T of a 120± junction
as a function of blocking parameter Db1�c when aD � 0.2
(solid curve) and aD � 0.6 (dashed curve). (b) Ref lection
losses R (solid curve) and leakage losses L (dashed curve)
as a function of Db1�c for aD � 0.6. For both figures,
Db0 � 0.

Fig. 4. (a) A T discrete soliton switching junction with a
blocker positioned at site A; (b) the transmission coeff i-
cient of this T junction as a function of Db1�c when aD �
0.2 (solid curve), aD � 0.6 (dashed curve), and Db0 � 0;
(c) the transmission coeff icient of the T junction as a func-
tion of Db0�c for aD � 0.6 and Db1�c � 9.

nonlinear index change of the order of gI0 � 1.44 3

1023, Eq. (2) gives that Db1�c � 12. As Figs. 3(a) and
3(b) show, for Db1�c � 12 the switching junction is
highly efficient, with T � 99% and R � 0.06%. To
verify our results, we numerically solved Eqs. (1), us-
ing a beam propagation scheme. More specifically, we
simulated the rerouting of a signal DS by this 120±

junction when aD � 0.6 and Db1�c � 12. In this case,
we found that the signal DS after the junction had been
transmitted (virtually unchanged) to the upper branch
with an efficiency of 98.5%. Therefore our theory can
be used to design DS switching junctions with speci-
fied transmission efficiencies.

Similarly, a T-switching junction such as that de-
picted in Fig. 4(a) can also be analyzed. Again we use
Eqs. (3) to obtain r, t, l, Q, except that in this case
we ignore the small coupling coefficient between the
two sites around the intersection (along the horizon-
tal branch). For this T junction, and for the set of pa-
rameters used above, k�c � 0.15. Figure 4(b) shows
the transmission eff iciency of this T junction as a func-
tion of Db1�c when aD � 0.2, 0.6 and Db0 � 0. For a
blocker DS with gI0 � 1 3 1023, we f ind from Eq. (2)
that Db1�c � 9. For this blocking state and for aD �
0.6, Fig. 4(b) suggests that T � 97%. What is also
interesting is the fact that the performance of these
junctions can be further improved by appropriate en-
gineering of the waveguide at the intersection. This
waveguide engineering can be accomplished by alter-
ation of either the junction’s core refractive index or
its core diameter, which in turn modif ies its propaga-
tion constant by an amount Db0. Figure 4(c) shows
the junction transmission coefficient as a function of
Db0�c when aD � 0.6 and Db1�c � 9. A close in-
spection of Fig. 4(c) reveals that for these values the
transmission coeff icient attains a maximum (98.5%)
when Db0�c �20.18. In other words, we expect that,
if we reduce the core refractive index by an amount
DnL �20.18c�k0 �21.2 3 1025, the transmission ef-
ficiency of this junction will improve. The improve-
ment is verif ied numerically by solution of Eqs. (1),
for which we found that indeed the transmission co-
efficient increased from 94.35% to 97.73% after engi-
neering of the intersection. We note that the small
discrepancy between the numerical results and those
predicted analytically is attributed to the fact that
the DS itself is a wave packet that involves an en-
semble of spatial frequencies. We can find a better
agreement between theory and numerical simulations
by considering the effective transmission coeff icient,
i.e., Teff �

R
daT �a� jF�a�j2, where F�a� is the normal-

ized Fourier transform of the DS envelope. Along the
same lines, we also analyzed and optimized a T con-
figuration in which the blocker is positioned on the
first site of the vertical branch in Fig. 4(a). Again, our
theoretical results were in agreement with numerical
simulations.

In conclusion, we have theoretically analyzed the
performance of switching junctions in two-dimensional
discrete-soliton networks.
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