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Abstract 

A supply chain network can be viewed as a network of 
facilities in which a customer order will flow through 
internal business processes such as procurement, pro- 
duction, and transportation, ultimately reaching the 
required products o n  t ime  to  customers. The deliv- 
ery performance of such a network can be maximized 
by pushing the work through the system i n  a way that 
the finished products reach the customer in a customer 
specified delivery window, with a very high probability. 
This entails synchronization and hence strict control 
of variability of deliveries at  all intermediate points, to  
ensure that the m w  materials and semi-finished work 
arrive at  work spots in a t imely fashion. In this paper, 
we explore the use of the Motorola six  sigma tolemnc- 
ang methodology t o  achieve synchronization an supply 
chains. In particular, we use the six  sigma approach 
to: (1)  analyze a given supply chain process f o r  s i x  
sigma delivery performance; and (2) design synchro- 
nized supply chains t o  guarantee six sigma delivery 
performance. W e  provide an example of a plastics 
industry supply chain, f o r  which we report analysis 
and design experiments that demonstrate the use of  
the six sigma approach in designing synchronized sup- 
ply chains with high levels of delivery performance. 

1 Introduction 

In the simplest sense, the supply chain represents a 
process of delivering value to customers by creating 
and delivering products. Supply chains span from raw 
materials to manufacturing, distribution, transporta- 
tion, warehousing, and product sales. The end goal of 
supply chain coordination is synchronization, or each 
member acting in ways that are appropriately timed 
with the actions of other supply chain members. 
In this paper, we are concerned with how synchro- 
nization among internal processes in a supply chain 

can be achieved and built into a supply chain net- 
work, leading to what we call a synchronized supply 
chain. Towards this end, we invoke ideas from statis- 
tical tolerancing in general and the Motorola six sigma 
approach in particular. We believe synchronization is 
the key to achieving outstanding delivery performance 
and customer service levels in a supply chain (that is, 
guaranteeing a high probability of delivery within the 
promised delivery window or what we may call cus- 
tomer tolerance interval). Synchronization in addition 
will lead to reduction of lead times and inventory lev- 
els, thus contributing to overall cost reduction. 

1.1 Review of Relevant Work 

Combating various sources of uncertainty in supply 
chains has been studied by a number of researchers. 
Some of the important references include [l, 2,3]. The 
role of variability reduction as a means of lead time re- 
duction is a popular topic in the area of manufacturing 
systems [4] and in the area of business processes such 
as new product design and development [5]. This pa- 
per is concerned with how variability reduction leads 
to better synchronization in a supply chain. Synchro- 
nization is also the key theme behind the Just-in-Time 
(JIT) philosophy in manufacturing. 
We explore the use of mechanical design toleranc- 
ing approaches towards designing synchronized supply 
chains. A survey of tolerance analysis and synthesis 
approaches can be found in [6, 7,8]. The Motorola six 
sigma approach is described in [9, lo]. 

1.2 Outline 

In this paper, we explore the use of the Motorola six 
sigma approach to: 

analyze a given supply chain process for six sigma 
delivery performance; and 
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design synchronized supply chains with six sigma 
delivery performance. 

By six sigma delivery performance, we mean that the 
probability of delivering products to customers within 
a customer specified delivery window is at least as high 
as 0.9999966 [lo]. 
In Section 2, we provide an overview of the Motorola 
six sigma approach to tolerancing. We bring out the 
notion of process capabilities and the meaning of six 
sigma performance. Section 3 presents an example 
of an aggregate-level supply chain in a plastics indus- 
try and we discuss analysis of lead time performance 
of this supply chain using six sigma terminology. In 
Section 4, we report on two different types of design 
studies on this supply chain. These are related to de- 
termining a pool of values for nominals and finding a 
variance pool. 

2 Six Sigma Approach to Toler- 
ancing: An Overview 

Six sigma quality is the benchmark of excellence for 
product and process quality, popularized by Motorola 
[9, lo]. It provides a quantitative, statistical notion 
of quality useful in understanding, measuring, and re- 
ducing variation. A product is said to be of six sigma 
quality if there are no more than 3.4 non-conformities 
per million opportunities (3.4 ppm) at the part and 
process-step level, in the presence of typical sources 
of variation. The six sigma quality concept recog- 
nizes that variations are inevitable due to insufficient 
design margin, inadequate process control, imperfect 
parts, imperfect materials, fluctuations in environ- 
mental conditions, operator variations, etc. 
Tolerance analysis and synthesis in the six sigma pro- 
gram are based on six sigma characterization of prod- 
ucts and processes. The process capability indices C, 
and cpk are used as the vehicles to characterize the 
product-process quality. 

Process Capability Indices 

Let U and L be the upper and lower specification lim- 
its, respectively, of a part or subassembly dimension 
in the case of mechanical assemblies. In the case of 
a supply chain process, they represent the maximum 
and minimum lead times tolerated for an individual 
business process or the overall supply chain process. 
In the sequel of this section, we will explain the con- 
cepts with relevance to mechanical assembly design. 

Interpretation to the supply chain context is straight- 
forward. Assume that a is the standard deviation of 
the process that produces the dimension. Then, the 
index C, is defined as: 

u-L  
6a 

c, = - 

The numerator above represents the specification 
width whereas the denominator captures the total 
width of the 3a limits of the process distribution. For 
the rest of the discussion, assume that the process is 
normally distributed. The denominator then repre- 
sents 99.73% limits for the process distribution. If 
C, = 1, the implication is that the specification width 
is the same as the distribution width and when the 
process mean is centered at (v) without any shift, 
the probability that the actual dimension is within 
the specification limits is 0.9973 (2700 ppm defect 
rate). Similarly, if C, = 2, we have that the speci- 
fication width is twice that of the distribution. In this 
case, when the process mean is centered at (v) 
without any shift, the probability of conformance is 
0.999999998 (.002 ppm defect rate). Since (v) is 
the tolerance T of the part dimension (or in general of 
any attribute of a product), we have that: 

U - L  T 
U = - -  -- 

6C, 3C, 

The index C, does not capture how far away the pro- 
cess mean p is from the ideal value r (target value). 
The Motorola six sigma program assumes that the 
ideal value of the process mean is the midpoint of the 
specification interval, i.e. (v) . The index Cpk cap- 
tures the effect of the shift in the process mean in the 
following way: 

The factor k above can be interpreted as the fraction 
of tolerance consumed by the mean shift. The above 
definition of c p k  assumes that r = v and for a 
general definition, refer [9]. 
The Motorola convention is to use a one sided mean 
shift of 1 . 5 ~ .  The one sided mean shift is perhaps mo- 
tivated by common physical phenomena such as tool 
wear. If C, = 2 and c p k  = 1.5 (mean shift consumes 
25 percent of the tolerance range), the probability of 
conformance can be shown to be 0.9999966, which is 
equivalent to 3.4 ppm. Thus C, 2 2 and c p k  2 1.5 
imply six sigma quality, assuming a 1.50 one sided 
mean shift. c, 2 1 and Cpk 2 0.5 refer to three sigma 
quality, assuming a 1 . 5 ~  one sided mean shift. 
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The Motorola program assumes a relationship of the 
form 

Y = a0 + alX1 + a2X2 + . . . + anXn 

If there is no mean shift, then the following formulae 
(called the Root Mean Square or RSS formulae) are 
applicable. 

Recall that gi, for i = 1 , .  . . , n, can also be written as: 

where Ti is the tolerance range of the ith part and Cpj 
is the C p  value for the ith part (i = 1,. . . ,n). In the 
presence of a mean shift, the six sigma program sug- 
gests the use of the Dynamic RSS method, where the 
C p k  values, c p k l , .  . . , Cpkn, of the individual processes 
corresponding to dimensions X I , .  . . , X,; and the tol- 
erances, T I , . .  .,Tn, of the individual parts, are used 
in the following way to compute the variance of Y :  

Note that the standard deviations c ~ j  are inflated by 
an amount equal to $, for i = l , . .  . ,n. Thus the 
dynamic RSS method emulates random behavior in 
the process mean by inflating the process standard 
deviation. 
Tolerance synthesis employs the approach of using tol- 
erance analysis in an iterative way. Each iteration will 
evaluate the resulting probability of non-conformance 
and the C, and Cpk values. The synthesis procedure 
seeks to obtain a probability of non-conformance of 
at most 3.4 ppm, which is guaranteed by C p  2 2 and 
Cpk 2 1.5. The synthesis can assume several forms: 
finding optimal values for nominal dimensions; finding 
optimal values for tolerances; and establishing a vari- 
ance pool that can be allocated to individual processes 
so as to obtain the desired assembly yield. 

3 AnExample 

We now consider a supply chain for a plastics indus- 
try (a certain anonymous firm in the western state of 
Maharashtra, India) and provide the basis and nota- 
tion for applying statistical tolerancing concepts. The 
supply chain process in question has six business pro- 
cesses: 

1. 

2. 

3. 

4. 

5 .  

6. 

For 

Procurement: The chemicals and other raw ma- 
terials that are used in the manufacturing of the 
plastic are procured in this stage. Typically, sev- 
eral suppliers are involved. At  an aggregate level, 
we will assume one mega supplier. Let X I  denote 
the procurement lead time. 

Sheet Fabrication: Here, from the chemicals 
and other raw materials, thin sheets of plastic are 
fabricated at a fabrication plant. These sheets 
are then transported to another plant for man- 
ufacturing and assembly. Let X2 be the sheet 
fabrication lead time. 

Transportation: The thin plastic sheets fabri- 
cated in the earlier stage are transported in trucks 
to a manufacturing and assembly facility. Assume 
that the logistics lead time here is X,. 

Manufacturing: In the manufacturing and as- 
sembly plant, numerous types of components are 
manufactured from the plastic-sheets. This is a 
multistage process and the processing depends on 
component types. We will aggregate this business 
process into a single stage and call the manufac- 
turing lead time as X, .  

Assembly: In the same manufacturing and as- 
sembly facility, the components produced are as- 
sembled into different types of customer-desired 
products. Customization also happens here. We 
assume the assembly lead time to be X5. 

Delivery: Warehouses are located in the man- 
ufacturing and assembly plant itself. The final 
products are stacked here and supplied directly 
to customers against their orders. Third party 
logistics providers are used here. Let X6 be the 
delivery time to a certain pool of customers who 
are co-located. 

the above system, we postulate that JIT philos- 
ophy is used and there is negligible waiting between 
one business process and the next one. The supply 
chain process lead time, Y, can then be described as: 

6 

y = c x i  
i= 1 

Note that Xis (i = 1, , . . ,6)  are mutually indepen- 
dent continuous random variables and hence Y is also 
a continuous random variable. Furthermore, if Xis  
are normally distributed, then Y is also normally dis- 
tributed. 
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Table 1: Notation for different measures (z = 1 , .  . . , 6 )  Table 2: Nominals, tolerances, and standard devia- 
tions (all values in Days) 

Business process i 
Lead time of BPj 
Target value or nominal of X i  
Tolerance of Xi 
mean lead time produced by BPj 
standard deviation of lead time X i  
Upper Specification limit of Xi 
Lower Specification limit of Xi 
Delivery window for BPj 
C p  index for the process BPj 
Cpk index for the process Bpi 
Supply chain process lead time = 
Nominal or target d u e  of Y 
Tolerance of Y 
mean of Y 
standard deviation of Y 
Upper Specification limit of Y 
Lower Specification limit of Y 

Xi 

(Ly  , Uy ) 
CPY 
CpkY 

Delivery window for the supply chain process 
C p  index for the supply chain process 
Cpk index for the supply chain process 

Table 1 shows the notation we will use in the rest of the 
paper. Table 2 shows the typical nominals, tolerances, 
and standard deviations for the Xis.  The standard de- 
viations have been computed from the tolerances by 
assuming C, = 1 (three sigma performance) for each 
individual process. The standard deviation values will 
be halved when we assume C, = 2 .  Using the RSS for- 
mula, the standard deviation uy of the supply chain 
process can be computed easily as the square root of 
the sum of squares. In this case, ay = 2.135 days. Ta- 
ble 3 shows the specification range, tolerance, and the 
tolerance interval for Y for different specified values of 
C, and Cpk. They are computed using the following 
formulae: 

U y  - L y  = 6 ~ y C p y  

UY - LY 
2 Ty  = 

Tolerance Interval = (7y - T y , w  + Ty)  

We have chosen ry = 83 days, which is simply the sum 
of the nominals of the cycle times of the six business 
processes. 
Fkom Table 3, it is clear that for the given supply chain 
process to be six sigma, the specification range should 

Lead Time ~i Ti ~i 

X I  Procurement 7 1 0.334 
X Z  Sheet fabrication 30 3 1.0 
X s  Transportation 3 1 0.334 
X4 Manufacturing 30 5 1.667 
X5 Assembly 10 2 0.667 
X G  Delivery 3 1 0.334 

Table 3: Tolerances and specification ranges for Y (all 
values in Days) 

(CpY,CpkY) UY -LY TY Window 

(0.5, 0) 6.405 3.2025 (79.8, 86.2) 
(1.0, 0.5) 12.81 6.405 (76.6, 89.4) 
(1.5, .09375) 19.215 9.61 (73.4, 92.6) 
(2.0, 1.5) 25.62 12.81 (70.2, 95.8) 

be very wide, namely (70.2, 95.8). That is if the cus- 
tomers are prepared to tolerate such a wide window 
for delivery, then the process becomes six sigma even 
though the individual processes have been assumed to 
be three sigma processes. If the customers’ tolerance 
interval is (76.6, 89.4), then the supply chain process 
becomes a three sigma process. If for the same tol- 
erance range, the supply chain process is to be six 
sigma, then it would imply that the standard devia- 
tions of individual processes should be cut to half their 
original values, which means the individual processes 
themselves should be six sigma. 

4 Design Optimization for Six 
Sigma Performance 

Here, we describe two different types of design exper- 
iments. In the first, we determine the range of nom- 
inal values for the lead times of designated internal 
business processes, so as to achieve six sigma delivery 
performance. In the second, we compute a variance 
pool for lead times of designated business processes 
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(hence their process capabilities) to achieve six sigma 
delivery performance. Table 4: Finding a nominal pool 

4.1 Finding a Nominal Pool Given: 

Table 4 shows the structure of this design problem. 
In this problem, the tolerance T y  of the supply chain 
process is given. The tolerances for the lead times 
of individual processes are given as also the nominals 

1. m, the target value for Y 
2. TY , the tolerance range for Y 
3. Ti ( i = l ,  ..., 6) 
4. A subset B of A = (71, . . ., 7.) 

of lead times of some of the business processes (say, 
T Z , T ~ , T ~ ) .  The problem is to compute a range of values 
for the other nominds (in this case, r1,73,76), so as to 
achieve six sigma performance. As an example, let us , 

say we know the nominals of the fabrication lead time, 
manufacturing lead time, and assembly lead time; and 
we are to obtain a range of values of nominals for the 
procurement lead time, transportation lead time, and 
the logistics lead time. The first of these has implica- 
tions on choice of suppliers, while the second and third 
influence the choice of logistics providers and location 
of suppliers. We can solve the problem through the 
following algorithm: 

1. Assume appropriate process capabilities for indi- 
vidual business processes. Since we know the tol- 
erances Ti, we can compute the standard devia- 
tions ui using the RSS method or the dynamic 
RSS method. 

(Ti’s. 

2. Compute uy as the root of the sum of squares of 

3. Knowing Ty and ay, compute the range of values 
of nominals in the set A - B over which six sigma 
delivery performance is guaranteed. 

4. The pool of nominal values obtained in the previ- 
ous step can be distributed to individual business 
processes based on engineering judgment and any 
other available information. 

For example, let ry = 83 days; T y  = 6 days; TI = 

Let the nominal value of fabrication lead time (5) be 
known to be 30 days; that of manufacturing lead time 
(74) to be 30 days; and that of assembly lead time (75) 
to be 10 days. It is required to find a range of values 
for the pool of other nominals 71 + 5 + 76 such that 
the probability of delivery is at least 0.9999966 within 
the delivery window. To solve this problem, we first 
assume that all the individual processes are six sigma 
and compute individual standard deviations. To be 
conservative and realistic, we assume shifts and drifts 
in the mean (1.5ci), thus we use Cpki = 1.5 to compute 

1; = 3; T3 = 1; T4 = 3; T5 = 2; T6 = 1. 

To Compute: 
Range of values for all nominals in the set A - B 
over which the supply chain process exhibits six 
sigma delivery performance 

the standard deviations. Then we compute uy. It 
is found that as long as TI + 5 + 76 is in the range 
(12.5, 13.5), we obtain six sigma delivery performance. 
That is, for this range of values, the probability of Y 
to be in the range (77, 89) is at least .9999966. The 
maximum probability is attained at 13.0 days. We 
can choose any value that is convenient in this range. 
For example, the value 13.5 days provides us the most 
flexibility. This can be allocated to 71, 5 ,  and- 76 in 
any possible way, based on best engineering judgment 
and any other technical considerations. 

4.2 Finding a Variance Pool 

Table 5 shows an outline of this problem. In this prob- 
lem, the nominal value of the overall process, 7 y ,  as 
also the nominal values for the individual business 
processes are given. The tolerance T y  of the over- 
all process and also that of some individual business 
processes are given. The problem is to find a variance 
pool that can be distributed across the individual busi- 
ness processes. How we distribute the variance pool 
can depend on our knowledge of the processes and 
best engineering judgment. This problem has impli- 
cations on choice of suppliers, logistics providers, ma- 
chining equipment, etc. For example, let the target 
values be: ry = 83 days; r1 = 7; 7 2  = 30; 73 = 

Tl = 3; T4 = 3; T5 = 2. If it is known that the above 
three processes (fabrication, manufacturing, and as- 
sembly) are six sigma, then the standard deviations 
can be computed by using the value of Cpk which in 
this case is 1.5. This will take into account shifts and 
drifts in the mean value of the processes (Dynamic 

3; 74 = 30; 75 = 10; 76 = 3. Also, assume that 
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Table 5: Finding a variance pool 

Given: 

1. w , the nominal value of Y 
2. TY , the tolerance of Y 
3. A subset B of A = { T I , .  . . , Ts} 
4. T, (i  = 1, .  . . ,6), the nominal values of Xi 

To Compute: 
A variance pool for standard deviations 
of business processes in the set A - B. 

RSS). This leads to: 

Ti = -* 4.5’ i = 2,475 

Now assume Ty to be 6 days. If we require that 
the the delivery performance be six sigma, we need 
Cpy = 2.0 and Cpky = 1.5. Using this, we can com- 
pute the standard deviation uy for the supply chain 
process lead time. We will then get the variance pool, 
aI2 + us2 + aC2, for the three processes, viz. pro- 
curement, transportation, and delivery as 0.32. This 
variance pool can then be distributed across the in- 
dividual processes in any way guided by engineering 
judgment. For different values of TY, we will get dif- 
ferent variance pools. For example, if Ty = 7 days, 
then the variance pool is 1.01; if Ty = 8 days, then 
the variance pool is 2.11; and so on. 

5 Conclusions 

Synchronization among internal business processes of 
a supply chain is a key to achieving a high level of 
delivery performance in supply chains. In this paper 
we have shown how the Motorola six sigma approach 
can be used in designing synchronized supply chains. 
We believe the paper is an important contribution to- 
wards applying statistical tolerancing techniques and 
best practices to design supply chain networks with 
high levels of delivery performance. There is available 
a rich variety of statistical tolerancing methodologies 
and best practices [8] and a natural direction for fur- 
ther work is to look into the application of those in 
designing synchronized supply chains. 
In this article, we have only described (in Section 4) 
two possible design experiments. There are a rich va- 
riety of such design experiments we can conduct using 

the six sigma approach and other statistical toleranc- 
ing approaches and best practices. Also, we have im- 
plicitly assumed all distributions to be normal. f i r -  
ther the case study has been addressed at a coarse 
level of detail. There is available a rich variety of more 
general statistical tolerancing methodologies and best 
practices [8] and a natural direction for further work 
is to look into the application of those in designing 
synchronized supply chains. 
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