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Abstract

Deep learning has been transformative in many fields, motivating the emergence of various optical computing

architectures. Diffractive optical network is a recently introduced optical computing framework that merges wave

optics with deep-learning methods to design optical neural networks. Diffraction-based all-optical object recognition

systems, designed through this framework and fabricated by 3D printing, have been reported to recognize hand-

written digits and fashion products, demonstrating all-optical inference and generalization to sub-classes of data.

These previous diffractive approaches employed monochromatic coherent light as the illumination source. Here, we

report a broadband diffractive optical neural network design that simultaneously processes a continuum of

wavelengths generated by a temporally incoherent broadband source to all-optically perform a specific task learned

using deep learning. We experimentally validated the success of this broadband diffractive neural network architecture

by designing, fabricating and testing seven different multi-layer, diffractive optical systems that transform the optical

wavefront generated by a broadband THz pulse to realize (1) a series of tuneable, single-passband and dual-passband

spectral filters and (2) spatially controlled wavelength de-multiplexing. Merging the native or engineered dispersion of

various material systems with a deep-learning-based design strategy, broadband diffractive neural networks help us

engineer the light–matter interaction in 3D, diverging from intuitive and analytical design methods to create task-

specific optical components that can all-optically perform deterministic tasks or statistical inference for optical

machine learning.

Introduction

Deep learning has been redefining the state-of-the-art

results in various fields, such as image recognition1,2, nat-

ural language processing3 and semantic segmentation4,5.

The photonics community has also benefited from deep-

learning methods in various applications, such as micro-

scopic imaging6–10 and holography11–13, among many

others14–17. Aside from optical imaging, deep learning and

related optimization tools have recently been utilized to

solve inverse problems in optics related to, e.g.,

nanophotonic designs and nanoplasmonics18–22. These

successful demonstrations and many others have also

inspired a resurgence on the design of optical neural net-

works and other optical computing techniques motivated

by their advantages in terms of parallelization, scalability,

power efficiency, and computation speed23–29. A recent

addition to this family of optical computing methods is

Diffractive Deep Neural Networks (D2NNs)27,30,31, which

are based on light–matter interaction engineered by suc-

cessive diffractive layers designed in a computer by deep-

learning methods such as error backpropagation and sto-

chastic gradient descent. Once the training phase is fina-

lized, a diffractive optical network that is composed of

transmissive and/or reflective layers is physically fabricated

using, e.g., 3D printing or lithography. Each diffractive layer

consists of elements (termed neurons) that modulate the
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phase and/or amplitude of the incident beam at their cor-

responding location in space, connecting one diffractive

layer to successive ones through spherical waves based on

the Huygens–Fresnel principle27. Using spatially and tem-

porally coherent illumination, these neurons at different

layers collectively compute the spatial light distribution at

the desired output plane based on a given task that is

learned. Diffractive optical neural networks designed using

this framework and fabricated by 3D printing were

experimentally demonstrated to achieve all-optical infer-

ence and data generalization for object classification27, a

fundamental application in machine learning. Overall,

multi-layer diffractive neural networks have been shown to

achieve improved blind testing accuracy, diffraction effi-

ciency and signal contrast with additional diffractive layers,

exhibiting a depth advantage even when using linear optical

materials27,30,31. In all these previous studies on diffractive

optical networks, the input light was both spatially and

temporally coherent, i.e., utilized a monochromatic plane

wave at the input.

In general, diffractive optical networks with multiple

layers enable generalization and perform all-optical blind

inference on new input data (never seen by the network

before), beyond the deterministic capabilities of the pre-

vious diffractive surfaces32–42 that were designed using

different optimization methods to provide wavefront

transformations without any data generalization cap-

ability. These previous demonstrations cover a variety of

applications over different regions of the electromagnetic

spectrum, providing unique capabilities compared to

conventional optical components that are designed by

analytical methods. While these earlier studies revealed

the potential of single-layer designs using diffractive sur-

faces under temporally coherent radiation33,34, the

extension of these methods to broadband designs oper-

ating with a continuum of wavelengths has been a chal-

lenging task. Operating at a few discrete wavelengths,

different design strategies have been reported using a

single-layer phase element based on, e.g., composite

materials35 and thick layouts covering multiple 2π mod-

ulation cycles36–40. In a recent work, a low numerical

aperture (NA ~ 0.01) broadband diffractive cylindrical

lens design was also demonstrated43. In addition to these

diffractive surfaces, metasurfaces also present engineered

optical responses, devised through densely packed sub-

wavelength resonator arrays that control their dispersion

behaviour44–48. Recent advances in metasurfaces have

enabled several broadband, achromatic lens designs for,

e.g., imaging applications49–51. On the other hand, the

design space of broadband optical components that pro-

cess a continuum of wavelengths relying on these elegant

techniques has been restrained to single-layer archi-

tectures, mostly with an intuitive analytical formulation of

the desired surface function52.

Here, we demonstrate a broadband diffractive optical

network that unifies deep-learning methods with the

angular spectrum formulation of broadband light propa-

gation and the material dispersion properties to design task-

specific optical systems through 3D engineering of the

light–matter interaction. Designed in a computer, a

broadband diffractive optical network, after its fabrication,

can process a continuum of input wavelengths all in parallel

and perform a learned task at its output plane, resulting

from the diffraction of broadband light through multiple

layers. The success of broadband diffractive optical net-

works is demonstrated experimentally by designing, fabri-

cating and testing different types of optical components

using a broadband THz pulse as the input source (see Fig.

1). First, a series of single-passband and dual-passband

spectral filters are demonstrated, where each design uses

three diffractive layers fabricated by 3D printing, experi-

mentally tested using the set-up shown in Fig. 1. A classical

tradeoff between the Q-factor and the power efficiency is

observed, and we demonstrate that our diffractive neural

network framework can control and balance these design

parameters on demand, i.e., based on the selection of the

diffractive network training loss function. Combining the

spectral filtering operation with spatial multiplexing, we

also demonstrate spatially controlled wavelength de-

multiplexing using three diffractive layers that are trained

to de-multiplex a broadband input source onto four output

apertures located at the output plane of the diffractive

network, where each aperture has a unique target passband.

Our experimental results obtained with these seven differ-

ent diffractive optical networks that were 3D printed pro-

vided very good fits to our trained diffractive models.

We believe that broadband diffractive optical neural

networks provide a powerful framework for merging the

dispersion properties of various material systems with

deep-learning methods to engineer light–matter interac-

tions in 3D and help us create task-specific optical com-

ponents that can perform deterministic tasks as well as

statistical inference and data generalization. In the future,

we also envision the presented framework to be empow-

ered by various metamaterial designs as part of the layers

of a diffractive optical network and to bring additional

degrees of freedom by engineering and encoding the

dispersion of the fabrication materials to further improve

the performance of broadband diffractive networks.

Results

Design of broadband diffractive optical networks

Designing broadband, task-specific and small-footprint

compact components that can perform arbitrary optical

transformations is highly sought in all parts of the elec-

tromagnetic spectrum for various applications, including

e.g., tele-communications53, biomedical imaging54 and

chemical identification55, among others. We approach
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this general broadband inverse optical design problem

from the perspective of diffractive optical neural network

training and demonstrate its success with various optical

tasks. Unlike the training process of the previously

reported monochromatic diffractive neural net-

works27,30,31, in this work, the optical forward model is

based on the angular spectrum formulation of broadband

light propagation within the diffractive network, precisely

taking into account the dispersion of the fabrication

material to determine the light distribution at the output

plane of the network (see the Methods section). Based on

a network training loss function, a desired optical task can

be learned through error backpropagation within the

diffractive layers of the optical network, converging to an

optimized spectral and/or spatial distribution of light at

the output plane.
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Fig. 1 Schematic of spectral filter design using broadband diffractive neural networks and the experimental set-up. a Diffractive neural-

network-based design of a spectral filter. b Physically fabricated diffractive filter design shown in (a). The diffractive layers are 3D printed over a

surface that is larger than their active (i.e., beam-modulating) area to avoid bending of the layers. These extra regions do not modulate the light and

are covered by aluminium, preventing stray light into the system. The active area of the first diffractive layer is 1 × 1 cm, while the other layers have

active areas of 5 × 5 cm. c Physical layout of the spectral filters with three diffractive layers and an output aperture (2 × 2 mm). d Schematic of the

optical set-up. Red lines indicate the optical path of the femtosecond pulses generated by a Ti:sapphire laser at 780 nm wavelength, which was used

as the pump for the THz emitter and detector. Blue lines depict the optical path of the THz pulse (peak frequency ~ 200 GHz, observable bandwidth

~ 5 THz) that is modulated and spectrally filtered by the designed diffractive neural networks. e Photograph of the experimental set-up.
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In its general form, our broadband diffractive network

design assumes an input spectral frequency band between

fmin and fmax. Uniformly covering this range, M discrete

frequencies are selected for use in the training phase. In

each update step of the training, an input beam carrying a

random subset of B frequencies out of these M discrete

frequencies is propagated through the diffractive layers,

and a loss function is calculated at the output plane, tai-

lored according to the desired task; without loss of gen-

erality, B/M has been selected in our designs to be less

than 0.5% (refer to the Methods section). At the final step

of each iteration, the resultant error is backpropagated to

update the physical parameters of the diffractive layers

controlling the optical modulation within the optical

network. The training cycle continues until either a pre-

determined design criterion at the network output plane

is satisfied or the maximum number of epochs (where

each epoch involves M/B successive iterations, going

through all the frequencies between fmin and fmax) is

reached. In our broadband diffractive network designs,

the physical parameter to be optimized was selected as the

thickness of each neuron within the diffractive layers,

enabling the control of the phase modulation profile of

each diffractive layer in the network. In addition, the

material dispersion, including the real and imaginary parts

of the refractive index of the network material as a

function of the wavelength, was also taken into account to

correctly represent the forward model of the broadband

light propagation within the optical neural network. As a

result of this, for each wavelength within the input light

spectrum, we have a unique complex (i.e., phase and

amplitude) modulation, corresponding to the transmis-

sion coefficient of each neuron, determined by its physical

thickness, which is a trainable parameter for all the layers

of the diffractive optical network.

Upon completion of this digital training phase in a

computer, which typically takes ~5 h (see the Methods

section for details), the designed diffractive layers were

fabricated using a 3D printer, and the resulting optical

networks were experimentally tested using the THz time-

domain spectroscopy (TDS) system illustrated in Fig. 1,

which has a noise-equivalent power bandwidth of

0.1–5 THz56.

Single-passband spectral filter design and testing

Our diffractive single-passband spectral filter designs

are composed of three diffractive layers, with a layer-to-

layer separation of 3 cm and an output aperture posi-

tioned 5 cm away from the last diffractive layer, serving as

a spatial filter, as shown in Fig. 1. For our spectral filter

designs, the parameters M, fmin and fmax were taken as

7500, 0.25 THz and 1 THz, respectively. Using this

broadband diffractive network framework employing

three successive layers, we designed four different spectral

bandpass filters with centre frequencies of 300 GHz,

350 GHz, 400 GHz and 420 GHz, as shown in Fig. 2a–d,

respectively. For each design, the target spectral profile

was set to have a flat-top bandpass over a narrow band

(±2.5 GHz) around the corresponding centre frequency.

During the training of these designs, we used a loss

function that solely focused on increasing the power

efficiency of the target band, without a specific penalty on

the Q-factor of the filter (see the Methods section). As a

result of this design choice during the training phase, our

numerical models converged to bandpass filters centred

around each target frequency, as shown in Fig. 2a–d.

These trained diffractive models reveal the peak fre-

quencies (and the Q-factors) of the corresponding designs

to be 300.1 GHz (6.21), 350.4 GHz (5.34), 399.7 GHz

(4.98) and 420.0 GHz (4.56), respectively. After the fabri-

cation of each of these trained models using a 3D printer,

we also experimentally tested these four different dif-

fractive networks (Fig. 1) to find a very good match

between our numerical testing results and the physical

diffractive network results. Based on the blue-dashed lines

depicted in Fig. 2a–d, the experimental counterparts of

the peak frequencies (and the Q-factors) of the corre-

sponding designs were calculated as 300.4 GHz (4.88),

351.8 GHz (7.61), 393.8 GHz (4.77) and 418.6 GHz (4.22).

Furthermore, the power efficiencies of these four dif-

ferent bandpass filter designs, calculated at the corre-

sponding peak wavelength, were determined to be 23.13,

20.93, 21.76 and 18.53%, respectively. To shed more light

on these efficiency values of our diffractive THz systems

and estimate the specific contribution due to the material

absorption, we analysed the expected power efficiency at

350 GHz by modelling each diffractive layer as a uniform

slab (see the Methods section for details). Based on the

extinction coefficient of the 3D-printing polymer at

350 GHz (Supplementary Figure S1), three successive flat

layers, each with a 1 mm thickness, provide 27.52% power

efficiency when the material absorption is assumed to be

the only source of loss. This comparison reveals that the

main source of power loss in our spectral filter models is

in fact the material absorption, which can be cir-

cumvented by selecting different types of fabrication

materials with lower absorption compared to our 3D

printer material (VeroBlackPlus RGD875).

To further exemplify the different degrees of freedom in

our diffractive network-based design framework, Fig. 2e

illustrates another bandpass filter design centred at

350 GHz, same as in Fig. 2b; however, different from Fig.

2b, this particular case represents a design criterion where

the desired spectral filter profile was set as a Gaussian

with a Q-factor of 10. Furthermore, the training loss

function was designed to favour a high Q-factor rather

than better power efficiency by penalizing Q-factor

deviations from the target value more severely compared
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to poor power efficiency (see the Methods section for

details). To provide a fair comparison between Figs. 2b

and 2e, all the other design parameters, e.g., the number

of diffractive layers, the size of the output aperture and the

relative distances, are kept identical. Based on this new

design (Fig. 2e), the numerical (experimental) values of
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Fig. 2 Single-passband spectral filter designs using broadband diffractive neural networks and their experimental validation. a–d

Optimized/learned thickness profiles of three diffractive layers along with the corresponding simulated (red) and experimentally measured (dashed

blue) spectral responses. (a) 300 GHz, (b) 350 GHz, (c) 400 GHz and (d) 420 GHz filters. These four spectral filters were designed to favour power

efficiency over the Q-factor by setting β= 0 in Eq. (8). e Same as in (b), except that the targeted spectral profile is a Gaussian with a Q-factor of 10,

which was enforced during the training phase of the network by setting α
β
¼ 0:1 in Eq. (8). All five diffractive neural networks were 3D-printed after

their design and were experimentally tested using the set-up in Fig. 1. The small residual peaks at ~0.55 THz observed in our experimental results are

due to the water absorption lines in air, which were not taken into account in our numerical forward model. The photographs of the 3D-printed

layers constituting these diffractive optical neural networks are shown in Supplementary Figure S2.
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the peak frequency and the Q-factor of the final model

can be calculated as 348.2 GHz (352.9 GHz) and 10.68

(12.7), once again providing a very good match between

our numerical testing and experimental results, following

the 3D printing of the designed network model. Com-

pared to the results reported in Fig. 2b, this improvement

in the Q-factor also comes at the expense of a power

efficiency drop to 12.76%, which is expected by design, i.e.,

the choice of the training loss function.

Another important difference between the designs

depicted in Figs. 2b, e lies in the structures of their dif-

fractive layers. A comparison of the 3rd layers shown in

Figs. 2b, e reveals that while the former design demon-

strates a pattern at its 3rd layer that is intuitively similar to

a diffractive lens, the thickness profile of the latter design

(Fig. 2e) does not evoke any physically intuitive explana-

tion of its immediate function within the diffractive net-

work; the same conclusion is also evident if one examines

the 1st diffractive layers reported in Fig. 2e as well as in

Figs. 3 and 4. Convergence to physically non-intuitive

designs, such as in these figures, in the absence of a tai-

lored initial condition or prior design shows the power of

our diffractive computational framework in the context of

broadband, task-specific optical system design.

Dual-passband spectral filter design and testing

Having presented the design and experimental valida-

tion of five different bandpass filters using broadband

diffractive neural networks, we next used the same design

framework for a more challenging task: a dual-passband

spectral filter that directs two separate frequency bands

onto the same output aperture while rejecting the

remaining spectral content of the broadband input light.

The physical layout of the diffractive network design is the

same as before, being composed of three diffractive layers

and an output aperture plane. The goal of this diffractive

optical network is to produce a power spectrum at the

same aperture that is the superposition of two flat-top

passband filters around the centre frequencies of 250 and

450 GHz (see Fig. 3). Following the deep-learning-based

design and 3D fabrication of the resulting diffractive

network model, our experimental measurement results

(dashed blue line in Fig. 3a) provide very good agreement

with the numerical results (red line in Fig. 3a); the

numerical diffractive model has peak frequencies at 249.4

and 446.4 GHz, which closely agree with our experimen-

tally observed peak frequencies, i.e., 253.6 and 443.8 GHz,

for the two target bands.

Despite the fact that we did not impose any restrictions

or loss terms related to the Q-factor during our training

phase, the power efficiencies of the two peak frequencies

were calculated as 11.91 and 10.51%. These numbers

indicate a power efficiency drop compared to the single-

passband diffractive designs reported earlier (Fig. 2);

however, we should note that the total power transmitted

from the input plane to the output aperture (which has

the same size as before) is maintained at approximately

20% in both the single-passband and the double-passband

filter designs.

A projection of the intensity distributions produced by

our 3-layer design on the xz plane (at y= 0) is also illu-

strated in Fig. 3b, which exemplifies the operation prin-

ciples of our diffractive network regarding the rejection of

the spectral components residing between the two tar-

geted passbands. For example, one of the undesired fre-

quency components at 350 GHz is focused onto a location

between the 3rd layer and the output aperture, with a

higher numerical aperture (NA) compared to the waves in

the target bands. As a result, this frequency quickly

diverges as it propagates until reaching the output plane;

hence, its contribution to the transmitted power beyond

the aperture is significantly decreased, as desired. In

general, the diffractive layers of a broadband neural net-

work define a tuneable 3D space that can be optimized to

approximate different sets of wavelength-dependent

grating-like structures that couple the input broadband

light into different modes of radiation that are engineered

depending on the target function in space and/or spec-

trum (see, e.g., Supplementary Figure S3).

From the spectrum reported in Fig. 3a, it can also be

observed that there is a difference between theQ-factors of

the two passbands. The main factor causing this variation

in the Q-factor is the increasing material loss at higher

frequencies (Supplementary Figure S1), which is a limita-

tion due to our 3D printing material. If one selects the

power efficiency as the main design priority in a broad-

band diffractive network, the optimization of a larger Q-

factor optical filter function is relatively more cumbersome

for higher frequencies due to the higher material absorp-

tion that we experience in the physically fabricated, 3D-

printed system. As a general rule, maintaining both the

power efficiencies and the Q-factors over K bands in a

multi-band filter design requires optimizing the relative

contributions of the training loss function sub-terms

associated with each design criterion (refer to the Meth-

ods section for details); this balance among the sub-

constituents of the loss function should be carefully

engineered during the training phase of a broadband dif-

fractive network depending on the specific task of interest.

Spatially controlled wavelength de-multiplexing

Next, we focused on the simultaneous control of the

spatial and spectral content of the diffracted light at the

output plane of a broadband diffractive optical network

and demonstrated its utility for spatially controlled

wavelength de-multiplexing by training three diffractive

layers (Fig. 4b) that channel the broadband input light

onto four separate output apertures on the same plane,
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corresponding to four passbands centred at 300, 350,

400 and 450 GHz (Fig. 4a). The numerically designed

spectral profiles based on our diffractive optical network

model (red) and its experimental validation (dashed

blue), following the 3D printing of the trained model,

are reported in Fig. 4c for each sub-band, providing

once again a very good match between our numerical

model and the experimental results. Based on Fig. 4c,

the numerically estimated and experimentally measured

peak frequency locations are (297.5, 348.0, 398.5, 450.0)

and (303.5 GHz, 350.1, 405.1, 454.8 GHz), respectively.

The corresponding Q-factors calculated based on our

simulations (11.90, 10.88, 9.84, and 8.04) are also in

accordance with their experimental counterparts (11.0,

12.7, 9.19, and 8.68), despite various sources of experi-

mental errors, as detailed in our Discussion section.

Similar to our earlier observations in the dual-passband

filter results, higher bands exhibit a relatively lower Q-

factor that is related to the increased material losses at

higher frequencies (Supplementary Figure S1). Since
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this task represents a more challenging optimization

problem involving four different detector locations

corresponding to four different passbands, the power

efficiency values also exhibit a relative compromise

compared to earlier designs, yielding 6.99, 7.43, 5.14 and

5.30% for the corresponding peak wavelengths of each

passband. To further highlight the challenging nature of

spatially controlled wavelength de-multiplexing, Sup-

plementary Figure S4 reports that the same task cannot

be successfully achieved using only two learnable dif-

fractive layers, which demonstrates the advantage of

additional layers in a diffractive optical network to

perform more sophisticated tasks through deep-

learning-based optimization.

In addition to the material absorption losses, there are

two other factors that need to be considered for wave-

length multiplexing- or de-multiplexing-related applica-

tions using diffractive neural networks. First, the lateral

resolution of the fabrication method that is selected to

manufacture a broadband diffractive network might be a

limiting factor at higher frequencies; for example, the

lateral resolution of our 3D printer dictates a feature size

of ~λ/2 at 300 GHz that restricts the diffraction cone of

the propagating waves at higher frequencies. Second, the

limited axial resolution of a 3D fabrication method might

impose a limitation on the thickness levels of the neurons

of a diffractive layer design; for example, using our 3D

printer, the associated modulation functions of individual
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Photographs of the layers comprising our 3D-printed broadband diffractive neural network are shown in Supplementary Figure S2.
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neurons are quantized with a step size of 0.0625mm,

which provides 4 bits (within a range of 1 mm) in terms of

the dynamic range, which is sufficient over a wide range of

frequencies. With increasing frequencies, however, the

same axial step size will limit the resolution of the phase

modulation steps available per diffractive layer, partially

hindering the associated performance and the general-

ization capability of the diffractive optical network.

Nevertheless, with dispersion engineering methods (using,

e.g., metamaterials) and/or higher-resolution 3D fabrica-

tion technologies, including, e.g., optical lithography or

two-photon polymerization-based 3D printing, multi-

layer wavelength multiplexing/de-multiplexing systems

operating at various parts of the electromagnetic spec-

trum can be designed and tested using broadband dif-

fractive optical neural networks.

Discussion

There are several factors that might have contributed to

the relatively minor discrepancies observed between our

numerical simulations and the experimental results repor-

ted. First, any mechanical misalignment (lateral and/or

axial) between the diffractive layers due to, e.g., our 3D

printer’s resolution can cause some deviation from the

expected output. In addition, the THz pulse incident on the

input plane is assumed to be spatially uniform, propagating

parallel to the optical axis, which might introduce additional

experimental errors in our results due to the imperfect

beam profile and alignment with respect to the optical axis.

Moreover, the wavelength-dependent properties of our

THz detector, such as the acceptance angle and the cou-

pling efficiency, are not modelled as part of our forward

model, which might also introduce error. Finally, potential

inaccuracies in the characterization of the dispersion of the

3D-printing materials used in our experiments could also

contribute some error in our measurements compared to

our trained model numerical results.

For all the designs presented in this manuscript, the

width of each output aperture is selected as 2 mm, which

is approximately 2.35 times the largest wavelength (cor-

responding to fmin= 0.25 THz) targeted in our design.

The reason behind this specific design choice is to miti-

gate some of the unknown effects of the Si lens attached

in front of our THz detector, since the theoretical wave

optics model of this lens is not available. Consequently,

for some of our single-passband spectral filter designs

(Fig. 2a–d), the last layer before the output aperture

intuitively resembles a diffractive lens. However, unlike a

standard diffractive lens, our diffractive neural network,

which is composed of multiple layers, can provide a tar-

geted Q-factor even for a large range of output apertures,

as illustrated in Supplementary Figure S5.

It is interesting to note that our diffractive single-

passband filter designs reported in Fig. 2 can be tuned by

changing the distance between the diffractive neural

network and the detector/output plane (see Fig. 1c),

establishing a simple passband tunability method for a

given fabricated diffractive network. Figure 5a reports our

simulations and experimental results at five different axial

distances using our 350 GHz diffractive network design,

where ΔZ denotes the axial displacement around the ideal,

designed location of the output plane. As the aperture

gets closer to the final diffractive layer, the passband

experiences a redshift (centre frequency decreases), and

any change in the opposite direction causes a blueshift

(centre frequency increases). However, deviations from

the ideal position of the output aperture also decrease the

resulting Q-factor (see Fig. 5b); this is expected since these

distances with different ΔZ values were not considered as

part of the optical system design during the network

training phase. Interestingly, a given diffractive spectral

filter model can be used as the initial condition of a new

diffractive network design and be further trained with

multiple loss terms around the corresponding frequency

bands at different propagation distances from the last

diffractive layer to yield a better-engineered tuneable

frequency response that is improved from that of the

original diffractive design. To demonstrate the efficacy of

this approach, Figs. 5c, d report the output power spectra

of this new model (centred at 350 GHz) and the associated

Q-factors, respectively. As desired, the resulting Q-factors

are now enhanced and more uniform across the targeted

ΔZ range due to the additional training with a band tun-

ability constraint, which can be regarded as the counter-

part of the transfer learning technique (frequently used in

machine learning) within the context of optical system

design using diffractive neural network models. Supple-

mentary Figure S6 also reports the differences in the

thickness distributions of the diffractive layers of these

two designs, i.e., before and after the transfer learning,

corresponding to Fig. 5a–d respectively.

In conclusion, the presented results of this manuscript

indicate that the D2NN framework can be generalized to

broadband sources and process optical waves over a

continuous, wide range of frequencies. Furthermore, the

computational capacity of diffractive deep neural net-

works performing machine learning tasks, e.g., object

recognition or classification27,30,31, can potentially be

increased significantly through multi-wavelength opera-

tion enabled by the broadband diffractive network fra-

mework presented in this manuscript, under the

assumption that the available fabrication technology can

provide adequate resolution, especially for shorter wave-

lengths of the desired band of operation. The design fra-

mework described in this manuscript is not limited to

THz wavelengths and can be applied to other parts of the

electromagnetic spectrum, including the visible band, and

therefore, it represents a vital progress towards expanding
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the application space of diffractive optical neural networks

for scenarios where broadband operation is more attrac-

tive and essential. Finally, we anticipate that the presented

framework can be further strengthened using meta-

surfaces49,50,57–60 that engineer and encode the dispersion

of the fabrication materials in unique ways.

Materials and methods

Terahertz TDS system

A Ti:sapphire laser (Coherent MIRA-HP) is used in

mode-locked operation to generate femtosecond optical

pulses at a wavelength of 780 nm. Each optical pulse is

split into two beams. One part of the beam illuminates the
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THz emitter, a high-power plasmonic photoconductive

nano-antenna array61. The THz pulse generated by the

THz emitter is collimated and guided to a THz detector

through an off-axis parabolic mirror, which is another

plasmonic nano-antenna array that offers high-sensitivity

and broadband operation56. The other part of the optical

beam passes through an optical delay line and illuminates

the THz detector. The generated signal as a function of

the delay line position and incident THz/optical fields is

amplified with a current pre-amplifier (Femto DHPCA-

100) and detected with a lock-in amplifier (Zurich

Instruments MFLI). For each measurement, traces are

collected for 5 s, and 10 pulses are averaged to obtain the

time-domain signal. Overall, the system offers signal-to-

noise ratio levels over 90 dB and observable bandwidths

up to 5 THz. Each time-domain signal is acquired within a

time window of 400 ps.

Each diffractive neural network model, after its 3D

printing, was positioned between the emitter and the

detector, coaxial with the THz beam, as shown in Fig. 1d,

e. With a limited input beam size, the first layer of each

diffractive network was designed with a 1 × 1 cm input

aperture (as shown in e.g., Fig. 1b). After their training, all

the diffractive neural networks were fabricated using a

commercial 3D printer (Objet30 Pro, Stratasys Ltd.). The

apertures at the input and output planes were also 3D-

printed and coated with aluminium (Figs. 1a and 4a).

Without loss of generality, a flat input spectrum was

assumed during the training of our diffractive networks.

Since the power spectrum of the incident THz pulse at the

input plane is not flat, we measured its spectrum with only

the input aperture present in the optical path (i.e., without

any diffractive layers and output apertures). Based on this

reference spectrum measurement of the input pulse, all the

experimentally measured spectra generated by our 3D-

printed network models were normalized; accordingly, Figs.

2–5 reflect the input-normalized power spectrum produced

by the corresponding 3D-printed network model.

Forward propagation model

The broadband diffractive optical neural network fra-

mework performs optical computation through diffractive

layers connected by free space propagation in air. We

model the diffractive layers as thin modulation elements,

where each pixel on the lth layer at a spatial location (xi,

yi, zi) provides a wavelength (λ) dependent modulation, t,

tl xi; yi; zi; λð Þ ¼ al xi; yi; zi; λð Þ exp jϕl xi; yi; zi; λð Þ
� �

ð1Þ

where a and ϕ denote the amplitude and phase,

respectively.

Between the layers, free space light propagation is cal-

culated following the Rayleigh-Sommerfeld equation27,30.

The ith pixel on the lth layer at location (xi, yi, zi) can be

viewed as the source of a secondary wave wl
i x; y; z; λð Þ,

which is given by

wl
i x; y; z; λð Þ ¼ z�zi

r2
1

2πr
þ 1

jλ

� �

exp j2πr
λ

� �

ð2Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� xið Þ2þ y� yið Þ2þ z � zið Þ2
q

and j ¼
ffiffiffiffiffiffiffi

�1
p

.

Treating the incident field as the 0th layer, the modulated

optical field ul by the lth layer at location (xi, yi, zi) is given

by

ul xi; yi; zi; λð Þ ¼ tl xi; yi; zi; λð Þ � P
k2I

ul�1 xk ; yk ; zk ; λð Þ�

wl�1
k xi; yi; zi; λð Þ; l � 1

ð3Þ

where I denotes all pixels on the previous layer.

Digital implementation

Without loss of generality, a flat input spectrum was

used during the training phase, i.e., for each distinct λ

value, a plane wave with unit intensity and a uniform

phase profile was assumed. The assumed frequency range

at the input plane was taken as 0.25–1 THz for all the

designs, and this range was uniformly partitioned into M

= 7500 discrete frequencies. A square input aperture with

a width of 1 cm was chosen to match the beam width of

the incident THz pulse.

Restricted by our fabrication method, a pixel size of

0.5mm was used as the smallest printable feature size. To

accurately model the wave propagation over a wide range of

frequencies based on the Rayleigh–Sommerfeld diffraction

integral, the simulation window was oversampled four

times with respect to the smallest feature size, i.e., the space

was sampled with 0.125mm steps. Accordingly, each fea-

ture of the diffractive layers of a given network design was

represented on a 4 × 4 grid, all 16 elements sharing the

same physical thickness. The printed thickness value, h, is

the superposition of two parts, hm and hbase, as depicted in

Eq. (4b). hm denotes the part where the wave modulation

takes place and is confined between hmin= 0 and hmax=

1mm. The second term, hbase= 0.5mm, is a constant, non-

trainable thickness value that ensures robust 3D printing,

helping with the stiffness of the diffractive layers. To achieve

the constraint applied to hm, we defined the thickness of

each diffractive feature over an associated latent (trainable)

variable, hp, using the following analytical form:

hm ¼ sin hp
� �

þ 1
� �

´

hmax

2
ð4aÞ

h ¼ q hmð Þ þ hbase ð4bÞ
where q(.) denotes a 16-level uniform quantization

(0.0625 mm for each level, with hmax= 1mm).
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The amplitude and phase components of the ith neuron

on layer l, i.e., al(xi, yi, zi, λ) and ϕ
l(xi, yi, zi, λ) in Eq. (1),

can be defined as a function of the thickness of each

individual neuron, hi, and the incident wavelength as

follows:

al xi; yi; zi; λð Þ ¼ exp � 2πκ λð Þhi
λ

� �

ð5Þ

ϕl xi; yi; zi; λð Þ ¼ n λð Þ � nairð Þ 2πhi
λ

ð6Þ

The wavelength-dependent parameters, n(λ) and the

extinction coefficient κ(λ), are defined over the real and

imaginary parts of the refractive index,
~n λð Þ ¼ n λð Þ þ jκ λð Þ, characterized by the dispersion

analysis performed over a broad range of frequencies

(Supplementary Figure S1).

Loss function and training-related details

After light propagation through the layers of a diffractive

network, a 2mm wide output aperture was used at the

output plane, right before the integrated detector lens,

which is made of Si and has the shape of a hemisphere

with a radius of 0.5 cm. In our simulations, we modelled

the detector lens as an achromatic flat Si slab with a

refractive index of 3.4 and a thickness of 0.5 cm. After

propagating through this Si slab, the light intensity resid-

ing within a designated detector active area was integrated

and denoted by Iout. The power efficiency was defined by

η ¼ Iout
Iin

ð7Þ

where Iin denotes the power of the incident light within the

input aperture of the diffractive network. For each diffractive

network model, the reported power efficiency reflects the

result of Eq. (7) for the peak wavelength of a given passband.

The loss term, L, used for single-passband filter designs

was devised to achieve a balance between the power

efficiency and the Q-factor, defined as

L ¼ αLp þ βLQ ð8Þ

where Lp denotes the power loss and LQ denotes the Q-

factor loss term; α and β are the relative weighting factors

for these two loss terms, which were calculated using the

following equations:

Lp ¼
P

ω2B
rect ω�ω0

ΔωP

� �

´ Iin � Ioutð Þ ð9aÞ

LQ ¼ P

ω2B
1� rect ω�ω0

ΔωQ

� �� �

´ Iout ð9bÞ

with B, ω0 and ∆ωp denoting the number of frequencies

used in a training batch, the centre frequency of the target

passband and the associated bandwidth around the centre

frequency, respectively. The rect (ω) function is defined as

rect ωð Þ ¼
1; ωj j � 1

2

0; ωj j> 1
2

(

ð10Þ

Assuming a power spectrum profile with a Gaussian

distribution N(ω0, σ2) with a full-width-half-maximum

(FWHM) bandwidth of ∆ω, the standard deviation and

the associated ∆ωQ were defined as

σ2 ¼ �
ω0
Δωð Þ2

8 log 0:5ð Þ
ð11aÞ

ΔωQ ¼ 6σ ð11bÞ

The Q-factor was defined as

Q ¼ ω0

Δω ð12Þ

For the single-passband diffractive spectral filter designs

reported in Fig. 2a–d and the dual-passband spectral filter

reported in Fig. 3, ∆ωP for each band was taken as 5 GHz.

For these five diffractive designs, β in Eq. (8) was set to 0

to enforce the network model to maximize the power

efficiency without any restriction or penalty on the Q-

factor. For the diffractive spectral filter design illustrated

in Fig. 2e, on the other hand, α
β
ratio (balancing the power

efficiency and Q-factor) was set to 0.1 in Eq. (8).

In the design phase of the spatially controlled wave-

length de-multiplexing system (Fig. 4), following the

strategy used in the filter design depicted in Fig. 2e, the

target spectral profile around each centre frequency was

taken as a Gaussian with a Q-factor of 10. For simplicity,

the α
β
ratio in Eq. (8) was set to 0.1 for each band and

detector location, i.e., α1
β1
¼ α2

β2
¼ α3

β3
¼ α4

β4
¼ 1

10, where the

indices refer to the four different apertures at the detec-

tor/output plane. Although not implemented in this work,

the α
β
ratios among different bands/channels can also be

separately tuned to better compensate for the material

losses as a function of the wavelength. In general, to

design an optical component that maintains the photon

efficiency and Q-factor over K different bands based on

our broadband diffractive optical network framework, a

set of 2K coefficients, i.e., (α1, α2, …, αK, β1, β2, …, βK),

must be tuned according to the material dispersion

properties for all the subcomponents of the loss function.

In our training phase, M= 7500 frequencies were ran-

domly sampled in batches of B= 20, which is mainly

limited by our GPU memory. The trainable variables, hp
in Eq. (4b), were updated following the standard error

backpropagation method using the Adam optimizer62

with a learning rate of 1 × 10−3. The initial conditions of

all the trainable parameters were set to 0. For the
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diffractive network models with more than one detector

location reported in this manuscript, the loss values were

individually calculated for each detector with a random

order, and the design parameters were updated thereafter.

In other words, for a d-detector optical system, loss cal-

culations and parameter updates were performed d-times

with respect to each detector in random order.

Our models were simulated using Python (v3.7.3) and

TensorFlow (v1.13.0, Google Inc.). All the models were

trained using 200 epochs (the network saw all 7500 fre-

quencies at the end of each epoch) with a GeForce GTX

1080 Ti graphical processing unit (GPU, Nvidia Inc.), an

Intel® Core™ i9-7900X central processing unit (CPU, Intel

Inc.) and 64 GB of RAM, running the Windows 10

operating system (Microsoft). Training of a typical dif-

fractive network model takes ~5 h to complete with 200

epochs. The thickness profile of each diffractive layer was

then converted into the.stl file format using MATLAB.
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