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ABSTRACT—This paper describes the Remote Agent flight
experiment for spacecraft commanding and control. In the
Remote Agent approach, the operational rules and
constraints are encoded in the flight software. The software
may be considered to be an autonomous “remote agent” of
the spacecraft operators in the sense that the operators rely
on the agent to achieve particular goals.

The experiment will be executed during the flight of
NASA’s Deep Space One technology validation mission.
During the experiment, the spacecraft will not be given the
usual detailed sequence of commands to execute.  Instead,
the spacecraft will be given a list of goals to achieve during
the experiment.  In flight, the Remote Agent flight software
will generate a plan to accomplish the goals and then
execute the plan in a robust manner while keeping track of
how well the plan is being accomplished.  During plan
execution, the Remote Agent stays on the lookout for any
hardware faults that might require recovery actions or
replanning.

In addition to describing the design of the remote agent, this
paper discusses technology-insertion challenges and the
approach used in the Remote Agent approach to address
these challenges.

The experiment integrates several spacecraft autonomy
technologies developed at NASA Ames and the Jet
Propulsion Laboratory: on-board planning, a robust multi-
threaded executive, and model-based failure diagnosis and
recovery.

1. INTRODUCTION

Robotic spacecraft are making it possible to explore the
other planets and understand the dynamics, composition,
and history of the bodies that make up our solar system.
These spacecraft enable us to extend our presence into
space at a fraction of the cost and risk associated with
human exploration. They also pave the way for human

exploration. Where human exploration is desired, robotic
precursors can help identify and map candidate landing
sites, find resources, and demonstrate experimental
technologies.

Current spacecraft control technology relies heavily on a
relatively large and highly skilled mission operations team
that generates detailed time-ordered sequences of
commands or macros to step the spacecraft through each
desired activity.  Each sequence is carefully constructed in
such a way as to ensure that all known operational
constraints are satisfied.  The autonomy of the spacecraft is
limited.

This paper describes a flight experiment which will
demonstrate the Remote Agent approach to spacecraft
commanding and control. In the Remote Agent approach,
the operational rules and constraints are encoded in the
flight software and the software may be considered to be an
autonomous “remote agent” of the spacecraft operators in
the sense that the operators rely on the agent to achieve
particular goals.  The operators do not know the exact
conditions on the spacecraft, so they do not tell the agent
exactly what to do at each instant of time. They do,
however, tell the agent exactly which goals to achieve in a
period of time as well as how and when to report in.

The Remote Agent (RA) is formed by the integration of
three separate technologies: an on-board planner-scheduler,
a robust multi-threaded executive, and a model-based fault
diagnosis and recovery system.

This Remote Agent approach is being designed into the
New Millennium Program’s Deep Space One (DS1) mission
as an experiment.  The spacecraft (see Figure 1) will fly by
an asteroid, Mars, and a comet.

The New Millennium Program is designed to validate high-
payoff, cutting-edge technologies to enable those
technologies to become more broadly available for use on



other NASA programs.  The experiment is slated to be
exercised in October of 1998.

Figure 1. DS1 Spacecraft

Section 2 discusses the benefits to the spacecraft
community from increased spacecraft autonomy and the
motivation for this work. Section 3 outlines some of the
challenges to acceptance of spacecraft autonomy and
Section 4 introduces the Remote Agent design approach
and architecture. Section 5 covers the particulars of the DS1
Remote Agent experiment.  Section 6 discusses the
functioning of each of the three technology components of
the Remote Agent. Section 7 describes how the Remote
Agent software is integrated into the separately-developed
Deep Space One flight software. Section 8 describes how
the Remote Agent experiment is tested prior to flight.
Section 9 summarizes the paper and describes plans for
future Remote Agent development.

2. NEED FOR AUTONOMY ON SPACECRAFT

The desire to increase the level of spacecraft autonomy
comes from at least three separate objectives of spacecraft
customers: taking good advantage of science opportunities,
reducing spacecraft operations costs, and handling
uncertainty—including ensuring robust operation in the
presence of faults.

Taking Advantage of Science Opportunities

Our science customers would like the spacecraft to be able
to modify its sequence of actions more quickly based on
late-breaking information available on the spacecraft.

For example, an ultraviolet  spectrometer on a comet flyby
mission might identify a region of particular interest for
intense scrutiny.  With current technology, scientists have
to make do with whatever pre-planned sequence of
observations has been stored on-board and cannot
reprogram any of those to examine more closely the newly
identified region of interest.  With a future RA, plans may
be revised based on this new information hours or minutes
before flyby. With ground-based control, a turnaround time
of hours is impractical and a turnaround time of minutes is
physically impossible due to the speed of light.  See Figure
2.
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Figure 2. Fast replanning based on new information

Similarly, on the Mars Pathfinder mission, the science team
requested the ability for the meteorology instrument, when
it senses that a dust devil is passing, to tell the camera to
take unplanned images aimed at the departing dust devil.  It
is difficult to see how this capability could coexist with
time-tagged command sequences for the imaging planned
for the rest of the day.

Reducing Spacecraft Operations Costs

Our funding sources are insisting that means be found to
reduce operations costs.  A fixed amount of funding is
available from NASA for solar system exploration including
spacecraft development and operations.  When operations
costs are reduced, more resources become available for
developing a wider variety of interesting solar system
exploration missions.  Development of detailed spacecraft
sequences accounts for the largest expenditure in operations
budgets.

By commanding spacecraft at a higher level of abstraction,
much of the sequence development task becomes the
responsibility of the flight software, reducing ground
operations costs.  Some of the savings come from a change
in how we think about operations planning.  The old
approach was that all spacecraft activities needed to be
predicted and approved by ground controllers.  The new
thinking is that the ground controllers do not (always) need
to know the low-level details of spacecraft activities but
only the capabilities of the spacecraft and the high-level
goals.

Ensuring Robust Operation in the presence of
uncertainty

Our customers still require high reliability and the ability to
respond to problems in flight.  For existing spacecraft, the
fault protection system often represents the most
autonomous system on-board.  Robust operation is desired
in the presence of hard faults, degraded performance, and
operator errors.

Traditional spacecraft, even in conservative designs,
generally provide some minimal level of fault protection out
of necessity.  Otherwise, any major problem with attitude
control, power, or antennas could by itself prevent ground
controllers from diagnosing or correcting the problem.  The
Remote Agent is able to go a step further:  after recovering
from a fault, it can continue the mission, even if it involves
replanning for degraded capability.



Another advantage of the Remote Agent derives from the
nominal and failure modeling used by the fault diagnosis
engine.  For hard-coded fault protection designs, the
domain knowledge is implicit rather than explicit.  This
means that we rely on the fault protection algorithm
developers to understand the system, and abstract from that
understanding a design for which symptoms to look for and
what responses to take when they show up. In contrast, with
model-based fault diagnosis, the fault protection software
engineers explicitly model how the system behaves in
nominal and failure cases.  Fault diagnosis then becomes a
search for likely diagnoses given observed symptoms.
Since the spacecraft designers understand the details of the
system behavior, there is an advantage to having them
encode their knowledge explicitly at design time.

3. AUTONOMY TECHNOLOGY INSERTION

REQUIREMENTS

It is not enough to build a better mousetrap; it won’t catch
any mice unless it gets used.  There are similar issues for
the insertion of higher levels of autonomy into spacecraft
designs.  The design must be developed with the needs of
two sets of customers in mind: the spacecraft test engineers
and the mission controllers.

Spacecraft Test

Conversations with spacecraft test engineers have raised a
number of concerns that must be addressed in any
autonomous system design process.

1. Determinism and non-determinism: Is the system non-
deterministic? How do we test the system if we don’t
control its initial conditions in flight?

For the current Remote Agent design, the system is
deterministic to the extent that the same set of inputs will
yield the same outputs each time. The context for this
question, however, is that we cannot predict the exact set of
commands that the Remote Agent will use to achieve a set
of goals far in the future since we cannot predict exactly
what the spacecraft state will be at that time.  This situation
is common in another context, that of attitude control
systems.  We don’t know exactly when  a particular thruster
will fire, but we do know that the system will fire thrusters
as needed to achieve the higher level goal of holding the
commanded attitude.

So how do we test such a system? For an attitude control
system, we develop multiple scenarios and verify that the
pointing error meets requirements in all situations.  We also
check that the propellant usage is acceptable while the
requirements are being met. Continuing the analogy with an
attitude control system, we develop multiple scenarios and
test whether the high level goals are met, and analyze
whether the resources required to do so were acceptable.

2. Earlier system behavior definition: The flight system is
more complex, so more testing is needed earlier and the
desired behavior needs to be defined long before launch.

Some additional techniques are required.  These are
described in the testing section of this paper.

The concern about early definition may be valid depending
on how much of the spacecraft behavior we choose to build
into the flight software before launch.  With the traditional
sequence development approach, many sequences are
developed after launch, so there is no opportunity to
observe full end-to-end behavior in a test environment.
With an on-board planner, we now have the opportunity to
design and test the behavior before hand.  It should be
pointed out that this is an opportunity and not a
requirement.  For example, the Project may choose to delay
final design of flyby scenarios until after launch.  In this
case, we should expect to update the on-board planner and
mission goals at the time that the scenario is finalized and
this may be after launch.

3. Test Plan coverage:  How do we develop a test plan that
assures adequate coverage? How should test cases be
devised? What needs to be tested in system test? The core
engines underlying the Remote Agent are unfamiliar to
spacecraft test teams and could require large effort to test.

First, a distinction should be made between the Remote
Agent infrastructure or engines and the mission-unique
models.  The Remote Agent infrastructure will be
extensively analyzed and tested in pre-integration unit tests.
At the system test level, the focus should be on whether the
behavior of the Remote Agent meets the goals and
constraints set for it.

As with any complex system, the test plan needs to include
nominal cases, failure cases, and cases that test the
boundaries of the system so that the operators learn where it
will break.  The planner can be challenged by overloading
the number of tasks to be done in a short time.  The
executive may be challenged with a large number of tasks
requiring immediate response, and fault protection may be
challenged by examining its response to multiple, closely
spaced failures. Planner unit tests will include examples
using each constraint.  Executive unit tests should explore
each approach that might be used to achieve a task and fault
protection tests still depend on devious testers to invent
challenging scenarios.

A large variety of tests seeking extreme and boundary
condition behavior is indicated when testing any complex
software system.

A major advantage of the Remote Agent approach is that it
depends on declarative hardware knowledge; in other
approaches the hardware knowledge is captured Only
implicitly. Explicit models come in handy at review time
because the software engineer can sit with the hardware
expert and review the declarative model of the hardware.
This helps reduce errors in understanding between the
hardware and software engineers.



Mission Operations

Mission operators or controllers have clearly expressed a
number of requirements or desires with respect to fielding
autonomous systems.  These include:

1. Low level commanding: Operators should be able to have
access to low-level control of spacecraft hardware
unimpeded by the autonomous system.

As this requirement became clear, the Remote Agent design
was modified to allow low-level hardware command
access—potentially bypassing some autonomous
capabilities and safeguards. Unless the Remote Agent is
instructed in  the context and goals of these low level
commands, they need to be used carefully and when the
spacecraft is in a low activity quiescent mode.

2. Ground override authority: An ability to command the
spacecraft to revert to a low-level of autonomy mode if the
controllers decide that they want to disable the autonomous
feature.

This requirement is met on DS1.

3. Migration of autonomy capabilities: A sequence that
allows demonstration of autonomous capabilities as ground
system capabilities prior to fielding them on the spacecraft
as on-board capabilities.

The Remote Agent experiment is being designed to meet
this requirement by first engaging the executive as just
another basic sequence engine, then allowing Remote Agent
to execute a pre-computed plan sent from the ground, and
finally enabling the on board planner, bringing the full DS1
Remote Agent level of autonomy to bear.

4. Behavior Prediction: The ability to predict (at some
level) what the behavior of the spacecraft will be when the
spacecraft begins to execute the on-board-generated plan.

There will be a copy of the on-board planner built into the
ground system.  This copy will be used to generate
experience and rules of thumb as to what sets of goals are
easily achievable and what sets are difficult to achieve for
the on-board system based on these rules of thumb. The
operators will define the goals for each mission phase and
since the Remote Agent is closing the loop around these
goals, the best prediction of spacecraft behavior is that the
goals will be achieved on schedule.

The Remote Agent has been designed to support multi-level
commanding and monitoring in order to enable ground
controllers to adjust the level of autonomy they desire
across different activities or mission phases [1].

4. REMOTE AGENT DESIGN APPROACH AND

ARCHITECTURE

.  The New Millennium Autonomy Architecture rapid
Prototype (NewMaap) effort [2] identified the key
contributing technologies: on-board planning and

replanning, multi-threaded smart executive, and model-
based failure diagnosis and repair.  In NewMaap, we
learned how to take advantages of the strengths and
weaknesses of these three technologies and merge them into
a powerful system. After successful completion of the
prototype, the RA was selected as one of the NMP
technologies for DS1.  It will be uplinked to the spacecraft
as a software modification and demonstrated as an
experiment.

Fig. 3 shows the communications architecture for the
Remote Agent’s interaction with the rest of the spacecraft
flight software.  Note that all interaction with the hardware
is the responsibility of the real-time software.  The RA is
layered on top of that software, but also gathers information
from all levels to support fault diagnosis.
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Figure 3. Remote Agent Communication Architecture

Several spacecraft commanding styles are possible.  Goal-
oriented commanding is the intended operating mode for
most of an RA mission; provision has been made for
updating the goals in flight. In a typical planning cycle, the
executive is executing a plan and gets to an activity that can
be interpreted as "time to plan the next segment."  The
executive calls the planner with the current and projected
spacecraft state including the health of all devices.  The
planner/scheduler generates a new plan using priorities,
heuristics, and domain models including system constraints.
The planner sends this plan to an executive that creates an
agenda of plan items and executes the agenda. Plan
execution robustness is added by making use of the Model-
based Mode Identification and Reconfiguration (MIR)
system. The MIR system includes monitors, mode
identification for nominal and failure conditions,
communication of state to the executive and proposals of
reconfiguration actions to take in the event of failures.

Each of the components of the Remote Agent will be
described in more detail in Section 6, but first the Remote
Agent experiment for  the Deep Space One mission will be
described in more detail.

5. THE DEEP SPACE ONE REMOTE AGENT

EXPERIMENT

The Remote Agent eXperiment (RAX) for Deep Space One
is a demonstration of RA capabilities. Since an alternate



method of control is used for most of the mission, RAX is
focused on demonstrating specific autonomy capabilities
rather than controlling all aspects of spacecraft behavior.
The Remote Agent controls the following spacecraft
hardware and software: the camera for use in autonomous
navigation, the Solar Electric Propulsion (SEP) subsystem
for trajectory adjustment, the attitude control system for
turns and attitude hold, the navigation system for
determining how the actual trajectory is deviating from the
reference trajectory and what SEP thrusting profile is
needed to stay on the reference trajectory, the Power
Amplification and Switching Module (PASM), for use in
demonstrating fault protection capabilities.

Four failure modes are covered by RAX.  These are:

F1. Power bus status switch failure

F2. Camera power stuck on

F3. Hardware device not communicating over bus to
flight computer

F4. Thruster stuck closed

Mission Scenario

The Remote Agent experiment is executed in two phases, a
12 hour Phase One followed a couple of weeks later by a 6
day Phase Two.

In Phase One, we start slowly by first demonstrating the
executive operating in the manner of a low level sequencer
by accepting commands to turn devices on and off.  Next, a
“scripted” mode is demonstrated with execution of plans
uplinked from the ground. The main demonstration here
will be commanding the spacecraft to go to and stay in a
known, safe, standby mode and then take a series of optical
navigation (OpNav) images.  In addition, Failure mode F1
will be demonstrated by injecting power bus switch status
readings indicating that a power bus is unexpectedly off.
The fault diagnostic system will examine this information
along with other information that indicates that devices on
the bus are still communicating normally with the flight
computer and conclude that the failure is in the switch
status measurement and not in the bus itself.  No action will
result.  No planning or SEP thrusting are attempted in Phase
One.

In Phase Two, we also start by demonstrating low level
commanding, and then initiate on-board planning.  Based
on the spacecraft initial state and the uplinked goals, the
planner will generate a three day plan including imaging for
optical navigation, thrusting to stay on the reference
trajectory, and simulated injection of faults to test out
failures F2, F3, and F4. First the camera power stuck on
failure (F2) is injected.  When the executive is unable to
turn off the camera when the plan so dictates, the executive
realizes that the current plan should be aborted and
replanning is indicated. This might be necessary, for
example, because the initial plan’s assumptions on power
consumption are incorrect with the camera on when it
should be off.  The plan is declared failed, the spacecraft is
sent to a standby mode while the planner is requested to
replan based on the new information that the camera power

switch is stuck on. When the new plan is received by the
executive, execution resumes including navigation and SEP
thrusting.  Near the end of the three day plan, the planner is
called to generate the plan for the next three days.  This
plan includes navigation and SEP thrusting as before.  It
also includes two simulated faults.  First, a failure of a
hardware device to communicate is injected (F3); the
proper recovery is to reset the device without interrupting
the plan.  Next, a  thruster stuck closed failure (F4) is
simulated by injecting an attitude control error monitor
above threshold. The correct response is to switch control
modes so that the failure is mitigated.

RA Capabilities Demonstrated with DS1 RAX

The above scenario has been designed to demonstrate that
the DS1 Remote Agent meets the following autonomy
technology goals:

• Allow low-level command access to hardware

• Achieve goal oriented commanding

• Generate plans based on goals and current spacecraft
state expectations

• Determine the health state of hardware modules

• Demonstrate model-based failure detection, isolation,
and recovery

• Coordinate hardware states and software modes

• Replan after failure given new context

6. RA COMPONENTS

The major components of the Remote Agent are discussed
below.

Planner/Scheduler

The highest level commanding interface to the Remote
Agent is provided the Planner/Scheduler (PS). PS maintains
a database of goals for the mission, the mission profile,  that
spans a very long time horizon, potentially the duration of
the entire mission. Over the duration of a mission PS is
iteratively invoked by the executive to return a
synchronized network of high-level activities, the plan, for
each short-term scheduling horizon into which the mission
profile is partitioned. Typically each short-term horizon
covers several days. When PS receives a request from
EXEC, it identifies the next scheduling horizon, retrieves
from the mission profile the goals relevant to that horizon,
merges in the expected initial spacecraft state provided by
EXEC into a incomplete, initial plan and generates a fully
populated plan. PS sends that plan to EXEC for execution.

For RAX, Phase Two, the mission profile will cover 6 days
and contain two scheduling horizons of three days each.
RAX allows the specification of two kind of goals. One
specifies the frequency and duration of the “optical
navigation windows”, the time during which the spacecraft
is requested to take a set of asteroid pictures to be used for
orbit determination by the on-board  Navigator. The second
type of goal specifies a “mini-sequence”, i.e., a set of lower-
level commands that EXEC will issue to the real-time
software, and requirements to activate the mini-sequence



with certain synchronization constraints with respect to
other planned activities. A new plan will be requested of
MM/PS in two situations:

• nominal operations: in this case EXEC reaches the
activity Planner_Plan_Next_Horizon  toward
the end of the current scheduling horizon. EXEC will
issue a request for a new plan. This request will define
the new initial state as the expected final state from the
plan currently in execution. This will allow seamless
patching of the old and new schedule without any
interruption of execution.

• fault response: if the fault protection system detects an
anomaly that will impact the executability of future
tasks in the plan, the EXEC will request a new plan to
resume normal operations after having put the
spacecraft in a safe standby mode. In this case the
initial state describes the standby tasks or holding
states for each subsystem modeled in the plan and
health information describing possibly degraded modes
for failed subsystems.

Notice that from the point of view of PS both the nominal
and fault response case are handled exactly in the same
way.

Ground controllers can add, modify, or delete goals from
the mission profile by explicitly issuing a command to the
mission profile. For example, in a mission in which the
spacecraft communicated to Earth through the Deep Space
Network, the final communication schedule allocated to the
mission may become available only a few weeks ahead of
time and it is possible that a schedule may change with a
short notice (e.g., within a week). Ground controllers will
need to communicate both of these situation to the
spacecraft by issuing appropriate edit commands to modify
the mission profile.

PS provides the core of the high-level commanding
capability of RAX. Given an initial, incomplete plan
containing the initial spacecraft state and goals, PS
generates a set of synchronized high-level activities that,
once executed, will achieve the goals. PS presents several
features that distinguish it from other Artificial Intelligence
and Operations Research approaches to the problem. For
example, in the spacecraft domain planning and scheduling
aspects of the problem need to be tightly integrated. The
planner needs to recursively select and schedule appropriate
activities to achieve mission goals and any other subgoals
generated by these activities. It also needs to synchronize
activities and allocate global resources over time (e.g.,
power and data storage capacity). Subgoals may also be
generated due to limited availability of resources over time.
For example, it may be preferable to keep scientific
instruments on as long as possible (to maximize the amount
of science gathered). However limited power availability
may force a temporary instrument shut-down when other
more mission-critical subsystems need to be functioning. In
this case the allocation of power to critical subsystems (the
main result of a scheduling step) generates the subgoal
“instrument must be off”  (which requires the application of

a planning step). The PS is able to tune the order in which
decisions are made to the characteristics of the domain by
considering the consequences of action planning and
resource scheduling simultaneously.  This helps keep the
search complexity under control.

This is a significant difference with respect to classical
approaches both in Artificial Intelligence and Operations
Research where action planning and resource scheduling
are typically addressed in two sequential problem solving
stages, often by distinct software systems. Another
important distinction between the Remote Agent PS and
other classical approaches to planning is that besides
activities, the planner also “schedules” the occurrence of
states and conditions. Such states and conditions may need
to be monitored to ensure that, for example, the spacecraft
is vibrationally quiet when high stability pointing is
required. These states can also consume resources and have
finite durations and, therefore, have very similar
characteristics to other activities in the plan. PS  explicitly
acknowledges this similarity by using a unifying conceptual
primitive, the token, to represent both actions and states
that occur over time intervals of finite extension.

PS consists of a heuristic search engine, the Incremental
Refinement Scheduler (IRS) that operates in the space of
incomplete or partial plan [6]. Since the plans explicitly
represent time in a numeric (or metric) fashion, the planner
makes use of a temporal database.  As with most causal
planners, PS begins with an incomplete plan and attempts to
expand it into a complete plan by posting additional
constraints in the database.  These constraints originate
from the goals and from constraint templates stored in a
model of the spacecraft. The temporal database and the
facilities for defining and accessing model information
during search are provided by the HSTS system. For more
details on PS and the HSTS system see [3] and [4]. Figure 4
describes the PS architecture.

HSTS
TDB

Model
(DDL)

HeuristicsIRS Search
engine

EngineNAV
Expert

Plan

Domain Knowledge

ACS
Expert

Mission Profile

Initial state

Figure 4. Planner/Scheduler Architecture

The  coverage of the RAX model is described in Table 1.
Appendix B gives a detailed description of the timelines and
tokens needed by PS to handle the propulsion and thrust
subsystems of the spacecraft.



Table 1 Summary of Planner Models for RA Experiment

Subsystem State
Variables

Value
Types

Compat-
ibilities

Comments

MICAS Executable: 2

Health: 1

7 14 Models the health, mode and activity of the MICAS imaging camera.
RAX demonstrates fault injection and recovery for this device as part
of the 6 day scenario.

Navigation Goal: 1

Executable: 1

Internal: 1

5 6 To schedule Orbit determination (OD) based on picture taking
activity.

Propulsion
& Thrust

Goal: 2

Executable: 1

Internal: 1

9 12 Based on thrust schedule generated by the NAV module, the planner
generates plans to precisely activate the IPS in specific intervals
based on constraints in the domain model and is the most complex set
of timelines and subsystem controlled by the planner (see Appendix
B for details)

Attitude Executable: 1

Health: 1

4 4 Enables the planner to schedule slews between constant pointing
attitudes when the spacecraft maintains its panels towards the sun.
The targets of the constant pointing attitudes are imaging targets,
Earth (for communication) and thrust direction ( for IPS thrusting.)

Power
Manage-
ment

Goal: 1

Internal: 1

2 1 Allows the planner to ensure that adequate power is available when
scheduling numerous activities simultaneously.

Executive Goal: 1

Executable: 1

2 7 Allows modeling of low level sequences bypassing planner models
giving Mission Ops the ability to run in sequencing mode with the
RA.

Planner Executable: 1 2 2 To schedule when the Executive can request the plan for the next
horizon.

Mission Goal: 1 2 2 Allows the Mission Manager and the planner to coordinate activities
based on a series of scheduling horizons updatable by Mission Ops
for the entire mission

Each subsystem in the model is represented in  the PS
database. Each subsystem has a set of dynamic state
variables whose value is tracked over time. Each dynamic
state variable can assume one or more values. A token is
associated with a value of a state variable occurring over a
finite time interval. Each value has one or more associated
compatibilities, i.e., patterns of constraints between
tokens. A legal plan will contain a token of a given value
only if all temporal constraints in its compatibilities are
satisfied by other tokens in the plan. An example the atomic
temporal constraints that belong to a compatibility can be
expressed in English as “While the spacecraft is taking
asteroid pictures requested by navigation, no ion thrusting is
allowed”.

In Table 1 we identify four distinct kinds of state variables.
A goal timeline will contain the sequence of high-level
goals that the spacecraft can satisfy (e.g., the Navigate
goal described before). Goal timelines can be filled either
by ground operators or by on-board planning experts seen
by PS as goal generators. For example, in order to generate
the portion of the plan that commands the IPS engine, PS
interrogates NAV which returns two types of goals: the
total accumulated time for the scheduling horizon and the
thrusting profile to be followed. These two types of

information are laid down on separate goal timelines.
Expected device health information over time is tracked by
health timelines. The expected profile is communicated by
EXEC to PS in the initial spacecraft state. EXEC can
communicate that the health of a device has changed even if
no fault has occurred. For example, in a previous fault
situation ground controllers may have decided that the IPS
engine is not trustworthy and therefore should not be
considered operational until further tests have been run. PS
will therefore generate plans that do not involve using the
engine. They may decide to run some tests by posting
appropriate goals in the mission profile and therefore not
breaking nominal plan execution. After the tests they may
decide that the IPS engine is trustworthy after all and may
send a message to EXEC that it is again OK to thrust. EXEC
will communicate this to PS through the health timeline in
the next scheduling horizon, without needing to interrupt
regular plan execution and put the spacecraft in standby
mode.

Another kind of state variable is an internal timeline. These
are only used by the planner to internally organize goal
dependencies and subgoaling. Finally, an executable state
variable corresponds to tasks that will be actually tracked
and executed by EXEC.



The RAX PS treats all timelines and tokens within a simple,
unified search algorithm. This has advantages. The ground
team could force certain behaviors of the spacecraft by
including in the mission profile explicit tokens on
executable timelines. The additional tokens will be treated
by PS as goals, will be checked against the internal PS
model and missing supporting tasks will be automatically
expanded to create a overall consistent plan. This will
greatly facilitate the work of the ground team.

Table 2 gives quantitative information regarding the three
plans that PS is expected to generate on board during the 6
day experiment. The tokens and constraints columns
contain the number of tokens and pairwise temporal
constraints (e.g., “token A starts between 1 and 2 minutes
after token B”) in the plan respectively. The first CPU time
column reports the actual measured run time of PS on a
PowerPC/VxWorks flight hardware testbed. The next
column reports the estimated time to generate the same
plans on the actual RAD6000 flight processor for DS1. The
scale up factor of 40 is due to the lower speed of the
RAD6000 with respect to the PowerPC (about one order of
magnitude) and the allocation of only 25% of the CPU to
the PS process.

Table 2. PS Metrics for Performance

Scenario tokens con-
straints

CPU time on
PPC testbed
(mm:ss)

Est. CPU
time on
RAD6000
(hh:mm:ss)

First
horizon

105 141 7:13 4:48:00

Replan in
first
horizon

69 66 4:01 2:40:00

Second
horizon

126 192 13:49 9:12:00

Executive

The Smart Executive (EXEC) is a reactive plan execution
system with responsibilities for coordinating execution-time
activity.  EXEC's functions include plan execution, task
expansion, hardware reconfiguration, runtime resource
management, plan monitoring, and event management.  The
executive invokes the planner and MIR to help it perform
these functions.  The executive also controls the lower-level
software by setting its modes, supplying parameters and by
responding to monitored events.

Task Expansion EXEC provides a rich procedural language,
ESL [5], in which we define how complex activities should
be broken up into simpler ones.  A procedure can specify
multiple alternate methods for goal achievement to
increase robustness.  If a selected method fails, EXEC will
try any other methods applicable in the current context.

Resource Management As a multi-threaded system, EXEC
works on multiple activities simultaneously.  These
activities may compete for system resources within the

constraints not already resolved by ground or the planner.
EXEC manages abstract resources by monitoring resource
availability and usage, allocating resources to tasks when
available, making tasks wait until their resources are
available, and suspending or aborting tasks if resources
become unavailable due to failures (such as a device
breaking).  See Ref. [8] for a more detailed discussion.

RAX Startup  Upon startup, EXEC asks MIR to describe the
current spacecraft configuration.  Then EXEC puts the spacecraft
into standby mode. Standby mode is a safe mode that
guarantees sufficient power and ground communications as
well as a thermally benign state. Once standby mode has
been achieved, EXEC then begins its normal operational
cycle.

Operational Cycle The top-level operational cycle,
including the planning loop, is described as follows.  EXEC
requests a plan, by formulating a plan-request describing
the current plan execution context. It later executes and
monitors the generated plan.  EXEC executes a plan by
decomposing high-level activities in the plan into primitive
activities, which it then executes by sending out commands,
usually to the real-time flight software (FSW).  EXEC
determines whether its commanded activities succeeded
based either on direct feedback from the recipient of the
command or on inferences drawn by the Mode
Identification (MI) component of MIR.  When some method
to achieve a task fails, EXEC attempts to accomplish the
task using an alternate method in that task’s definition or by
invoking the Mode Reconfiguration (MR) component of
MIR as a “recovery expert” .  If MR finds steps to repair the
failing activity without interfering with other concurrent
executing activities, EXEC performs those steps and then
continues on with the original definition of the activity. If
the EXEC is unable to execute or repair the current plan, it
aborts the plan, cleans up all executing activities, and puts
the controlled system into a stable safe state (called a
“standby mode”).  In situations where continued operation
is allowed, EXEC then requests a new plan from PS while
maintaining this standby mode until the plan is received,
and finally executes the new plan.

Periodic Planning Cycle As shown in Figure 5, our
approach separates an extensive, deliberative planning
phase from the reactive execution phase, executing
infrequently generated plans over extended time periods.
How far in advance the system should plan is constrained
by several factors, including uncertainty about the results of
execution. We use the term “planning horizon” to describe
the length of time into the future for which a plan is
constructed.  In normal operations, the RA would plan a
week ahead of time, and when it comes near the end of the
current plan it would start working on the plan for the next
horizon. Since the actual RAX experiment lasts for only one
week, the planning horizon is set considerably shorter (3
days).



Standby
Mode

Running
a  plan

Get  plan
from Planner

Plan
ready

Next horizon
plan request

Plan
failure

Plan
failure

Planning
 assumptions

violated

Standby
plan request

Figure 5 Executive Periodic Planning Cycle

We address the problem of generating initial states for the
next planning round differently depending on the status of
the currently-executing plan. Plans normally include the
task of planning for the next horizon—i.e., the planner sets
aside a good time for its own (next) computation.  At this
point, the executive sends to the planner the remainder of
the current plan in its entirety, with annotations for the
decisions that were made so far in executing it. The current
plan serves as its own prediction of the future at the level of
abstraction required by the planner.  Thus, all the planner
has to do is extend the plan to address the goals of the next
planning horizon and return the result to the executive.  The
executive must then merge the extended plan with its
current representation of the existing plan.  The net result is
that, from the executive’s perspective, executing multiple
chained plans is virtually the same as executing one long
plan.  This has the useful consequence that it enables the
executive to engage in activities which span multiple
planning horizons (such as a 3-month long ion engine burn)
without interrupting them.

In the event of plan failure, the executive enters standby
mode prior to invoking the planner, from which it generates
a description of the resulting state in the abstract language
understood by the planner. Note that establishing standby
modes following plan failure is a costly activity with respect
to mission goals, as it causes us to interrupt the ongoing
planned activities and lose important opportunities.  For
example, a plan failure causing us to enter standby mode
during the comet encounter would cause loss of all the
encounter science, as there is no time to re-plan before the
comet is out of sight.  Such concerns motivate a strong
desire for plan robustness, in which the plans contain
enough flexibility to continue execution of the plan under a
wide variety of execution outcomes.  Executing a flexible
plan is not easy, and draws on many capabilities of our
“Smart”  EXEC.

Plan Execution We now describe the plan execution
capability of the executive in more detail.  The planner
represents spacecraft activity as a set of concurrent

subsystems.  Each independent component of a subsystem
is conceptualized as a state variable, which can take on a
series of different behaviors over time.  A plan consists of
one timeline for each state variable.  Each timeline contains
a sequence of constraints on the behavior of the state-
variable.  A token is a data structure which represents one
part of a sequence on a timeline.  A token has information
about the desired behavior throughout the duration of the
token, and also flexible constraints on when the token can
start and finish.  Lastly, the plan contains constraints to
coordinate behavior across tokens on different timelines,
called compatability constraints.  An example of a
compatibility constraint is one which says that a “take-
picture” token may only be executed within the window
during which the corresponding “keep-pointing-at-target”
token is activated.

The EXEC is a multi-threaded process that is capable of
asynchronously executing activities in parallel.  EXEC has
one thread for each timeline in a plan, and a procedure,
called the token definition, for each type of token contained
in the plan.  A token definition procedure contains a
precondition that must be met before the activity can start, a
postcondition that must be met before the activity can
finish, and a body which describes how the procedure is
actually executed.  To execute a plan, EXEC activates on
the corresponding thread for each timeline the procedure
corresponding to the first token on that timeline. EXEC
tracks the status of all tokens in a data structure called an
agenda. When a new token is able to start (because the
previous token has finished and all other constraints are
satisfied), EXEC terminates the previous token procedure
and transitions to the next one.  For example, once the
token for turning to a target has completed, the token for
constantly pointing at the target can then be activated.  This
enables the “take-picture” token on the camera timeline to
be activated.  Only when the picture activity has finished
will the EXEC terminate the “keep pointing at target”  token
and transition to the token for turning to the next target
attitude. The tokens executed by the RAX Executive are
summarized in Appendix A.

In more detail, plan execution is achieved through the
following cycle, as shown in Figure 6:

1. EXEC receives a new plan from the planner and updates
the plan execution agenda.

2. EXEC chooses a new task (usually arising from a plan-
level token) on the agenda that is ready for execution.

3. EXEC decomposes the task into a series of sub-tasks
based on task definition models and current execution
context. Sub-tasks are recursively decomposed down to the
level of primitives. EXEC invokes MIR as a recovery expert
to achieve tasks that have failed.

4. EXEC begins to execute a primitive task, for example by
sending  a command to the FSW or waiting until a condition
becomes true.

 5. (Not shown) FSW processes the command by making a
change in a software parameter or device state. The monitor
for the affected  FSW component registers the change in



low-level sensor data and sends MI a new abstracted value
for the state of the affected components.  MI compares the
command to the observations, infers the most likely actual
nominal or failure mode of each component, and sends an
update to EXEC describing the changes in any modes of
interest to EXEC.

6. EXEC compares the feedback from external events, such
as the MI mode updates, to the conditions specified in its
task models to determine whether the command executed
successfully.  If so, it proceeds to take further steps to
complete the high-level token. If the token is finished,
EXEC updates its agenda and continues the cycle.
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Hard command execution failures may require the
modification of the schedule in which case the executive
will coordinate the actions needed to keep the spacecraft in
a “standby mode” and request the generation of a new
schedule from the planner.

Architecture-support timelines Most timelines (and hence
tokens) represent the activity of spacecraft subsystems
external to the RA. However, the RA also contains two
timelines used to support architectural features.  First, the
PLANNER-PROCESSING timeline describes the activity of
the planner.  The PLAN-NEXT-HORIZON token for this
timeline corresponds to a state in which the planner is
generating a new plan.  EXEC executes this token by
generating a plan request, sending it off to the planner, and
then incorporating the new plan into the current execution
context.   This supports the model of planning with multiple
horizons described above.   The SCRIPT-NEXT-HORIZON
token for this timeline is similar, except it directs EXEC to
load and execute the plan defined in a file previously up-
linked from ground.  In this way ground controllers can also
support back-to-back plans.  This also supports the use of
the automated planner running in closed-loop fashion either
from the ground or on-board the spacecraft, hence
supporting easy migration of planning capability from

human-based, to automatic ground-based, to autonomous
on-board planning.

Second, the EXEC-ACTIVITY  timeline represents low-level
activities that EXEC will perform that are lower-level than
the tokens managed by the on-board planner.  To execute
the EXEC-ACTIVITY  token, which takes a filename as an
argument, EXEC simply loads and executes the referenced
file.  The file can contain arbitrary Lisp code, including any
commands executable on the spacecraft.  This timeline can
be used to run EXEC in a mode corresponding to a
traditional sequencer, by sending up a plan that contains
only a sequence of EXEC-ACTIVITY tokens, each with
low-level commands defined in a file.  However, since this
timeline runs concurrently with all the timelines defined for
the planner, it also enables ground operators to require
certain low-level activities to be inserted into whatever
high-level plan is generated autonomously.  EXEC also
supports use of the EXEC-ACTIVITY  procedure as an
immediate function invocable by ground controllers.
Hence, even in the middle of an autonomous plan
execution, or in standby mode, ground operators can ask
EXEC to run arbitrary low-level commands from a file and
these can be tied to events rather than being linked to
prespecified clock times. For the complete list of RAX
timelines and tokens, see Appendix A.

Summary of Executive Capabilities Demonstrated in RAX
We now summarize how the  EXEC capabilities described
above are demonstrated within the RAX scenarios.

First, EXEC demonstrates the multi-level commanding,
allowing ground operators to specify low-level commands
to the hardware as part of a sequence, to generate plans
from ground, or to request and execute plans generated on-
board the spacecraft.  The low-level commanding and
ground-based planning are demonstrated in Phase One of
the RAX experiment, in which a plan is up-linked from the
ground which contains both high-level activities (like
turning to a target) and low-level activities (using the EXEC-
ACTIVITY  tokens to simulate the injection of various faults,
and to turn PASM on and off).

Second, EXEC demonstrates plan request generation and
execution.  This is demonstrated from a currently executing
plan where nothing has changed (nominal scenario), from a
currently executing plan where a device health token has
been updated (following the MICAS health update), and
from a standby mode.  As part of executing a plan phase
two, EXEC demonstrates a number of important capabilities
involved in token decomposition.

• EXEC demonstrates context sensitive behavior in the
management of the ion propulsion system.  Before
executing a thrust command, EXEC requires that IPS is
in standby mode.  If it is already in standby mode,
EXEC proceeds to the thrusting, otherwise it will put
IPS into the standby mode before proceeding.

• EXEC demonstrates time-driven token durations.  For
example, it terminates a thrust segment based on a
timeout, rather than external confirmation.

• EXEC demonstrates event-driven token durations, in
which the picture tokens are not allowed to terminate



until the picture has actually finished, turn tokens are
completed only upon receipt of turn-complete
messages from the ACS, and the SEP-THRUSTING
token is only completed upon a message from MIR that
IPS is indeed in the thrusting state.

• EXEC demonstrates goal-oriented achievement (don’t
achieve things that are already true).  Because the
planner is unable to determine how many thrust
segments are necessary to achieve the total desired
thrust, it inserts thrust tokens into the plan which may
not need to be executed.  EXEC tracks how much thrust
has been achieved, and only executes thrust tokens
(and associated turns) for so long as thrust is actually
necessary.

• EXEC demonstrates the coordination of activity details
across subsystems that are below the level of visibility
of the planner.  There is a constraint that ACS be in
thrust-vector-control (TVC) mode shortly after IPS has
started thrusting.  When EXEC commands IPS into
thrusting mode, it also sends the command to ACS to
enter TVC mode based on its own lower-level domain
knowledge.  Similarly, EXEC puts ACS back into
Reaction Control System (RCS) control mode upon
termination of a thrusting activity.

Third, EXEC demonstrates the ability to maintain required
properties in the face of failures.  In the thruster failure
scenario, EXEC learns from an MIR state update that the
current thruster mode is faulty. It invokes MIR with a
recovery request and then executes MIR's recommendation
to change to a degraded thruster control mode.

Fourth, EXEC demonstrates the ability to recognize plan
failure, abort the plan, enter standby mode, and request and
execute a replan.  This occurs in the MICAS failure
scenario, in which EXEC learns from MIR that MICAS is
stuck on and cannot be turned off. EXEC requests a
recovery from MIR so that it can turn MICAS off, but since
there is no way to fix this problem MIR informs  EXEC that
is has no recovery.  Since the plan requires MICAS to be off,
EXEC aborts the plan, terminating a thrusting segment if
necessary.  It then enters a degraded standby mode, in
which it leaves MICAS on despite the usual desire to turn
off all unnecessary devices in standby mode, and requests a
plan for the planner.  In its plan request, EXEC informs the
planner that MICAS is stuck on.  Later, in executing the new
plan, ground finds a way to fix MICAS and informs MIR of
this fact.  When EXEC learns from MIR that MICAS can now
be shut off, this new information does not cause EXEC to
abandon the plan, since the planner did not require MICAS
to be broken.  However, the next time EXEC asks for a plan,
it informs the planner about the restored health of MICAS,
so that the planner can now plan to switch MICAS off when
desired.  EXEC also demonstrates the ability to terminate
plans based on an immediate command from the ground, in
which case it enters whichever standby mode the command
specifies.

Implementation EXEC is implemented on top of Execution
Support Language (ESL) [5], which in turn is implemented
using multi-threaded Common LISP.  The internal EXEC
code is designed in a modular, layered fashion so that

individual modules can be designed and tested
independently.  Individual device knowledge for RAX is
implemented based on EXEC's library of generic device
management routines, to support addition of new devices
and reuse of the software on future missions.

More details about EXEC can be found in References [6, 7.
and 8].

Diagnosis and Repair

We refer to the Diagnosis and Repair engine of the Remote
Agent as MIR, for Mode Identification and Reconfiguration,
which emphasizes the model-based diagnosis and control
flavor of the system. MIR eavesdrops on commands that are
sent to the on-board hardware managers by the EXEC. As
each command is executed, MIR receives observations from
spacecraft sensors, abstracted by monitors in lower-level
device managers for the Attitude Control Subsystem (ACS),
Bus Controller, and so on.  MIR combines these commands
and observations with declarative  models of the
spacecraft’s components to determine the current state of
the system and report it to the Exec. A very simple example
is shown schematically in Figure 7. In the nominal case,
MIR merely confirms that the commands had the expected
effect on spacecraft state. In case of failure, MIR diagnoses
the failure and the current state of the spacecraft and
provides a recovery recommendation. A single set of
models and algorithms are exploited for command
confirmation, diagnosis and recovery.
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Figure 7. Information Flow in MIR

The RAX mission scenario demonstrates the following MIR
capabilities: state identification throughout the experiment,
diagnosis of sensor failure F1, diagnosis and recovery
recommendations for device failures F2-F4, and overriding
of a MIR diagnosis via a ground command.

F1 illustrates MIR's ability to disambiguate between a sensor
failure and failure of the device being sensed.  MIR
combines power distribution models with the sensed
nominal current draw and communication status of devices



to conclude that the power switch must be on and that a
switch sensor failure, though unlikely, has occurred.

Failures F2-F4 are diagnosed in a similar fashion and
include the possibility of recovery.  F2 focuses on repeated
attempts to recover a camera switch until it is deemed
permanently stuck.  F3 illustrates successful recovery of
communication with a device by resetting its remote
terminal (RT).  In F4, given only an attitude error and
models of the spacecraft dynamics, MIR infers that one of a
particular pair of thruster valves is stuck closed.  MIR is
then able to recommend that no matter which one of the
two valves is stuck, switching ACS control modes will
mitigate the problem.

Since we cannot depend on failures F1-F4 occurring during
the experiment, failures will be simulated by injecting false
monitor readings consistent with the failures. The RAX will
be expected to take the appropriate corrective actions,
though none are  necessary. Injecting simulated failures
may seem senseless. However, in lieu of a guaranteed real
failure, it provides greater confidence that the system is
flight ready and will demonstrate that when the RA reacts to
a failure the ground controllers will be able to observe,
interpret, and, if necessary, override the actions it has taken.
While simulations are necessary for demonstration, the
RAX is fully responsible for responding to real failures
within its limited scope occurring during the experiment.
This raises an additional challenge regarding how the RAX
will avoid conflicts with the flight software fault protection
mechanism (FP), since both may be react to the same
failure. Rather than negotiate a complex resolution strategy,
the RAX was designed with a narrower notion of nominal
operation than the FP (by  tuning monitors appropriately),
thus avoiding the conflict  altogether. When the RAX is
operational, it should always respond to and mitigate faults
within its mandate before the FP monitors are triggered.  If
the RAX fails to do so, the FP will terminate the RAX upon
being triggered.

The MIR component of the RA architecture, embodied in a
system called Livingstone, consists of two parts: mode
identification (MI) and mode reconfiguration (MR).  MI is
responsible for identifying the current operating or failure
mode of each component in the spacecraft.  Following a
component failure, MR is responsible for suggesting
reconfiguration actions that restore the spacecraft to a
configuration that achieves all current goals as required by
the planner and executive.  Livingstone can be viewed as a
discrete model-based controller in which MI provides the
sensing component and MR provides the actuation
component.  MI’s mode inference allows the executive to
reason about the state of the spacecraft in terms of
component modes, rather than in terms of low level sensor
values, while MR supports the run-time generation of novel
reconfiguration actions.

Livingstone uses algorithms adapted from model-based
diagnosis [9, 10] to provide the above functions.  The key
idea underlying model-based diagnosis is that a
combination of component modes is a possible description
of the current state of the spacecraft only if the set of

models associated with these modes is consistent with the
observed sensor values.  Following de Kleer and Williams
[10], MI uses a conflict directed best-first search to find the
most likely combination of component modes consistent
with the observations.  Analogously, MR uses the same
search to find the least-cost combination of commands that
achieve the desired goals in the next state.  Furthermore,
both MI and MR use the same system model to perform
their function.  The combination of a single search
algorithm with a single model, and the process of exercising
these through multiple uses, contributes significantly to the
robustness of the complete system.  Note that this
methodology is independent of the actual set of available
sensors and commands.  Furthermore, it does not require
that all aspects of the spacecraft state are directly
observable, providing an elegant solution to the problem of
limited observability.

The use of model-based diagnosis algorithms immediately
provides Livingstone with a number of additional features.
First, the search algorithms are sound and complete,
providing a guarantee of coverage with respect to the
models used.  Second, the model building methodology is
modular, which simplifies model construction and
maintenance, and supports reuse.  Third, the algorithms
extend smoothly to handling multiple faults and recoveries
that involve multiple commands.  Fourth, while the
algorithms do not require explicit fault models for each
component, they can easily exploit available fault models to
find likely failures and possible recoveries.

Livingstone extends the basic ideas of model-based
diagnosis by modeling each component as a finite state
machine, and the whole spacecraft as a set of concurrent,
synchronous state machines.  Modeling the spacecraft as a
concurrent machine allows Livingstone to effectively track
concurrent state changes caused either by executive
commands or component failures. An important feature is
that the behavior of each component state or mode is
captured using abstract, or qualitative, models [11, 12].
These models describe qualities of the spacecraft’s
structure or behavior without the detail needed for precise
numerical prediction, making abstract models much easier
to acquire and verify than quantitative engineering models.
Examples of qualities captured are the power, data and
hydraulic connectivity of spacecraft components and the
directions in which each thruster provides torque.  While
such models cannot quantify how the spacecraft would
perform with a failed thruster for example, they can be used
to infer which thrusters are failed given only the signs of the
errors in spacecraft orientation.  Such inferences are  robust
since small changes in the underlying parameters do not
affect the abstract behavior of the spacecraft. In addition,
abstract models can be reduced to a set of clauses in
propositional logic. This form allows behavior prediction to
take place via unit propagation, a restricted and very
efficient inference procedure.

 MIR’s abstract view of the spacecraft is supported by a set
of fault protection monitors which classify spacecraft
sensor output into discrete ranges (e.g. high, low nominal)



or symptoms (e.g. excessive attitude error). One goal of the
RAX was to make basic monitoring capability inexpensive
so that the scope of monitoring is driven from a system
engineering analysis instead of being constrained by
software development concerns. To achieve this, monitors
are specified as a dataflow schema of feature extraction and
symptom detection operators for reliably detecting and
discriminating between classes of sensor behavior. Second,
the software architecture for sensor monitoring is described
using domain-specific software templates from which code
is generated. Finally, all symptom detection algorithms are
specified as restricted Harel state transition diagrams
reusable throughout the spacecraft. The goals of this
methodology are to reuse symptom-detection algorithms,

reduce the occurrence of errors through automation and
streamline monitor design and test.

Table 3 illustrates the classes of components modeled by
MIR for the DS1 spacecraft.  For each we list the number of
instances in the overall spacecraft model and the modes
(states) the component can occupy. All told the MIR model
represents fifty-seven components of twelve  different
types, their behavior, and their interconnections.  For ease
of modeling, MIR allows a set of components and a model
describing their interconnection to be grouped into a
module which can be treated as a unit.  Table 4 illustrates
the modules created to model DS1. For each we list the
number of instances in the overall spacecraft model and the
components or other modules the module contains.

Table 3. DS1 Hardware Modeled as Components in MIR

Component Class # in Model Modes

ion propulsion system
(IPS)

1 Standby, Startup, Steady State Thrusting, Shutdown, Beam Out, Controller
Hung, Unknown

remote terminal 6 Nominal, Resettable Failure, Power-cyclable Failure, Unknown

attitude control 1 TVC, X for Y, Z for Y, X for Y Degraded, Z for Y Degraded, X for Y Failed, Z
for Y Failed, TVC Failed, Unknown

switch 12 On, Off, Popped On, Popped Off, Stuck On, Stuck Off, Unknown

switch sensor 12 Nominal, Stuck On, Stuck Off, Unknown

current sensor 3 Nominal (reported value = real value), Unknown (values unconstrained)

thruster valve 8 Nominal, Stuck Closed, Unknown

thruster 8 Nominal, Unknown

propellant tank 1 Non-empty, Unknown (thruster hydrazine out  or otherwise  unavailable)

bus controller 1 Nominal, Unknown

vehicle dynamics 1 Nominal (This is a qualitative description of force and torque.)

power bus 3 Nominal (Failure considered too fatal and remote to involve in diagnosis.)

Table 4. DS1 Hardware Modeled as Modules in MIR

Module # in Model Subcomponents

power relay 12 1 switch, 1 switch sensor

power distribution unit 1 12 relays, 3 power buses, 3 current sensors, 1 remote terminal

generic RT subsystem 3 1 remote terminal (Models RT for devices MIR does not otherwise model)

IPS system 1 1 IPS, 1 remote terminal

thruster pallet 4 2 thrusters (X facing and Z facing)

reaction control system 1 4 thruster pallets

PASM subsystem 1 1 remote terminal

It is important to note that the MIR models are not
required to be explicit or complete with respect to the

actual physical components. Often models do not
explicitly represent the cause for a given behavior in
terms of a component’s physical structure.  For example,



there are numerous causes for a stuck switch: the driver
has failed, excessive current has welded it shut, and so
on.  If the observable behavior and recovery for all causes
of a stuck switch are the same, MIR need not closely
model the physical structure responsible for these fine
distinctions.  Models are always incomplete in that they
have an explicit unknown failure mode.  Any component
behavior which is inconsistent with all known nominal
and failure modes is consistent with the unknown failure
mode.  In this way, MIR can infer that a component has

failed, though the failure was not foreseen or was simply
left unmodeled because no recovery is possible.

By modeling only to the level of detail required to
make relevant distinctions in diagnosis (distinctions that
prescribe different recoveries or different operation of the
system) we can describe a system with qualitative
"common-sense" models which are compact and quite
easily written. Consider the stylized model fragment in
Table 5 which describes some of the possible modes of a
remote terminal.

Table 5. MIR Model Fragment  for Remote Terminal

device remote-terminal
     power_input = rt_switch->power_output
     command_input = bus_controller->command_output
mode nominal:

if ( power_input == OFF)  comm_status = NO_COMMUNCATION
if ( power_input == ON)   comm_status = COMMUNCATION

mode resettable-failure:
probability = LIKELY
comm_status = NO_COMMUNCATION

        if (command_input == RESET) next mode = nominal
mode powercyclable-failure:

probability = LESS-LIKELY
comm_status = NO_COMMUNCATION

        if (power_input == OFF) next mode = nominal
mode unknown:

probability = UNLIKELY
/* Note there is no model, so any unmodeled behavior is consistent */

This single model describes how a remote terminal’s
outputs behave nominally and during failure, what
connections to other devices influence its behavior, and the
expected effect of recovery actions such as RESET if the
device is in the mode under consideration. If a remote
terminal is not communicating, MIR will consider that it
may no longer be nominal or it may not be receiving power
input. When investigating the latter, MIR will generate a
similar set of explanations for why a switch might fail to
provide power given its model and connections. Additional
technical details about Livingstone can be found in [13].

7. INTEGRATING RAX INTO THE FLIGHT SYSTEM

Integrating RAX with flight software is challenging because
RAX represents a significant departure from traditional
flight software.  The differences are not only technical as
described previously, but also practical and cultural.  From
the view of flight software these differences may manifest
themselves in a number of ways—from uneasiness within
the flight software developers to an actual increased risk in
the flight software product.  Fortunately, none of these
differences nor their impacts are inherent limitations to
RAX technology and thus, with sensitivity to the issues,
RAX is successful as a high-level flight software control
architecture.

Perhaps the single largest practical difference that RAX
presents arises from the fact the RAX is implemented in
Common Lisp whereas previous missions, and also the
realtime software with which RAX interacts, use lower-
level languages like C. Many issues arise some of which are
fact others of which are myth; however, the most significant
issue is that interfaces between RAX and FSW might need
to be specified and shared in either or both of two
languages.

The success of RAX required that these issues be addressed
in a way that would allow traditional flight projects to be
comfortable with RAX technology and also to mitigate the
risk introduced by the new technology. The result is the
“RAX Manager” flight software component.

The RAX Manager presents the RAX technology to the
flight software with a traditional flight software interface.
Like hardware device managers, the implementation behind
the interface is of no concern once the interface is correct,
the functionality is in place and the required resources are
allocated.

The RAX Manager serves several different functions over
the life cycle of the project.



1) At design time, the RAX Manager specifies the interface
agreements between RAX and the flight project.  The
interfaces includes all of the following:

• Telemetry and Logging

• Ground-based Command Dictionaries

• Computational Resources (CPU Fraction, Memory
Requirements, etc.)

• FSW messaging (function calling) interface

• Flight Rules

• Fault Protection responses

• Timing within the Mission Plan.

2) At implementation time, the RAX Manager shields the
existence of CommonLisp in the RAX implementation from
the flight software by presenting a “C” interface externally.
Producing that interface and performing any necessary
conversions to the RAX implementation language are the
full responsibility of the RAX developers.  The process was
simplified dramatically by a RAX developed software
package known as CLASH (“C and Lisp Abstract Syntax
Harmony”).  CLASH defines a language for use in
declaring a message passing interfaces and provides a
preprocessor program (i.e. a compiler) to translate the
declared interfaces to “C” header files, “C”' code files, and
Lisp code. CLASH also runs inside RAX and hides all
aspects of the inter-module communication issues. Thus,
there is one uniform interface for internal message passing
among RAX components, external message passing
between RAX and C modules, and even telemetry packet
encoding. Simple compile-time declarations specify the
interface and the location (internal or external) of the code
implementing the corresponding interface.

3) At FSW testing time, the RAX Manager decouples  RAX
from the flight software and thus allows the launch-ready
software to be tested in anticipation of the launch date and
the RAX software to be tested in anticipation of the (later)
experiment start date.  The RAX testing can thus proceed
after the launch much as many ground-generated traditional
sequences are validated post-launch.  The RAX Manager
however, as a tiny subset of the RAX code, can be tested
relatively early, on the flight software schedule.

4) At runtime, the RAX Manager mediates the message
passing between RAX and flight software.  There are two
aspects to this.  This first is that the RAX manager must
both initiate and terminate the RAX experiment: the
initiation happens as commanded from the ground; the
termination as a result of either a ground command or an
unanticipated fault having found its way into the non-RAX
fault-protection subsystem.  The second aspect is that the
RAX Manager must discard any messages destined for RAX
during those times when the RAX is not operational.  For
DS1, RAX is a relatively short-lived technology
demonstration experiment, so the dominant runtime activity
of the RAX Manager will be to simply discard any incoming
messages.  Of course, for the time between initiation and
termination the RAX Manager passes most messages
between RAX and flight software.

Through these four functions, the RAX Manager spans the
entire flight project lifecycle and in so doing allows the
RAX to address and mitigate the unique risks that arise in
each phase.

8. TESTING RAX

Our approach to testing and validating the RAX not only
exploits standard software testing practice, but also goes
beyond it in a number of key areas.  The foundation of a
reliable, high quality system is laid with the design and
specification of the interfaces between the different
subsystems.  To this end, we have formalized all RAX
interfaces, both between RAX and the rest of the flight
software and between the components of RAX, using
CLASH.  The use of CLASH has essentially eliminated a
whole class of essentially syntactic errors such as
discrepancies in the index used to identify a switch in an
array, out of range values, and inconsistent interpretations
of interface structures.  Formalizing these interfaces has
allowed us to focus our testing effort on finding and
eliminating more subtle semantic errors.

RAX System-level Testing

Our principal approach to testing the RAX at the system
level was the scenario-based testing of requirements.
Testing of individual RAX modules used both scenario-
based testing methods and a variety of other methods
discussed later in this section.  We started scenario-based
testing by identifying the set of system-level requirements
to be met by the RAX.  We then designed a set of test
scenarios, ensuring that each requirement is adequately
tested by one or more of these scenarios.  Scenario design
started with the development of the 12 hour and 6 day
scenarios to be demonstrated in flight.  These scenarios
include nominal operation, planning and executing back-to-
back plans, and a variety of failure scenarios.  Additional
scenarios were developed as variations on this basic set of
scenarios. Variations were generated both for nominal
execution (e.g., varying the number of OpNav image goals
per window, varying the available power from the solar
arrays, and varying the slew times for turns) and for failures
(e.g., varying the location, time, and number of failures).

An important aspect of the above approach is to have
people intimately familiar with spacecraft and mission
develop the scenario variations.  This ensures that the
different scenarios capture all likely variations in the
nominal scenarios, and all credible failures.  Furthermore,
such people can identify situations that are likely to be
challenging for the RAX, e.g., time or resource limited
situations, critical sequences requiring precise timing, and
failures that are hard to diagnose and recover from.
Mission and systems engineers are in the best position to
develop scenario variations. However, in order to avoid
excessively taxing the systems engineer’s time, our
approach has been to have knowledgeable members of the
RAX team develop the scenario variations, and have these
variations be reviewed by DS-1 systems engineers.  The
limited scope of the RAX makes this approach feasible.



This basic approach to testing generalizes naturally to
system-level testing of a Remote Agent being deployed for
a complete mission.  In particular, each mission usually
consists of a number of different phases characterized by
nominal scenarios.  For example, the phases of the DS-1
mission include launch, ballistic cruise, cruise under  ion
thrusting, asteroid and comet flybys, and various validation
experiments.  Nominal scenarios for each of these phases
can be developed and tested.  Systems engineers can then
use these nominal scenarios to develop scenario variations,
including failure scenarios, to build confidence that the
Remote Agent can effectively carry out all phases of the
mission under a variety of different situations.  The focus
provided by the nominal scenario of each phase helps keep
the system-level testing of the Remote Agent manageable.

Scenario-based testing of RAX is augmented with a variety
of tools and processes to ensure effective testing.
Specifically, we have developed a set of flight software and
hardware simulators that support effective RAX testing
prior to integration with the rest of the flight software.  We
have also developed tools for simulated time “warping”,
which allows the RAX and its associated simulators to skip
over periods of time in which the RAX is idle.  This allows
us to test scenarios lasting for days or weeks of simulated
time in a few minutes or hours of real time.  Whenever
possible, we have attempted to convert all tests into
automatic regression tests requiring no manual intervention.
This allows us to automatically run a battery of tests
overnight, to ensure that every major release of the RAX
passes all regression tests.  Finally, we have installed a
formal bug tracking system using the GNU GNATS system
and a process for its use. Whenever a code error is
discovered, it is logged in GNATS.  Once the error is
corrected, a regression test is created that fails before the
code is corrected but passes with the corrected code.  This
regression test is then added to the set of regression tests.

In addition to the system-level testing described above, we
also do extensive module feature tests on each of the RAX
modules.  These are described below.

Planner/scheduler module feature testing

The main requirements on the planner is that it produce a
valid plan for all valid plan requests from the Executive and
all legal behaviors of the plan experts, and successfully
update the mission profile in response to an profile update
request. The latter requirement can be tested directly with
automated scenario-based testing.

The first requirement is somewhat harder to test. For any
partial plan provided to the planner and any set of plan
expert behaviors, the planner must either produce a valid
plan before its computational resource bounds are exceeded
(times out), or report that no plan can be generated within
those bounds. For a plan to be valid, it must be consistent
with the plan model. This requirement is tested by extensive
scenario-based testing.  The plans generated in each
scenario are tested for correctness against the plan model
by an automated constraint checker, and manual spot
checking of plans. The constraint checker converts the plan

model into a set of logical constraints. Each plan is checked
to ensure that all of the constraints are met. The constraint
checker also performs a coverage analysis to ensure that
every rule in the plan model has been exercised by an
adequate number of plans. Manual spot checking is done by
displaying the plan as a modified GANTT chart with a plan
viewing tool.

Even if a plan is valid with respect to the plan model, the
plan model itself may be incorrect. The model may not
express the knowledge that the model developer intended,
or the developer may not have acquired the correct
knowledge from the experts. The plan model must be
verified with respect to the knowledge of appropriate
experts. This is done by encoding the plan model into
English specifications and confirming them with human
experts. Another source of expert knowledge are the flight
rules. These are English rules that state what actions can
and cannot be performed on the spacecraft.  For example,
“never fire the IPS engines while taking optical navigation
images”. These rules can be converted into logical
expressions and added to the set of constraints checked by
the constraint checker. As a final test, a small representative
set of plans are run through the executive to ensure that
they execute correctly and that the spacecraft exhibits
correct behavior.

Executive module feature testing

The modular, multi-level structure of the Executive (see
Section 6) enables the Executive sub-modules to be tested
independently and permits the Executive to be adapted to
new missions with a minimal amount of change, primarily
at the external devices level.  Given the limited scope of the
RAX, testing the higher levels of the Executive (i.e., the
external device level and the top level control) is relatively
straightforward.  This gives us an opportunity to effectively
test the lower levels of the Executive, providing a well-
tested foundation for future missions.  If it were necessary
to redevelop and test the entire Executive for each mission,
the high development cost could very well eliminate its
selection on future missions.

As previously discussed, we use automatic regression tests
whenever possible to test the Executive.  Once such a test is
started, manual intervention is not required and the test
returns a pass or fail value. To facilitate this process, a
simulator is used that was designed to check system-level
properties and constraints while the Executive is running.
For example, one constraint is that the MICAS camera is not
to take a picture while the spacecraft is turning.  Given this
constraint, the simulator generates an error that will cause a
test to fail if the simulated spacecraft is turning when it
receives a command from the Executive to take a picture.

Unfortunately, not all testing can be done automatically.
Determining if the Executive really did what it was
supposed to do in certain situations often requires an expert
to review the log generated by the Executive. This can be
time consuming and errors may be overlooked. In order to
address this problem, a visualization tool for validating
Executive plan execution, called Planview, was developed



at CMU by Simmons and Whelan [14]. Planview provides
the user an overall view of all the executing timelines,
highlights execution flaws, and allows the user to zoom in
on an individual token showing its values and constraints.

Finally, a formal analysis approach is used to check if the
Executive code violates design specifications [15]. In this
approach, we create a formal model that characterizes the
abstract behavior of critical Executive constructs (for
example, those dealing with resource management). We
also formalize design requirements that should be enforced
whenever the constructs are used (for example, aborted
activities must always give up any resources that were
allocated to them).  Then we run this abstract model
through a formal model checker, which either proves that
the formal model satisfies the design requirements or
generates an example scenario where the requirement
would be violated. Using this approach, errors in the
Executive code were discovered that would have been very
difficult to discover using the test methods described above.
A major drawback of this approach is that it is time-
consuming and has only been applied to a small part of the
Executive. Decreasing the time and expertise required to
perform this analysis is an ongoing research area.

Diagnosis and Repair module feature testing

MIR has four major categories of testable requirements: it
must provide command confirmation to Exec, it must
diagnose a set of failures, it must provide recoveries for
those failures, and it must meet certain performance
requirements. The majority of MIR testing is scenario based
testing on a combination of simulators and real hardware.
A scenario consisting of a sequence of spacecraft
commands and resulting monitor values (real or simulated)
is processed by MIR.  At each point in the scenario, MIR’s
model of the spacecraft's state must agree with the
spacecraft state predicted by the scenario commands.
During the scenario, a failure is injected into the spacecraft
simulation or hardware testbed, causing a set of monitor
values to be reported to MIR.  MIR’s diagnosis and recovery
are then checked against the injected failure and
performance metrics are taken.

MIR testing scenarios derive from three sources.  The first
is devious human testers.  We have developed tools to allow
a user to easily write a scenario consisting of RAX
command sequences, failure injections and, when not
running on the hardware testbed, the expected monitor
values. Human analysis of MIR’s weaknesses provides the
most stressful but most expensive test scenarios for the
system.  The second source is brute force automatic
scenario generation.  The RAX MIR models are small
enough that many classes of tests can be performed
exhaustively given a set of reasonable limiting assumptions
and a fast spacecraft simulator.  For example, given the
simplicity of MIR’s models, each failure can be injected in
each combination of modes the model can achieve and
automatically checked for correct diagnosis and recovery.
The third source is informed automatic scenario generation.
MIR models the spacecraft by modeling each component as
a finite state automaton. A large amount of work has been

done in the verification community in verifying that a finite
automata (here the MIR models) correctly models a physical
or software system (here the spacecraft simulator or
hardware).  In addition, a large amount of work has been
done in the model-based diagnostics community in deriving
tests that systematically sensitize each subsystem of an
assembled system (here the simulator or hardware) and
determine that diverge from their models. We are drawing
on this work to build automatic test generators which will
provide near-minimal length tests which will determine if a
MIR model agrees with the hardware or simulator it models.

9. FUTURE WORK

A number of desirable Remote Agent features are planned
for future Remote Agents that will not be part of the DS1
RA.  These enhancements will further increase mission
robustness,  refine diagnostic capabilities, and simplify the
process of representing and integrating knowledge
throughout the software.

In our discussion of mission robustness, we discussed
flexible planning and recovery capabilities.  These
capabilities will not help in cases where some preventative
or preparatory action needed to be taken in the past to
enable recoveries in the current situation.  For example, if
the primary engine breaks, the system may only be able to
switch to the backup engine if it has been warmed up.
Future Remote Agents will have the capability to anticipate
such possible failures, or even opportunities, and to then
build plans that provide the necessary resources so the
system is prepared for many possible futures.   A related
capability in this vein is for the executive to understand the
priorities in the plan, so that it can abandon individual tasks
or threads of activity without failing the entire plan.  This
will enable high-priority activities to be completed even if
low-priority activities fail.

In our discussion of diagnosis, we pointed out that the MIR
system makes new inferences every time an action is taken
or a new observation is made.  In the event of failures, it
will generate recoveries that may improve the situation.
However, sometimes these actions taken during normal
execution or even recovery will not present the right
information to isolate the fault to an optimal level of detail.
Our future work will develop methods for active testing, in
which the system will conduct tests whose sole purpose is
to help it improve its understanding of the state of the
spacecraft.  Examples of this capability include turning the
spacecraft to see if a gyro is measuring turn rates correctly,
and turning selected devices on and off to detect shorts.

In terms of knowledge engineering, we discussed how the
various reasoning engines in the RA use different
representations of knowledge.  In many ways this is a
necessary and useful feature, as it allows the planner to
reason at a more abstract level than the executive, and the
diagnosis system to reason at a more detailed level.  While
heterogeneous representations have a number of benefits,
they also raise some difficulties.  Most significant of these
are the possibility for models to diverge rather than
converge, and the need to duplicate knowledge



representation efforts. Ideally, we would like to head toward
an increasingly unified representation of the spacecraft, but
we intend to do so always generalizing from powerful
models capable of handling the complexities of our real-
world domain.

Many of these technology advances are currently targeted
for future Deep Space Missions of the New Millennium
Program.  Deep Space Three is a three spacecraft separated
optical interferometer and Deep Space Four is a Comet
nucleus Sample Return mission.  Both are slated for
launches in the early years of the new millennium.
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APPENDIX A
Timelines and their respective tokens by Module (EXEC's perspective).

MODULE TIMELINE TOKEN DESCRIPTION

ACS Spacecraft Attitude constant_pointing_on_sun Point vector at Target, Solar Panels at Sun

transitional_pointing_on_sun Turn vector to Target,  Solar Panels at Sun.

poke_primary_inertial_vector Small attitude change.

RCS_Health rcs_available Maintain information on thruster status.

RCS_OK maintain_rcs Set and maintain desired RCS mode.

MICAS
(Camera)

MICAS_Actions micas_take_op_nav_image Take a set of navigation pictures.

MICAS_Mode micas_off Keep MICAS off.

micas_ready Keep MICAS on.

micas_turning_on Turn MICAS off.

micas_turning_off Turn MICAS on.

MICAS_Health micas_availability Ensure MICAS is available for use.

Op-Nav Obs_Window obs_window_op_nav Wait for a specified duration.

Nav_Processing nav_plan_prep Send message to prepare navigation plan.

PASM PASM Available  pasm_monitor Monitor the PASM switch.

SEP SEP sep_standby Achieve and maintain IPS standby state.

sep_starting_up Achieve and maintain IPS start-up.

sep_thrusting Maintain a thrust level.

sep_shutting_down Stop thrusting and go to standby state.

SEP_Time Accum accumulated_thrust_time Monitor thrust time accumulated.

SEP_Schedule thrust_segment Specifies desired thrust level and vector.

SEP_Thrust Timer max_thrust_time Set a timer and stop thrusting if time reached.

thrust_timer_idle Thrust timer is off.

Planner Planner_ Processing planner_plan_next_horizon

script_next_horizon

Request and get next plan from planner.

Run the next scripted plan.

General EXEC Activity exec_activity Execute a low-level sequence file passed as a
parameter.

EXEC_Eval exec_eval_watcher Process a specified script.

Additional tokens not listed above are used by the Planner as "placeholders" in the timelines. These placeholder tokens do
not require EXEC to perform any activity.



APPENDIX B
Detailed Planner model for SEP

Timelines Tokens Comments

SEP_Schedule [Goal
timeline]

Idle_Segment

Thrust_Segment

SEP_Schedule is populated by NAV planning expert. Thrust_Segment
defines time period with heading and thrust level. Several sequential
segments constitute a schedule. Idle_Segments needed to pad the
timeline to precisely position the thrust segments.

SEP_Thrust_Timer
[Goal timeline]

Thrust_Timer_Idle

Max_Thrust_Time

Max_Thrust_Time is returned by the NAV planning expert. It
specifies the total burn duration to be achieved in the current planning
horizon.

SEP_Time_Accum
[Internal timeline]

Accumulated_Thrust_Time Tracks the amount of time in the plan during which SEP is scheduled
to thrust. Time accumulation occurs only during SEP_thrust tokens
(see below).

SEP [Executable
timeline]

SEP_Standby SEP is ready but power to the grid is turned off. Tracks the amount of
time since SEP was thrusting. Greater the time since last thrusted,
longer the duration of the SEP_Starting_Up token. Follows
SEP_Shutting_Down. Followed by SEP_Starting_Up. Schedule
appropriate power consumption retrieved from on-board power table.

SEP_Starting_Up Prepares the Xenon tanks to allow thrusting. Duration of this token is
dependent on when SEP was last thrusting and on previous thrust
level. Requires attitude of spacecraft to be kept constant on requested
thrust heading. Follows SEP_Standby. Followed by SEP_Thrusting.
Schedules power consumption retrieved from on-board power table.

SEP_Thrusting/FIRST SEP engine is actually thrusting immediately after having been started
up. Must be temporally contained in a Thrust_Segment token (see
above) from which it receives requested attitude and thrust level.
Attitude must be kept constant to requested attitude throughout the
token. Communicates its duration to an Accumulated_Thrust_Time
token to track total accumulation. Follows SEP_Starting_up. Followed
by either SEP_Thrusting/NEXT or SEP_Shutting_Down.
Communicates requested heading to SEP_Starting_Up and
SEP_Shutting_Down (if appropriate). Schedules power consumption
retrieved from power table.

SEP_Thrusting/NEXT SEP engine is continuing to thrust (without having shut down) after
change of attitude. Follows SEP_Thrusting/NEXT. Followed by
SEP_Thrusting/NEXT or SEP_Shutting_Down. A short duration turn
in TVC mode is requested to change attitude at the very beginning of
the token. Communicate requested heading to SEP_Shutting_Down if
appropriate. Other constraints identical to those of
SEP_Thrusting/FIRST. Schedules power consumption retrieved from
power table.

SEP_Shutting_Down Turns off  SEP. Requires spacecraft to be kept constant on requested
thrust heading. Schedules power consumption from power table.
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