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ABSTRACT-Fhis paper describes the Remote Agent ﬂightexploration. Where human exploration is desired, robotic
experiment for spacecraft commanding and control. In th8r€CUrsors can help identifty and map candidate landing
Remote Agent approach, the operational rules anEétes, find resources, and demonstrate experimental

constraints are encoded in the flight software. The softwar chnologies.
may be considered to be an autonomous “remote agent” U

the spacecraft operators in the sense that the operators r%
on the agent to achieve particular goals.

rrent spacecraft control technology relies heavily on a
atively large and highly skilled mission operations team
that generates detailed time-ordered sequences of
commands or macros to step the spacecraft through each

The experiment will be executed during the flight Ofdesired activity. Each sequence is carefully constructed in
NASA’'s Deep Space One technology validation mission, Y q Y

During the experiment, the spacecrafll wot be given the SUCht a ;Nay as t.tof. ((ajns_l#]e th"tﬂ all knfo;/tv]n operat|orf1ta.|
usual detailed sequence of commands to execute. Inste{r(%r.]s (;am S aré satistied. € autonomy ot the spacecrat 1S
the spacecraft i be given a list of goals to achieve during Imited.

the experiment. In flight, the Remote Agent flight softwareT
will generate a plan taccomplish the goals and then
execute the plan in a robust manner while keeping track
how well the plan is being accomplished. During plarlt
execution, the Remote Agent stays on the lookout for a
hardware faults that might require recovery actions
replanning.

his paper describes a flight experiment which will

emonstrate the Remote Agent approach to spacecraft
ommanding and control. In the Remote Agent approach,
he operational rules and constraints are encoded in the
g?fight software and the software may be considered to be an
Hutonomous “remote agent” of the spacecraft operators in
the sense that the operators rely on the agent to achieve
garticular goals. The operators do not know the exact

In additiqn to describing the de_sign c_)f the remote agent, thﬁgnditions on the spacecraft, so they do not tell the agent
paper discusses technology-insertion challenges and t;éactly what to do at each instant of time. They do,

&pepsrg?:%gllgztls:n the Remote Agent approach to addre owever, tell the agent exactly which goals to achieve in a
' period of time as well as how and when to report in.

The experiment integrates several spacecraft autono . . .
technologies developed at NASA Ames and the J';:l:he Remote Agent (RA) is formed by the integration of

Propulsion Laboratory: on-board planning, a robust multi- ree separate technologies: an on-board planner-scheduler,
threaded executive. and model-based failure diagnosis a robust multi-threaded executive, and a model-based fault

recovery. iagnosis and recovery system.

This Remote Agent approach is being designed into the
1. INTRODUCTION New Millennium Program’s Deep 8pe One (DS1) mission
Robotic spacecraft are making it possible to explore th@S &n experiment. The spacecraft (see Figurelllfjyuby
other planets and understand the dynamics, compositiof! asteroid, Mars, and a comet.

and history of the bodies that make up our solar syste . . . . . .
These spacecraft enable us to extend our presence irr?we New Millennium Program is designed to validate high-
ayoff, cutting-edge technologies to enable those

space at a fraction of the cost and risk associated wi ; .
human exploration. They also pave the way for huma echnologies to become more broadly available for use on
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Figure 2. Fast replanning based on new information

other NASA programs. The experiment is slated to b
exercised in October of 1998.

1%

Similarly, on the Mars Pathfinder mission, the science team

requested the ability for the meteorology instrument, when

it senses that a dust devil is passing, to tell the camera to
Figure 1. DS1 Spacecraft take unplanned images aimed at the departing dust devil. It

is difficult to see how this capability could coexist with

Section 2 discusses the benefits to the spacecrdftme-tagged command sequences for the imaging planned

community from increased spacecraft autonomy and thtor the rest of the day.

motivation for this work. Section 3 outlines some of the ) )

challenges to acceptance of spacecraft autonomy afteducing Spacecraft Operations Costs

Section 4 introduces the Remote Agent design approaqh funding sources are insisting that means be found to
and architecture. Section 5 covers the particulars of the DSLy,,ce operations costs. A fixed amount of funding is

Remote Agent experiment.  Section 6 discusses the qijaple from NASA for solar system exploration including
functioning of each of the three technology components ok, cecraft development and operations. When operations

the Remote Agent. Section 7 describes how the Remojg,qis are reduced, more resources become available for
Agent software is integrated into the separately-develope eveloping a wider variety of interesting solar system

Deep Space One flight software. Section 8 describes NOW|oration missions. Development of detailed spacecraft

the Remote Agent experiment is tested prior to flightPequences accounts for the largest expenditure in operations
Section 9 summarizes the paper and describes plans &']dgets.

future Remote Agent development.

By commanding spacecraft at a higher level of abstraction,
2. NEED FORAUTONOMY ON SPACECRAFT much of the sequence development task becomes the
nt sponsibility of the flight software, reducing ground
Rerations costs. Some of the savings come from a change
0 how we think about operations planning. The old
pproach was that all spacecraft activities needed to be
redicted and approved by ground controllers. The new
thinking is that the ground controllers do not (always) need
to know the low-level details of spacecraft activities but
only the capabilities of the apecraft and the high-level
goals.
Our science customers would like the spacecraft to be able
to modify its sequence of actions more quickly based olnsuring Robust Operation in the presence of
late-breaking information available on the spacecraft. uncertainty

The desire to increase the level of spacecraft autono
comes from at least three separate objectives of spacecr
customers: taking good advantage of science opportunitie
reducing spacecraft operations costs, and handlin
uncertainty—including ensuring robust operation in th
presence of faults.

Taking Advantage of Science Opportunities

For example, an ultraviolet spectrometer on a comet flyb ur customers still require high reliability and the ability to

mission might identify a region of particular interest for eslpond to problems in flight.f For existing spac%craft, the
intense scrutiny. With current technology, scientists havf@ult protection system often represents the most
to make do with whatever pre-planned sequence futonomous system on-board. Robust operation is desired
observations has been stored on-board and cannbt the presence of hard faults, degraded performance, and

reprogram any of those to examine more closely the newlQPerator errors.

identified region of interest. With a future RA, plans may.Eraditional spacecraft, even in conservative designs

revi n this new information hours or minut : S X
be revised based o s ne ormation nours o U ?egenerally provide some minimal level of fault protection out

of ho_urs is_ impraqtical and a turnaround tir_ne of minutt_es ig{)l?t(raglesp?cl)tv)\//‘erocf?(;rxt”esrfﬁaasnzorglzjot:ypi;ggllf r;rev\vlléztaé%%i%
ghyswally impossible due to the speed of light. See Figur ontrollers from diagnosing or correcting the problem. The
) Remote Agent is able to go a step further: after recovering
from a fault, it can continue the mission, even if it involves
replanning for degraded capability.



Another advantage of the Remote Agent derives from th8ome additional techniques are required. These are
nominal and failure modeling used by the fault diagnosislescribed in the testing section of this paper.

engine. For hard-coded fault protection designs, the

domain knowledge is implicit rather than explicit. This The concern about early definition may be valid depending
means that we rely on the fault protection algorithmon how much of the spacecraft behavior we choose to build
developers to understand the system, and abstract from thato the flight software before launch. With the traditional
understanding a design for which symptoms to look for angequence development approach, many sequences are
what responses to take when they show up. In contrast, witteveloped after launch, so there is no opportunity to
model-based fault diagnosis, the fault protection softwarebserve full end-to-end behavior in a test environment.
engineers explicity model how the system behaves iWith an on-board planner, we now have the opportunity to
nominal and failure cases. Fault diagnosis then becomesdasign and test the behavior before hand. It should be
search for likely diagnoses given observed symptomspointed out that this is an opportunity and not a
Since the spacecraft designers understand the details of tiggjuirement. For example, the Project may choose to delay
system behavior, there is an advantage to having thefinal design of flyby scenarios until after launch. In this

encode their knowledge explicitly at design time. case, we should expect to update the on-board planner and
mission goals at the time that the scenario is finalized and
3. AUTONOMY TECHNOLOGY INSERTION this may be after launch.

REQUIREMENTS 3. Test Plan coverageHow do we develop a test plan that

It is not enough to build a better mousetrap; it won't catcigssures adequate coverage? How should test cases be
any mice unless it gets used. There are similar issues f@evised? What needs to be tested in system test? The core
the insertion of higher levels of autonomy into spacecraf€ngines underlying the Remote Agent are unfamiliar to
designs. The design must be developed with the needs gpacecraft test teams and could require large effort to test.
two sets of customers in mind: the spacecraft test engineers

and the mission controllers. First, a distinction should be made between the Remote
Agent infrastructure or engines and the mission-unique
Spacecraft Test models.  The Remote Agent infrastructure will be

] _ _ . extensively analyzed and tested in pre-integration unit tests.
Conversations with spacecraft test engineers have raisedathe system test level, the focus should be on whether the

number of concerns that must be addressed in amehavior of the Remote Agent meets the goals and
autonomous system design process. constraints set for it.

1. Determinism and non-determinisis: the system non- As with any complex system, the test plan needs to include
deterministic? How do we test the system if we don'thominal cases, failure cases, and cases that test the
control its initial conditions in flight? boundaries of the system so that the operators learn where it
. will break. The planner can be challenged by overloading
For the current Remote Agent design, the system ige number of tasks to be done in a short time. The
d.etermlnlstlc to the extent that t.he same set of inputs W!Hzxecutive may be challenged with a large number of tasks
yield the same outputs each time. The context for thigequiring immediate response, and fault protection may be
question, however, is that we cannot _pred|ct the exact set Bﬁallenged by examining its response to multiple, closely
commands that the Remote Agent will use to achieve a sghaced failures. Planner unit testdl wiclude examples
of goals far in the future since we cannot predict exactlysing each constraint. Executive unit tests should explore
what the spacecraft statéllvibe at that time. This situation ggcn approach that might be used to achieve a task and fault

is common in another context, that of attitude controfyotection tests still depend on devious testers to invent
systems. We don't know exactly when a particular thrUStetEhaIIenging scenarios.

will fire, but we do know that the system will fire thrusters
as needed to achieve the higher level goal of holding the |arge variety of tests seeking extreme and boundary
commanded attitude. condition behavior is indicated when testing any complex

) software system.
So how do we test such a system? For an attitude control

system, we develop multiple scenarios and verify that tha major advantage of the Remote Agent approach is that it
pointing error meets requirements in all situations. We alsgepends on declarative hardware knowledge; in other
check that the propellant usage is acceptable while thgpproaches the hardware knowledge is captured Only
requirements are being met. Continuing the analogy with aplicitly. Explicit models come in handy at review time

attitude control system, we develop multiple scenarios angecause the software engineer can sit with the hardware
test whether the high level goals are met, and analyzgpert and review the declarative model of the hardware.
whether the resources required to do so were acceptable. This helps reduce errors in understanding between the

. . o : . hardware and software engineers.
2. Earlier system behavior definitioThe flight system is

more complex, so more testing is needed earlier and the
desired behavior needs to be defined long before launch.



Mission Operations replanning, multi-threaded smart executive, and model-

based failure diagnosis and repair. In NewMaap, we

Barned how to take advantages of the strengths and
Qeaknesses of these three technologies and merge them into
a powerful system. After successful completion of the

o Prototype, the RA was selected as one of the NMP

echnologies for DS1. It will be uplinked to theaspcraft

as a software modification and demonstrated as an
experiment.

Mission operators or controllers have clearly expressed
number of requirements or desires with respect to fieldin
autonomous systems. These include:

1. Low level commandingdperators should be able to hav
access to low-level control of spacecraft hardwar
unimpeded by the autonomous system.

As this requirement became clear, the Remote Agent desi% 3 shows the communications architecture for the
was modified to allow low-level hardware command_9:

access—potentially  bypassing some autonomou%{.emme Agent’s interaction with the rest of the spacecraft

capabilities and safeguards. Unless the Remote Agent .i@ht software. Note that all interaction with the hardware

instructed in  the context and goals of these low Ievelirs the responsibility of the real-time software. The RA is

commands, they need to be used carefully and when t %yered on top of that software, but also gathers information
spacecraft is in a low activity quiescent mode. fom all levels to support fault diagnosis.

2. Ground override authorityAn ability to command the Remote Agent |t Planning| | Ground

: | Experts | | System
spacecraft to revert to a low-level of autonomy mode if the Planner/ To——) A v
controllers decide that they want to disable the autonomou Scheduler Experiment|y/
feature. Manager ||

Real-Time
This requirement is met on DS1. »  Software
3. Migration of autonomy capabilitiesA sequence that ] Mon-
allows demonstration of autonomous capabilities as groun %/v e
system capabilities prior to fielding them on thacgrraft
as on-board capabilities. Reconfic Flight
H/W

The Remote Agent experiment is being designed to meet
this requirement by first engaging the executive as justF
another basic sequence engine, then allowing Remote Agent
to execute a pre-computed plan sent from the ground, angh era| spacecraft commanding styles are possible. Goal-
finally enabling the on board planner, bringing the full DSloriented commanding is the intended operating mode for
Remote Agent level of autonomy to bear. most of an RA mission; provision has been made for

updating the goals in flight. In a typical planning cycle, the

executive is executing a plan and gets to an activity that can
be interpreted as "time to plan the next segment." The
executive calls the planner with the current and projected

There will be a copy of the on-board planner built into theSPacecratt state including the health of all devices. The
ilgnner/scheduler generates a new plan using priorities,

igure 3. Remote Agent Communication Architecture

4. Behavior Prediction:The ability to predict (at some
level) what the behavior of the spacecraiit e when the
spacecraft begins to execute the on-board-generated plan.

ground system. This copy will be used to generat . ; ; : .
experience and rules of thumb as to what sets of goals uristics, and domain models including system constraints.
e planner sends this plan to an executive that creates an

easily achievable and what sets are difficult to achieve fo q £ ol " d tes th da. Pl
the on-board system based on these rules of thumb. TREENCa of plan items and executes he agenda. Flan

operators will define the goals feach mission phase and execution robustness is added by making use of the Model-

since the Remote Agent is closing the loop around theé%aSEd Mode Identification and ReconfiguratioiiR)

goals, the best prediction of spacecraft behavior is that theySEEM-  The MIR -~ system —includes monitors, mode
goals will be achieved on schedule. identification for nominal and failure conditions,

communication of state to the executive and proposals of
The Remote Agent has been designed to support multi-levegconfiguration actions to take in the event of failures.
commanding and monitoring in order to enable groun

controllers to adjust the level of autonomy they desir
across different activities or mission phases [1].

gEach of the components of the Remote Agent will be
described in more detail in Section 6, but first the Remote
Agent experiment for the Deep Space One missitirbes

4. REMOTE AGENT DESIGNAPPROACH AND described in more detail.

ARCHITECTURE 5. THE DEEPSPACEONE REMOTE AGENT
The New Millennium Autonomy Architecture rapid EXPERIMENT

iDrototype (NewMaap) effort [2] identified the key .
contributing  technologies: ~ on-board  planning  and) "€ Reémote Agent eXperimerRAX) for Deep Space One
is a demonstration of RA capabilities. Since an alternate



method of control is used for most of the missiRAaX is  switch is stuck on. When the new plan is received by the
focused on demonstrating specific autonomy capabilitieexecutive, execution resumes including navigation and SEP
rather than controlling all aspects ofaspcraft behavior. thrusting. Near the end of the three day plan, the planner is
The Remote Agent controls the following spacecraftcalled to generate the plan for the next three days. This
hardware and software: the camera for use in autonomop$an includes navigation and SEP thrusting as before. It
navigation, the Solar Electric Propulsion (SEP) subsysteralso includes two simulated faults. First, a failure of a

for trajectory adjustment, the attitude control system fohardware device to communicate is injected (F3); the
turns and attitude hold, the navigation system fomproper recovery is to reset the device without interrupting
determining how the actual trajectory is deviating from thehe plan. Next, a thruster stuck closed failure (F4) is

reference trajectory and what SEP thrusting profile isimulated by injecting an attitude control error monitor

needed to stay on the reference trajectory, the Powabove threshold. The correct response is to switch control
Amplification and Switching Module (PASM), for use in modes so that the failure is mitigated.

demonstrating fault protection capabilities.
RA Capabilities Demonstrated with DRAX

The above scenario has been designed to demonstrate that
F1. Power bus status switch failure the DS1 Remote Agent meets the following autonomy
technology goals:

Four failure modes are covered®&X. These are:

F2. Camera power stuck on

F3. Hardware device not communicating over bus to * Allow low-level command access to hardware
flight computer * Achieve goal oriented commanding
F4. Thruster stuck closed » Generate plans based on goals and current spacecraft

state expectations

The Remote Agent experiment is executed in two phases, a Determine the health state of hardware modules

12 hour Phase One followed a couple of weeks later by a 6° Demonstrate model-based failure detection, isolation,
day Phase Two. and recovery

* Coordinate hardware states and software modes
« Replan after failure given new context

Mission Scenario

In Phase One, we start slowly by first demonstrating the
executive operating in the manner of a low level sequencer
by accepting commands to turn devices on and off. Next, a 6. RA COMPONENTS

“scripted” mode is demonstrated with execution of plans )

uplinked from the ground. The main demonstration her&he major components of the Remote Agent are discussed
will be commanding the sgecraft to go to and stay in a below.

known, safe, standby mode and then take a series of optical

navigation (OpNav) images. In addition, Failure mode FPlanner/Scheduler

will be demonstrated by injecting power bus switch statU§he highest level commanding interface to the Remote
readings indicating that a power bus is unexpectedly offagant is provided the Planner/Scheduler (PS). PS maintains
The fault diagnostic system will examine this information, 4atabase of goals for the mission, rtiission profile, that
along with other information that indicates that devices orynang 5 very long time horizon, potentially the duration of
the bus are still communicating normally with the flight iy entire mission. Over the duration of a mission PS is
computer and conclude that the failure is in the switc eratively invoked by the executive to retun a
status measurement and not in the bus itself. No action Wil nchronized network of high-level activities, the plan, for
result. No planning or SEP thrusting are attempted in Phaggcy short-term scheduling horizon into which the mission

One. profile is partitioned. Typically each short-term horizon

In Phase Two. we also start by demonstrating low level® s several days. When PS receives a request from
' y 9 %XEC, it identifies the next scheduling horizon, retrieves

commanding, and then initiate on-board planning. Base i . ;
on the spacecraft initial state and the uplinked goals, thr%om the mission profile the goals relevant to that horizon,

planner will generate a three day plan including imaging foE
optical navigation, thrusting to stay on the referenc
trajectory, and simulated injection of faults to test ou
failures F2, F3, and F4. First the camera power stuck oRor RAX, Phase Two, the mission profile will cover 6 days
failure (F2) is injected. When the executive is unable tand contain two scheduling horizons of three days each.
turn off the camera when the plan so dictates, the executiv®X allows the specification of two kind of goals. One
realizes that the current plan should be aborted anspecifies the frequency and duration of the “optical
replanning is indicated. This might be necessary, fonavigation windows”, the time during which the spacecraft
example, because the initial plan’s assumptions on powes requested to take a set of asteroid pictures to be used for
consumption are incorrect with the camera on when ibrbit determination by the on-board Navigator. The second
should be off. The plan is declared failed, the spacecraft type of goal specifies a “mini-sequence”, i.e., a set of lower-
sent to a standby mode while the planner is requested level commands thaEXEC will issue to the real-time
replan based on the new information that the camera powesoftware, and requirements to activate the mini-sequence

erges in the expected initial spacecraft state provided by
XEC into a incomplete, initial plan and generates a fully
?populated plan. PS sends that plagX&C for execution.



with certain synchronization constraints with respect ta planning step). The PS is able to tune the order in which
other planned activities. A new plan will be requested oflecisions are made to the characteristics of the domain by
MM/PS in two situations: considering the consequences of action planning and
resource scheduling simultaneously. This helps keep the

* nominal operations:in this caseEXEC reaches the search complexity under control.

activity Planner_Plan_Next Horizon toward
the end of the current scheduling horiz&xgC will This is a significant difference with respect to classical
issue a request for a new plan. This request will definapproaches both in Artificial Intelligence and Operations
the new initial state as the expected final state from thResearch where action planning and resource scheduling
plan currently in execution. This will allow seamlessare typically addressed in two sequential problem solving
patching of the old and new schedule without anystages, often by distinct software systems. Another
interruption of execution. important distinction between the Remote Agent PS and
other classical approaches to planning is that besides
anomaly that will impact the executability of future activities, the pl_at_nner alstschedules the occurrence of
tasks in the plan, thEXEC will request a new plan to states and_ conditions. Such states and conditions may need
resume normaly operations after having put th to be monitored to ensure that, for example, the spacecraft
spacecraft in a safe standby mode. In this case tqs vibrationally quiet when high stability pointing is

ohe ; : . rVl:equwed. These states can also consume resources and have
initial state describes the standby tasks or holdlngi ite durations and, therefore, have very similar

ﬁ;a;ﬁﬁ i:\?‘grﬁqﬁir:)nsggzgit&? mgst?L?d dlg rtggegl?nno dae aracteristics to other activities in the plan. PS explicitly
for failed subsystems ap y deg aqknqwledges this similarity by using a unifying conceptual
' primitive, thetoken, to represent both actions and states
Notice that from the point of view of PS both the nominalthat occur over time intervals of finite extension.

and fault response case are handled exactly in the SABY consists of a heuristic search engine, the Incremental

way. Refinement Scheduler (IRS) that operates in the space of
Ground controllers can add, modify, or delete goals fronincomplete or partial plan [6]. Since the plans explicitly
the mission profile by explicitly issuing a command to therepresent time in a numeric (or metric) fashion, the planner
mission profile. For example, in a mission in which themakes use of a temporal database. As with most causal
spacecraft communicated to Earth through the Deep Spapénners, PS begins with an incomplete plan and attempts to
Network, the final communication schedule allocated to th&xpand it into a complete plan by posting additional
mission may become available only a few weeks ahead @bnstraints in the database. These constraints originate
time and it is possible that a schedule may change with fsom the goals and from constraint templates stored in a
short notice (e.g., within a week). Ground controllers willmodel of the spacecraft. The temporal database and the
need to communicate both of these situation to théacilities for defining andaccessing model information
spacecraft by issuing appropriate edit commands to modif§uring search are provided by the HSTS system. For more
the mission profile. details on PS and the HSTS system see [3] and [4]. Figure 4

describes the PS architecture.
PS provides the core of the high-level commanding

capability of RAX. Given an initial, incomplete plan
containing the initial spacecraft state and goals, PS
generates a set of synchronized high-level activities that,

« fault responseif the fault protection system detects an

Engine Domain Knowledge

once executed, will achieve the goals. PS presents several RN [RS Search | Heuristies
features that distinguish it from other Artificial Intelligence d cone

and Operations Research approaches to the problem. Fo v Model
example, in the spacecraft domain planning and scheduling (DDL)

aspects of the problem need to be tightly integrated. The
planner needs to recursively select and schedule appropriate
activities to achieve mission goals and any other subgoalgypesss=mrrs |
generated by these activities. It also needs to synchroniz
activities and allocate global resources over time (e.Q., g
power and data storage capacity). Subgoals may also b
generated due to limited availability of resources over time. . :
For example, it may be preferable to keep scientific Figure 4. Planner/Scheduler Architecture

instruments on as long as possible (to maximize the amoug,o coverage of thRAX model is described in Table 1.

of science gathered). However limited power availabilitynnhendix B gives a detailed description of the timelines and

may force a temporary instrument shut-down when othefsuens needed by PS to handle the propulsion and thrust
more mission-critical subsystems need to be functioning. 'Eubsystems of the spacecraft.

this case the allocation of power to critical subsystems (the
main result of a scheduling step) generates the subgoal
“instrument must be off” (which requires the application of

Plan




Table 1 Summary of Planner Models for RA Experiment

Subsystem | State Value Compat- Comments
Variables Types ibilities
MICAS Executable: 2 7 14 Models the health, mode and acyivif the MICAS imaging camera.

RAX demonstrates fault jiection and recovgrfor this device apart

Health: 1 of the 6 day scenario.

Navigation | Goal: 1 5 6 To schedule Orbit determination (OD) based picture takirg
Executable: 1 activity.
Internal: 1

Propulsion | Goal: 2 9 12 Based on thrust schedgienerated Y the NAV module, thelanner

& Thrust E table: 1 generatesplans to precisey activate the IPS inpecific intervals

xecutable. based on constraints in the domain model and is the most complex set

Internal: 1 of timelines and sulystem controlled Y the planner (see ppendix

B for details)

Attitude Executable: 1 4 4 Enables theplanner to schedule slews between consfaibting
attitudes when thepacecraft maintains itpanels towards the sun.

Health: 1 The tagets of the constanpointing attitudes are inging targets,
Earth (for communication) and thrust direction ( for IPS thrusting.)
Power Goal: 1 2 1 Allows theplanner to ensure that agleate power is available when
Manage- . scheduling numerous activities simultaneously.
Internal: 1
ment
Executive Goal: 1 2 7 Allows modeliy of low level sguences Wpassiny planner models
Executable: 1 g\'gng Mission (ps the abiliy to run in squencirg mode with the
Planner Executable: 1 2 2 To schedule when the Executive gaestetheplan for the next
horizon.
Mission Goal: 1 2 2 Allows the Mission Mager and theplanner to coordinate activities

based on a series of schedglimorizons pdatable ly Mission ps
for the entire mission

Each subsystem in the model is represented in the PRformation are laid down on separate goal timelines.
database. Each subsystem has a set of dynamic Stﬁépectgd d.eV|ce health mformatlon.ov_er time is t_racked by
variables whose value is tracked over time. Each dynamfe€@lthtimelines. The expected profile is communicated by
state variable can assume one or more values. A token BXEC to PS in the initial spacecraft statEXEC can
associated with a value of a state variable occurring over @mmunicate that the health of a device has changed even if
finite time interval. Each value has one or more associatet? fault has occurred. For example, in a previous fault

tokens. A legal plan will contain a token of a given valuggngine is not trustworthy and therefore should not be
only if all temporal constraints in its compatibilities are cc_>nS|dered operational until further tests h_ave been_run. PS
satisfied by other tokens in the plan. An example the atomi¥ill therefore generate plans that do not involve using the
temporal constraints that belong to a compatibility can b&ngine. They may decide to run some tests by posting
expressed in English as “While the spacecraft is takingPPropriate goals in the mission profile and therefore not

asteroid pictures requested by navigation, no ion thrusting &"éaking nominal plan execution. After the tests they may
allowed”. decide that the IPS engine is trustworthy after all and may

_ ) o ) ) send a message EXEC that it is again OK to thruseXecC
In Table 1 we identify four distinct kinds of state variables.ill communicate this to PS through the health timeline in
A goal timeline will contain the sequence of high-level the next scheduling horizon, without needing to interrupt

goals that the spacecraft can satisfy (e.g.,Nbeigate regular plan execution and put the spacecraft in standby
goal described before). Goal timelines can be filled eithemode.

by ground operators or by on-board planning experts seen ) ) . L
by PS as goal generators. For example, in order to generaﬁgother kind of state variable is amternal timeline. These

the portion of the plan that commands the IPS engine, P&€ only used by the planner to internally organize goal
interrogates NAV which returns two types of goals: thedependencies and subgoaling. Finally, executablestate
total accumulated time for the scheduling horizon and thyariable corresponds to tasks that will be actually tracked
thrusting profile to be followed. These two types ofa@nd executed bXEC.




TheRAX PS treats all timelines and tokens within a simpleconstraints not already resolved by ground or the planner.
unified search algorithm. This has advantages. The groureXEC manages abstract resources by monitoring resource
team could force certain behaviors of the spacecraft bgvailability and usage, allocating resources to tasks when
including in the mission profile explicit tokens on available, making tasks wait until their resources are

executable timelines. The additional tokens will be treatedvailable, and suspending or aborting tasks if resources
by PS as goals, will be checked against the internal Plfecome unavailable due to failures (such as a device
model and missing supporting tasks will be automaticallyoreaking). See Ref. [8] for a more detailed discussion.

expanded io Sredte & overal consistent plan. This Wikax Startup Upon StartupEXEC asks MIR to descrie the
current spacecraft configuration. Then EXEC puts the spacecraft
Table 2 gives quantitative information regarding the thredénto standby mode Standby mode is a safe mode that
plans that PS is expected to generate on board during thegGarantees sufficient power and ground communications as
day experiment. Thetokens and constraints columns  well as a thermally benign state. Once standby mode has
contain the number of tokens and pairwise tempordbeen achieved, EXEC then begins its normal operational
constraints (e.g., “token A starts between 1 and 2 minutesycle.
after token B”) in the plan respectively. The fi&®PU time
PowerPCAsWorks. fight hardware. testbed. The _nexincluding the planning loop, s described as followstEC |
column reports the estimated time to generate the sanygduests @ plan, by formulating a plan-request describing
plans on e acual RADGDO0 igh processor for DL ThEhe EL1ETL Pl exceuton saniex 1 et xecutes and
SR?DEG(;ISO v%i(iaoiegpect tl)sthg%c:\cl)v(:rlfc c();\()eorufgﬁz orc()je: ecomposing high-level activities in the plan into primitive

; : o ctivities, which it then executes by sending out commands,
tmhggglstu;(e))cggsd the allocation of only 25% of the CPU tozljsually to the real-time flight software (FSW)EXEC

determines whether its commanded activities succeeded

gperational Cycle The top-level operational cycle,

Table 2. PS Metrics for Performance based either on direct feedback from the recipient of the
- - command or on inferences drawn by the Mode
Scenario | tokens  con-  CPUtimeon Est. CPU Identification (MI) component offiR. When some method
straints  PPC testbed  time on to achieve a task failEXEC attempts to accomplish the
(mm:ss) RADG000 task using an alternate method in that task’s definition or by
(hh:mm:ss) invoking the Mode Reconfiguration (MR) component of
First 105 141 713 4:48:00 MIR as a'recovery expett If MR finds steps to repair the
horizon failing activity without interfering with other concurrent
executing activitiesEXEC performs those steps and then
Replan in 69 66 4:01 2:40:00 continues on with the original definition of the activity. If
first the EXEC is unable to execute or repair the current plan, it
horizon aborts the plan, cleans up all executing activities, and puts
. e the controlled system into a stable safe state (called a
ﬁgﬁg:: 126 192 13:49 9:12:00  ustandby modd. In situations where continued operation
is allowed,EXEC then requests a new plan from PS while
maintaining this standby mode until the plan is received,
and finally executes the new plan.
Executive

The Smart ExecutiveEKEC) is a reactive plan execution

system with responsibilities for coordinating execution-timePeriodic Planning CycleAs shown in Figure 5, our
activity. EXECSs functions include plan execution, task approach separates an extensive, deliberative planning
expansion, hardware reconfiguration, runtime resourcghase from the reactive execution phase, executing
management, plan monitoring, and event management. Thfrequently generated plans over extended time periods.
executive invokes the planner aniR to help it perform  How far in advance the system should plan is constrained
these functions. The executive also controls the lower-levg),, seyveral factors, including uncertainty about the results of
software by setting its modes, supplying parameters and B ecytion. We use the termlanning horizoh to describe
responding to monitored events. the length of time into the future for which a plan is
Task ExpansioEXEC provides a rich procedural language, constructed. In normal operations, the RA would plan a
ESL [5], in which we define how complex activities shouldweek ahead of time, and when it comes near the end of the
be broken up into simpler ones. A procedure can specifyyrrent plan it would start working on the plan for the next
multiple - alternate methods for goal achievement 10 poriz0n. Since the actuRlAX experiment lasts for only one
increase robustness. lf a se_lected method EREC wil week, the planning horizon is set considerably shorter (3
try any other methods applicable in the current context. days).

Resource ManagemeAs a multi-threaded system, EXEC

works on multiple activities simultaneously.  These

activities may compete for system resources within the



Plan subsystems. Each independent component of a subsystem
failure is conceptualized as a state variable, which can take on a
series of different behaviors over time. A plan consists of
onetimeline for each state variable. Each timeline contains
a sequence of constraints on the behavior of the state-
variable. Atoken is a data structure which represents one
part of a sequence on a timeline. A token has information
about the desired behavior throughout the duration of the
token, and also flexible constraints on when the token can
start and finish. Lastly, the plan contains constraints to
coordinate behavior across tokens on different timelines,

Standby
plan request

Get plan
from Planner

Standby

Planning - called compatability constraints. An example of a
: Next h Plan comp y €0 - P
assumptions N read compatibility constraint is one which says thattake-
violated plan request y - ) L ;
picture token may only be executed within the window
during which the correspondintkeep-pointing-at-target
Plan Running token is activated.
failure . . .
a plan The EXEC is a multi-threaded process that is capable of

asynchronously executing activities in parall@XEC has
) ) o _ one thread for each timeline in a plan, and a procedure,
Figure 5 Executive Periodic Planning Cycle called the token definition, for each type of token contained

in the plan. A token definition procedure contains a

We address the problem of generating initial states for th.o .,ndition that must be met before the activity can start, a
next planning round differently depending on the status of,gtcongition that must be met before the activity can
the currently-executing plan. Plans normally include the;piq, “ang 3 hody which describes how the procedure is
task of planning for the next horizon—i.e., the planner setg. iy executed. To execute a pl@XEC activates on
aside a good time for its own (next) computation. At thigpe"cqrresponding thread for each timeline the procedure
point, the executive sends to the planner the remainder Q rresponding to the first token on that timeliBXEC

fjhe _c_urrer][a ptlan in its dentwefty, with an?otayzor%sh for theyacks the status of all tokens in a data structure called an
ecisions that were made so far in executing it. The current, 45 \when a new token is able to start (because the
plan serves as its own prediction of the future at the level

abstraction required by the planner. Thus, all the plann revious token has finished and all other constraints are
. : ’ tisfied), EXEC terminates th revi token pr r
has to do is extend the plan to address the goals of the n sfied) © ates the previous token procedure

; . . d transitions to the next one. For example, once the
plannlng horizon and return the result to the executive. T.hﬁ)ken for turning to a target has completed, the token for
executive must then merge the extended plan with it ’

. L Eonstantly pointing at the target can then be activated. This
current representation of the existing plan. The net result Bhables the “take-picture” token on the camera timeline to

that, from the executive’s perspective, executing multiple,e 5 ctivated. Only when the picture activity has finished
chained plans is virtually the same as executing one lo ill the EXEC terminate thekeep pointing at targetoken
plan. This has the useful consequence that it enables the o hgition to the token for turning to the next target

executive to engage in activities which span multible;yiy je The tokens executed by tRex Executive are
planning horizons (such as a 3-month long ion engine bur@Jmmarized in Appendix A

without interrupting them.

. . In more detail, plan execution is achieved through the
In the event of plan failure, the executive enters Standb%llowing cycle asF,)shown in Figure 6: g

mode prior to invoking the planner, from which it generates
a description of the resulting state in the abstract languadge EXEC receives a new plan from the planner and updates
understood by the planner. Note that establishing standlifie plan execution agenda.

modes following plan failure is a costly activity with respect
to mission goals, as it causes us to interrupt the ongoiré
planned activities and lose important opportunities. Fo
example, a plan failure causing us to enter standby mod® EXEC decomposes the task into a series of sub-tasks
during the comet encounter would cause loss of all thbased on task definition models and current execution
encounter science, as there is no time to re-plan before teentext. Sub-tasks are recursively decomposed down to the
comet is out of sight. Such concerns motivate a strongvel of primitives. EXEC invokes MIR as a recovery expert
desire for plan robustness, in which the plans contaifo achieve tasks that have failed.

enough flexibility to continue execution of the plan under a . — Kt |
wide variety of execution outcomes. Executing a flexible? EXEC begins to execute a primitive task, for example by
plan is not easy, and draws on many capabilities of o ending a command to the FSW or waiting until a condition

“Smart EXEC. ecomes true.
Plan ExecutonWe now describe the plan execution 2 (Not shown) FSW processes the command by making a

capability of the executive in more detail. The plannech@nge in a software parameter or device state. The monitor
represents spacecraft activity as a set of concurrefp’ the affected FSW component registers the change in

EXEC chooses a new task (usually arising from a plan-
vel token) on the agenda that is ready for execution.



low-level sensor data and sends MI a new abstracted valliman-based, to automatic ground-based, to autonomous
for the state of the affected components. MI compares then-board planning.

command 1o the obsenalions, it e most el Se8cong, texeoAcTviT timline represents lowovel
update toEXEC describing the changes in any modes ofctivities thatEXEC will perform that are lower-level than
interest toEXEC. the tokens managed by the o_n—board plan_ner. To execute
the EXEC-ACTIVITY token, which takes a filename as an
6. EXEC compares the feedback from external events, sucargumentEXEC simply loads and executes the referenced
as the Ml mode updates, to the conditions specified in itle. The file can contain arbitrary Lisp code, including any
task models to determine whether the command execute®dmmands executable on the spacecraft. This timeline can
successfully. If so, it proceeds to take further steps tbe used to runEXEC in a mode corresponding to a
complete the high-level token. If the token is finished,traditional sequencer, by sending up a plan that contains
EXEC updates its agenda and continues the cycle. only a sequence OEXEC-ACTIVITY tokens, each with
low-level commands defined in a file. However, since this
timeline runs concurrently with all the timelines defined for

External ’ggﬂgzﬂo Mode Updat Recovery plans the planner, it also enables ground operators to require
Command certain low-level activities to be inserted into whatever

high-level plan is generated autonomoushEXEC also

Responses p E = i < i
e supports use of the&eXEC-ACTIVITY procedure as an
New Plan v immediate function invocable by ground controllers.
from PS Hence, even in the middle of an autonomous plan
gl il execution, or in standby mode, ground operators can ask
v EXEC to run arbitrary low-level commands from a file and
these can be tied to events rather than being linked to
Choose task from Agenda prespecified clock times. For the complete list RAX
" timelines and tokens, see Appendix A.
) Tas
523322? * Summary of Executive Capabilities DemonstratedrAX
to MIR B i Bl Task We now summarize how the EXEC capabilities described
- Models above are demonstrated within the RAX scenarios.
*P”mm"e First, EXEC demonstrates the multi-level commanding,
Commands Execute Primitive Task allowing ground operators to specify low-level commands
-+ to the hardware as part of a sequence, to generate plans
from ground, or to request and execute plans generated on-
Figure 6. Executive Plan Execution Cycle board the spacecraft. The low-level commanding and

) . . ground-based planning are demonstrated in Phase One of
Hard command execution failures may require thghe rAX experiment, in which a plan is up-linked from the
modification of the schedule in which case the executivground which contains both high-level activities (like
will coordinate the actions needed to keep thecspraft in - tyrning to a target) and low-level activities (using EXEC-
a "standby mode and request the generation of a newacT|vITY tokens to simulate the injection of various faults,
schedule from the planner. and to turn PASM on and off).

Architecture-support timelineslost timelines (and hence second,EXEC demonstrates plan request generation and
tokens) represent the activity of spacecraft subsystemscecution. This is demonstrated from a currently executing
external to the RA. However, the RA also contains twoylan where nothing has changed (nominal scenario), from a
timelines used to support architectural features. First, theurrently executing plan where a device health token has
PLANNER-PROCESSINGtimeline describes the aCt|V|ty of been updated (f0||OW|ng th®ICAS health update), and
the planner. ThePLAN-NEXT-HORIZON token for this  from a standby mode. As part of executing a plan phase
timeline corresponds to a state in which the planner igyo, EXEC demonstrates a number of important capabilities
generat|ng a new planEXEC executes this token by involved in token decomposition‘

generating a plan request, sending it off to the planner, and » o

then incorporating the new plan into the current execution * EXEC demonstrategontext sensitive behavian the
context. This supports the model of planning with multiple ~ mManagement of the ion propulsion system. Before
horizons described above. TBERIPT-NEXT-HORIZON executing a thrust commarkXEC requires that IPS is
token for this timeline is similar, except it dire@XEC to in standby mode. If it is already in standby mode,
load and execute the plan defined in a file previously up- EXEC proceeds to the thrusting, otherwise itl wut
linked from ground. In this way ground controllers can also  IPS into the standby mode before proceeding.

support back-to-back plans. This also supports the use ofe EXEC demonstratesime-driventoken durations. For
the automated planner running in closed-loop fashion either example, it terminates a thrust segment based on a
from the ground or on-board the spacecraft, hence timeout, rather than external confirmation.

supporting easy migration of planning capability from ¢ EXEC demonstratesvent-driventoken durations, in
which the picture tokens are not allowed to terminate



until the picture has actually finished, turn tokens arendividual modules can be designed and tested
completed only wupon receipt of turn-completeindependently. Individual device knowledge feaX is
messages from the ACS, and tBEP-THRUSTING implemented based oBXECSs library of generic device
token is only completed upon a message fkif that management routines, to support addition of new devices
IPS is indeed in the thrusting state. and reuse of the software on future missions.

* EXEC demonstrategjoal-oriented achievemer{tion't = \i4re details abouEXEC can be found in References [6, 7.
achieve things that are already true). Because t 8.
planner is unable to determine how many thrust
segments are necessary to achieve the total desir@dagnosis and Repair

thrust, it inserts thrust tokens into the plan which maXN . . . .
not need to be execute@XEC tracks how much thrust e refer to the Diagnosis and Repair engine of the Remote

has been achieved, and only executes thrust toke%e”t asMIR, for Mode Identification and Reconfiguration,

(and associated turns) for so long as thrust is actualw ich emphasizes the model-based diagnosis and control
necessary. avor of the systemMIR eavesdrops on commands that are

L . . sent to the on-board hardware managers byEdEC. As
* EXEC demonstrates theoordination of activity details each command is executediR receives observations from

across subsystems that are below the level of visibilitgpacecraft sensors, abstracted by monitors in lower-level
of the planner. There is a constraint that ACS be ijevice managers for the Attitude Control Subsystem (ACS),
thrust-vector-control (TVC) mode shortly after IPS hasg,s controller, and so orMIR combines these commands
started thrusting. WheBXEC commands IPS int0 and opservations with declarative  models of the
thrusting mode, it also sends the command to ACS t@pacecraft's components to determine the current state of
enter TVC mode based on its own lower-level domainpe system and report it to the Exec. A very simple example
knowledge. ~ Similarly,EXEC puts ACS back into g shown schematically in Figure 7. In the nominal case,
Reaction Control System (RCS) control mode uponyr merely confirms that the commands had the expected
termination of a thrusting activity. effect on spacecraft state. In case of failMiR diagnoses

Third, EXEC demonstrates the ability to maintain requiredthe failure and the current state of the spacecraft and

properties in the face of failures. In the thruster failureprovides a recovery recommendation. A single set of

scenario,EXEC learns from arMIR state update that the models and algorithms are exploited for command

current thruster mode is faulty. It invokesiR with a  confirmation, diagnosis and recovery.

recovery request and then execut#R's recommendation

to change to a degraded thruster control mode. 4 Spacecraft State 5. Recovery Actions

e.g. Switch isstillon  e.g. Retry switch command
Fourth, EXEC demonstrates the ability to recognize plan

failure, abort the plan, enter standby mode, and request and ﬁ

execute a replan. This occurs in thiCAS failure

scenario, in whichEXEC learns fromMIR that MICAS is

stuck on and cannot be turned offXEC requests a
recovery fromMIR so that it can turMICAS off, but since
there is no way to fix this problemIR informs EXEC that

is has no recovery Since the plan requir@giCAS to be off, Conflict-directed
EXEC aborts the plan, terminating a thrusting segment if| Best first search
necessary. It then enters a degraded standby mode,
which it leavesMICAS on despite the usual desire to turn
off all unnecessary devices in standby mode, and requests a
plan for the planner. In its plan requesXgC informs the

—
Qualitative
Models

Behavior
prediction
engine

Conflict
database

3. Qualitative data
e.g. Current is non-zero

Monitors

i

planner thaMICAS is stuck on. Later, in executing the new 1. Commands givento 2. Quantitative data from
plan, ground finds a way to fiMICAS and informsMIR of spacecraft systems spacecraft sensors
this fact. WhereXEC learns fromMIR thatMICAS can now e.g. Turn off switch e.g. Current = 0.3 amps
be shut off, this new information does not caBX&C to ) ) ]

abandon the plan, since the planner didrequire MICAS Figure 7. Information Flow in MIR

to be broken. However, the next tifaBKEC asks for a plan, o ) )

it informs the planner about the restored healtMIGfAS, The RAX mission scenario d_emonstrates the follovmmg

so that the planner can now plan to switittAS off when capabllltles: state |dent|f[cat|on throgghout_the experiment,
desired. EXEC also demonstrates the ability to terminatediagnosis of sensor failure F1, diagnosis and recovery
plans based on an immediate command from the ground, ;ﬁcommerjdatlon_s fc_>r device failures F2-F4, and overriding
which case it enters whichever standby mode the commar®i @MIR diagnosis via a ground command.

specifies. . . . .
P F1 illustratesMIR's ability to disambiguate between a sensor

ImplementationEXEC is implemented on top of Execution failure and failure of the device being senseIR
Support Language (ESL) [5], which in turn is implementedcombines power distribution models with the sensed
using multi-threaded CommoniSP. The internalEXEC ~ nominal current draw and communication status of devices
code is designed in a modular, layered fashion so that



to conclude that the power switch must be on and that models associated with these modes is consistent with the
switch sensor failure, though unlikely, has occurred. observed sensor values. Following de Kleer and Williams
[10], MI uses a conflict directed best-first search to find the
Failures F2-F4 are diagnosed in a similar fashion an¢host likely combination of component modes consistent
include the possibility of recovery. F2 focuses on repeatedith the observations. Analogously, MR uses the same
attempts to recover a camera switch until it is deemegearch to find the least-cost combination of commands that
permanently stuck. F3 illustratescsessful recovery of achieve the desired goals in the next state. Furthermore,
communication with a device by resetting its remoteboth Ml and MR use the same system model to perform
terminal (RT). In F4, given only an attitude error andtheir function. The combination of a single search
models of the spacecraft dynamibBR infers that one of a algorithm with a single model, and the process of exercising
particular pair of thruster valves is stuck closediR is  these through multiple uses, contributes significantly to the
then able to recommend that no matter which one of thebustness of the complete system. Note that this
two valves is stuck, switching ACS control modes willmethodology is independent of the actual set of available
mitigate the problem. sensors and commands. Furthermore, it does not require
that all aspects of the spacecraft state are directly
Since we cannot depend on failures F1-F4 occurring duringbservable, providing an elegant solution to the problem of
the experiment, failures will be simulated by injecting falselimited observability.
monitor readings consistent with the failures. Rae will
be expected to take the appropriate corrective actionFhe use of model-based diagnosis algorithms immediately
though none are necessary. Injecting simulated failurgsrovides Livingstone with a number of additional features.
may seem senseless. However, in lieu of a guaranteed rgmifst, the search algorithms are sound and complete,
failure, it provides greater confidence that the system igroviding a guarantee of coverage with respect to the
flight ready and will demonstrate that when the RAats to  models used. Second, the model building methodology is
a failure the ground controllers will be able to observemodular, which simplifies model construction and
interpret, and, if necessary, override the actions it has takemaintenance, and supports reuse. Third, the algorithms
While simulations are necessary for demonstration, thextend smoothly to handling multiple faults and recoveries
RAX is fully responsible for responding to real failuresthat involve multiple commands. Fourth, while the
within its limited scope occurring during the experiment.algorithms do not require explicit fault models for each
This raises an additional challenge regarding howRwe¢  component, they can easily exploit available fault models to
will avoid conflicts with the flight software fault protection find likely failures and possible recoveries.
mechanism (FP), since both may be react to the same
failure. Rather than negotiate a complex resolution strategisivingstone extends the basic ideas of model-based
the RAX was designed with a narrower notion of nominaldiagnosis by modeling each component as a finite state
operation than the FP (by tuning monitors appropriately)machine, and the whole spacecraft as a set of concurrent,
thus avoiding the conflict altogether. When tRaxX is  synchronous state machines. Modeling the spacecraft as a
operational, it should always respond to and mitigate faultsoncurrent machine allows Livingstone to effectively track
within its mandate before the FP monitors are triggered. Iéoncurrent state changes caused either by executive
the RAX falils to do so, the FP will terminate tR&X upon  commands or component failures. An important feature is
being triggered. that the behavior of each component state or mode is
captured using abstract, or qualitative, models [11, 12].
The MIR component of the RA architecture, embodied in @These models describe qualities of the spacecraft’s
system called Livingstone, consists of two parts: modstructure or behavior without the detail needed for precise
identification (MI) and mode reconfiguration (MR). MI is numerical prediction, making abstract models much easier
responsible for identifying the current operating or failureto acquire and verify than guantitative engineering models.
mode of each component in the spacecraft. Following Examples of qualities captured are the power, data and
component failure, MR is responsible for suggestindhydraulic connectivity of spacecraft components and the
reconfiguration actions that restore the spacecraft to directions in which each thruster provides torque. While
configuration that achieves all current goals as required byuch models cannot quantify how the spacecraft would
the planner and executive. Livingstone can be viewed asgerform with a failed thruster for example, they can be used
discrete model-based controller in which MI provides theto infer which thrusters are failed given only the signs of the
sensing component and MR provides the actuatioerrors in spacecraft orientation. Such inferences are robust
component. MI's mode inference allows the executive tgince small changes in the underlying parameters do not
reason about the state of the spacecraft in terms eafffect the abstract behavior of the spacecraft. In addition,
component modes, rather than in terms of low level sensa@ibstract models can be reduced to a set of clauses in
values, while MR supports the run-time generation of novebropositional logic. This form allows behavior prediction to
reconfiguration actions. take place via unit propagation, a restricted and very
efficient inference procedure.
Livingstone uses algorithms adapted from model-based
diagnosis [9, 10] to provide the above functions. The keyiR’s abstract view of the spacecraft is supported by a set
idea underlying model-based diagnosis is that af fault protection monitors which classify spacecraft
combination of component modes is a possible descriptiosensor output into discrete ranges (e.g. high, low nominal)
of the current state of the spacecraft only if the set of



or symptoms (e.g. excessive attitude error). One goal of theduce the occurrence of errors through automation and
RAX was to make basic monitoring capability inexpensivestreamline monitor design and test.
so that the scope of monitoring is driven from a system
engineering analysis instead of being constrained byable 3 illustrates the classes of components modeled by
software development concerns. To achieve this, monitofdIR for the DS1 spacecraft. For each we list the number of
are specified as a dataflow schema of feature extraction aristances in the overall spacecraft model and the modes
symptom detection operators for reliably detecting andstates) the component can occupy. All told iR model
discriminating between classes of sensor behavior. Secongpresents fifty-seven components of twelve different
the software architecture for sensor monitoring is describetypes, their behavior, and their interconnections. For ease
using domain-specific software templates from which cod®f modeling, MIR allows a set of components and a model
is generated. Finally, all symptom detection algorithms aréescribing their interconnection to be grouped into a
specified as restricted Harel state transition diagramgodule which can be treated as a unit. Table 4 illustrates
reusable throughout the spacecraft. The goals of thibe modules created to model DS1. For each we list the
methodology are to reuse symptom-detection algorithmg)umber of instances in the overall spacecraft model and the
components or other modules the module contains.

Table 3. DS1 Hardware Modeled as Components iMIR

Component Class #in Model Modes
ion propulsion system 1 Standby, Startup, Steady State Thrusting, Shutdown, Beam Out, Controller
(IPS) Hung, Unknown
remote terminal 6 Nominal, Resettable Failure, Power-cyclable Failure, Unknown
attitude control 1 TVC, XforY, Zfor Y, X for Y Degraded, Z for Y Degraded, X for Y Failed, Z
for Y Failed, TVC Failed, Unknown
switch 12 On, Off, Popped On, Popped Off, Stuck On, Stuck Off, Unknown
switch sensor 12 Nominal, Stuck On, Stuck Off, Unknown
current sensor 3 Nominal (reported value = real value), Unknown (values unconstrained)
thruster valve 8 Nominal, Stuck Closed, Unknown
thruster 8 Nominal, Unknown
propellant tank 1 Non-empty, Unknown (thruster hydrazine out or otherwise unavailable)
bus controller 1 Nominal, Unknown
vehicle dynamics 1 Nominal (This is a qualitative description of force and torque.)
power bus 3 Nominal (Failure considered too fatal and remote to involve in diagnosis.)
Table 4. DS1 Hardware Modeled as Modules iMIR
Module # in Model Subcomponents
power relay 12 1 switch, 1 switch sensor
power distribution unit 1 12 relays, 3 power buses, 3 current sensors, 1 remote terminal
generic RT subsystem 3 1 remote terminal (Models RT for devices MIR does not otherwise model)
IPS system 1 11PS, 1 remote terminal
thruster pallet 4 2 thrusters (X facing and Z facing)
reaction control system 1 4 thruster pallets
PASM subsystem 1 1 remote terminal

actual physical components. Often models do not
explicitly represent the cause for a given behavior in
terms of a component’s physical structure. For example,

It is important to note that th®IR models are not
required to be explicit or complete with respect to the



there are numerous causes for a stuck switch: the driver failed, though the failure was not foreseen or was simply
has failed, excessive current has welded it shut, and so left unmodeled because no recovery is possible.

on. If the observable behavior and recovery for all causes
of a stuck switch are the samd|R need not closely
model the physical structure responsible for these fine
distinctions. Models are always incomplete in that they
have an explicit unknown failure mode. Any component
behavior which is inconsistent with all known nominal
and failure modes is consistent with the unknown failure
mode. In this wayMIR can infer that a component has

By modeling only to the level of detail required to
make relevant distinctions in diagnosis (distinctions that
prescribe different recoveries or different operation of the
system) we can describe a system with qualitative
"common-sense" models which are compact and quite
easily written. Consider the stylized model fragment in
Table 5 which describes some of the possible modes of a
remote terminal.

Table 5. MIR Model Fragment for Remote Terminal

device remote-terminal
power_input = rt_switch->power_output
command_input = bus_controller->command_output
mode nominal:
if ( power_input == OFF) comm_status = NO_COMMUNCATION
if ( power_input == ON) comm_status = COMMUNCATION
mode resettable-failure:
probability = LIKELY
comm_status = NO_COMMUNCATION
if (command_input == RESET) next mode = nominal
mode powercyclable-failure:
probability = LESS-LIKELY
comm_status = NO_COMMUNCATION
if (power_input == OFF) next mode = nominal
mode unknown:
probability = UNLIKELY
/* Note there is no model, so any unmodeled behavior is consistent */

This single model describes how a remote terminal'$erhaps the single largest practical difference tvax
outputs behave nominally and during failure, whatpresents arises from the fact tRaX is implemented in
connections to other devices influence its behavior, and theommon Lisp whereas previous missions, and also the
expected effect of recovery actions such as RESET if theealtime software with which RAX interacts, use lower-
device is in the mode under consideration. If a remotéevel languages like C. Many issues arise some of which are
terminal is not communicatindviR will consider that it fact others of which are myth; however, the most significant
may no longer be nominal or it may not be receiving poweissue is that interfaces betweRAX and FSW might need
input. When investigating the latte¥IR will generate a to be specified and shared in either or both of two
similar set of explanations for why a switch might fail tolanguages.
provide power given its model and connections. Additional
technical details about Livingstone can be found in [13]. The success d®AX required that these issues be addressed
in a way that would allow traditional flight projects to be
7. INTEGRATING RAX INTO THE FLIGHT SYSTEM comfortable withRAX technology and also to mitigate the

_ o . . risk introduced by the new technology. The result is the
IntegratingRAX with flight software is challenging because “rax Manager” flight software component.

RAX represents a significant departure from traditional

flight software. The differences are not only technical aghe RAX Manager presents thRAX technology to the
described previously, but also practical and cultural. Fronflight software with a traditional flight software interface.
the view of flight software these differences may manifestike hardware device managers, the implementation behind
themselves in a number of ways—from uneasiness withithe interface is of no concern once the interface is correct,
the flight software developers to an actual increased risk ithe functionality is in place and the required resources are
the flight software product. Fortunately, none of thesallocated.

differences nor their impacts are inherent limitations to

RAX technology and thus, with sensitivity to the issuesThe RAX Manager serves several different functions over
RAX is successful as a high-level flight software controlthe life cycle of the project.

architecture.



1) At design time, th®AX Manager specifies the interface Through these four functions, tliRX Manager spans the
agreements betweeRAX and the flight project. The entire flight project lifecycle and in so doing allows the

interfaces includes all of the following: RAX to address and mitigate the unique risks that arise in
. each phase.
* Telemetry and Logging
» Ground-based Command Dictionaries 8. TESTINGRAX
+ Computational Resources (CPU Fraction, Memoryoyr approach to testing and validating fR&x not only
Requirements, etc.) exploits standard software testing practice, but also goes
* FSW messaging (function calling) interface beyond it in a number of key areas. The foundation of a

reliable, high quality system is laid with the design and

* Flight Rules. specification of the interfaces between the different
* Fault Protection responses subsystems. To this end, we have formalizedRalk
« Timing within the Mission Plan. interfaces, both betweeRAX and the rest of the flight

) ) ) ) software and between the components R#X, using
2) At implementation time, th&AX Manager shields the CLASH. The use of CLASH has essentially eliminated a
existence of CommondLisp in tHAX implementation from  whole class of essentially syntactic errors such as
the flight software by presenting a “C" interface externally.discrepancies in the index used to identify a switch in an
Producing that interface and performing any necessaryrray, out of range values, and inconsistent interpretations
conversions to th&®AX implementation language are the of interface structures. Formalizing these interfaces has

full responsibility of theRAX developers. The process was gllowed us to focus our testing effort on finding and
simplified dramatically by arRAX developed software eliminating more subtle semantic errors.

package known as CLASH (“C and Lisp Abstract Syntax

Harmony”). CLASH defines a language for use inRAX System-level Testing

declaring a message passing interfaces and provides a . )

preprocessor program (i.e. a compiler) to translate th@Ur principal approach to testing tiAX at the system
declared interfaces to “C” header files, “C™ code files, andeve! was the scenario-based testing of requirements.
Lisp code. CLASH also runs insideAX and hides all Testing of individualRAX modules used both scenario-
aspects of the inter-module communication issues. Thu§ased testing methods and a variety of other methods
there is one uniform interface for internal message passirf§scussed later in this section. We started scenario-based
among RAX components, external message passi sting by identifying the set of syster_n-level requirements
between RAX and C modules, and even telemetry packé® Pe met by theRAX.  We then designed a set of test
encoding. Simple compile-time declarations specify theCenarios, ensuring that each requirement is adequately

interface and the location (internal or external) of the cod&eStéd by one or more of these scenarios. Scenario design
implementing the corresponding interface. started with the development of the 12 hour and 6 day

scenarios to be demonstrated in flight. These scenarios
3) At FSW testing time, thRAX Manager decouple®RAX include nominal operation, planning and executing back-to-
from the flight software and thus allows the launch-ready?@ck plans, and a variety of failure scenarios. Additional
software to be tested in anticipation of the launch date angfenarios were developed as variations on this basic set of
the RAX software to be tested in anticipation of the (later)Scenarios. Variations were generated both for nominal
experiment start date. TH®AX testing can thus proceed €xecution (e.g., varying the number of OpNav image goals
after the launch much as many ground-generated traditionBr window, varying the available power from the solar
sequences are validated post-launch. RAX Manager arrays, anq varying thg sIevy times for turns) and for failures
however, as a tiny subset of tR&x code, can be tested (€.9., varying the location, time, and number of failures).
relatively early, on the flight software schedule. ) ,

An important aspect of the above approach is to have
4) At runtime, theRAX Manager mediates the messagePeople intimately familiar with swecraft and mission
passing betweeRAX and flight software. There are two develop the scenario variations. This ensures that the
aspects to this. This first is that tRéx manager must different scenarios capture all likely variations in the
both initiate and terminate th&®AX experiment: the nominal scenarios, and_ all c_:redl_ble failures. F_urthermore,
initiation happens as commanded from the ground; th8uch people can identify situations that are likely to be
termination as a result of either a ground command or aghallenging for theRAX, e.g., time or resource limited
unanticipa‘[ed fau't having found |tS Way into the l[Te1v:4 S|t'uat|0ns, Cr|t|CaI Sequences .requ|r|ng preCIse t|m|ng, and
fault-protection subsystem. The second aspect is that ti@ilures that are hard to diagnose and recover from.
RAX Manager must discard any messages destinerlAbor Mission and Systems_eng"]eers are in the best pOSItlon_ to
during those times when theAX is not operational. For develop scenario variations. However, in order_to avoid
DS1, RAX is a relatively shortlived technology €xcessively taxing the systems engineer's time, our
demonstration experiment, so the dominant runtime activitgpproach has been to have knowledgeable members of the
of theRAX Manager will be to simply discard any incoming RAX team develop the scenario variations, and have these
messages. Of course, for the time between initiation an¢griations be reviewed by DS-1 systems engineers. The
termination the RAX Manager passes most messagedimited scope of th&@AX makes this approach feasible.
betweerRAX and flight software.



This basic approach to testing generalizes naturally tmodel into a set of logical constraints. Each plan is checked
system-level testing of a Remote Agent being deployed faio ensure that all of the constraints are met. The constraint
a complete mission. In particular, each mission usuallghecker also performs a coverage analysis to ensure that
consists of a number of different phases characterized gvery rule in the plan model has been exercised by an
nominal scenarios. For example, the phases of the DSadequate number of plans. Manual spot checking is done by
mission include launch, ballistic cruise, cruise under iordisplaying the plan as a modified GANTT chart with a plan
thrusting, asteroid and comet flybys, and various validatiowiewing tool.
experiments. Nominal scenarios for each of these phases
can be developed and tested. Systems engineers can ts@n if a plan is valid with respect to the plan model, the
use these nominal scenarios to develop scenario variation@an model itself may be incorrect. The model may not
including failure scenarios, to build confidence that theexpress the knowledge that the model developer intended,
Remote Agent can effectively carry out all phases of ther the developer may not have acquired the correct
mission under a variety of different situations. The focuknowledge from the experts. The plan model must be
provided by the nominal scenario of each phase helps keaprified with respect to the knowledge of appropriate
the system-level testing of the Remote Agent manageable.experts. This is done by encoding the plan model into
English specifications and confirming them with human
Scenario-based testing BAX is augmented with a variety experts. Another source of expert knowledge are the flight
of tools and processes to ensure effective testingules. These are English rules that state what actions can
Specifically, we have developed a set of flight software andnd cannot be performed on the spacecraft. For example,
hardware simulators that support effecti®@X testing “never fire the IPS engines while taking optical navigation
prior to integration with the rest of the flight software. Weimages”. These rules can be converted into logical
have also developed tools for simulated time “warping”.expressions and added to the set of constraints checked by
which allows theRAX and its associated simulators to skipthe constraint checker. As a final test, a small representative
over periods of time in which thRAX is idle. This allows set of plans are run through the executive to ensure that
us to test scenarios lasting for days or weeks of simulatetiey execute correctly and that the spacecraft exhibits
time in a few minutes or hours of real time. Whenevercorrect behavior.
possible, we have attempted to convert all tests into
automatic regression tests requiring no manual interventiofzxecutive module feature testing
This allows us to automatically run a battery of test
overnight, to ensure that every major release ofRAE
passes all regression tests. Finally, we have installed

SThe modular, multi-level structure of the Executive (see
%ection 6) enables the Executive sub-modules to be tested
; . independently and permits the Executive to be adapted to
formal bug tracking system using the GNU GNATS Systen}qy missions with a minimal amount of change, primarily

and a process for its use. Whenever a code €ITOT 1 the external devices level. Given the limited scope of the

discovered, it is logged in GNATS. Once the error ISRAX, testing the higher levels of the Executive (i.e., the

correqted, a regression test Is preated that fails before tI%‘)adernal device level and the top level control) is relatively
code is corrected but passes with the corrected code. T@

regression test is then added to the set of regression tests ﬁalghtforward. This gives us an opportunity to effectively

test the lower levels of the Executive, providing a well-
v\fgsted foundation for future missions. If it were necessary
16 redevelop and test the entire Executive for each mission,
the high development cost could very well eliminate its
selection on future missions.

In addition to the system-level testing described above,
also do extensive module feature tests on each dkale
modules. These are described below.

Planner/sch lerm le fi r in . . . .
anner/scheduler module feature testing As previously discussed, we use automatic regression tests

The main requirements on the planner is that it produce whenever possible to test the Executive. Once such a test is
valid plan for all valid plan requests from the Executive andstarted, manual intervention is not required and the test
all legal behaviors of the plan experts, and successfullseturns a pass or fail value. To facilitate this process, a
update the mission profile in response to an profile updatsimulator is used that was designed to check system-level
request. The latter requirement can be tested directly withroperties and constraints while the Executive is running.
automated scenario-based testing. For example, one constraint is that NEAS camera is not

to take a picture while the spacecraft is turning. Given this
The first requirement is somewhat harder to test. For anyonstraint, the simulator generates an error that will cause a
partial plan provided to the planner and any set of plarest to fail if the simulated spacecraft is turning when it
expert behaviors, the planner must either produce a valigceives a command from the Executive to take a picture.
plan before its computational resource bounds are exceeded
(times out), or report that no plan can be generated withinfortunately, not all testing can be done automatically.
those bounds. For a plan to be valid, it must be consisteitetermining if the Executive really did what it was
with the plan model. This requirement is tested by extensiveupposed to do in certain situations often requires an expert
scenario-based testing. The plans generated in eath review the log generated by the Executive. This can be
scenario are tested for correctness against the plan modehe consuming and errors may be overlooked. In order to
by an automated constraint checker, and manual spatdress this problem, a visualization tool for validating
checking of plans. The constraint checker converts the plagxecutive plan execution, called Planview, was developed



at CMU by Simmons and Whelan [14]. Planview providesdone in the verification community in verifying that a finite
the user an overall view of all the executing timelinesautomata (here thelR models) correctly models a physical
highlights execution flaws, and allows the user to zoom iror software system (here the spacecraft simulator or
on an individual token showing its values and constraints. hardware). In addition, a large amount of work has been
done in the model-based diagnostics community in deriving
Finally, a formal analysis approach is used to check if theests that systematically sensitize each subsystem of an
Executive code violates design specifications [15]. In thi:assembled system (here the simulator or hardware) and
approach, we create a formal model that characterizes tlietermine that diverge from their models. We are drawing
abstract behavior of critical Executive constructs (foron this work to build automatic test generators which will
example, those dealing with resource management). Wsrovide near-minimal length tests which will determine if a
also formalize design requirements that should be enforcadiR model agrees with the hardware or simulator it models.
whenever the constructs are used (for example, aborted
activities must always give up any resources that were 9. FUTUREWORK
allocated to them). Then we run this abstract model
through a formal model checker, which either proves thaf number of desirable Remote Agent features are planned
the formal model satisfies the design requirements dior future Remote Agents that will not be part of the DS1
generates an example scenario where the requiremeRf. These enhancements will further increase mission
would be violated. Using this approach, errors in thgobustness, refine diagnostic capabilities, and simplify the
Executive code were discovered that would have been vegfocess of representing and integrating knowledge
difficult to discover using the test methods described abovéhroughout the software.
A major drawback of this approach is that it is time- . ) o ]
consuming and has only been applied to a small part of tH8 our discussion of mission robustness, we discussed
Executive. Decreasing the time and expertise required téexible planning and recovery capabilities.  These

perform th|s ana'ysis is an Ongoing research area. Capabilities W|” not help in cases Where some preventative
or preparatory action needed to be taken in the past to
Diagnosis and Repair module feature testing enable recoveries in the current situation. For example, if

) . i the primary engine breaks, the system may only be able to
MIR has four major categories of testable requirements: &yitch to the backup engine if it has been warmed up.
must provide command confirmation to Exec, it mustryiyre Remote Agents will have the capability to anticipate
diagnose a set of failures, it must provide recoveries fog,ch possible failures, or even opportunities, and to then
those failures, and it must meet certain performancgyiiq plans that provide the necessary resources so the
requirements. The majority ™R testing is scenario based system is prepared for many possible futures. A related
testing on a combination of simulators and real hardwarg-apapility in this vein is for the executive to understand the
A scenario consisting of a sequence of SF_)é‘cecracgriorities in the plan, so that it can abandon individual tasks
commands and resulting monitor values (real or simulatedjr threads of activity without failing the entire plan. This

is processed bylIR. At each point in the scenarijR’s || enable high-priority activities to be completed even if
model of the spacecraft's state must agree with thg. priority activities fail.

spacecraft state predicted by the scenario commands.

During the scenario, a failure is injected into the spacecraff our discussion of diagnosis, we pointed out thatmire
simulation or hardware testbed, causing a set of monitafystem makes new inferences every time an action is taken
values to be reported MIR. MIR's diagnosis and recovery or a new observation is made. In the event of failures, it
are then checked against the injected failure angijl generate recoveries that may improve the situation.
performance metrics are taken. However, sometimes these actions taken during normal

execution or even recovery will not present the right

MIR testing scenarios derive from three sources. The firshformation to isolate the fault to an optimal level of detail.

is devious human testers. We have developed tools to allogy future work will develop methods for active testing, in

a user to easily write a scenario consisting RAX which the system will conduct tests whose sole purpose is
command sequences, failure injections and, when ngh nelp it improve its understanding of the state of the
running on the hardware testbed, the expected monit@iyacecraft. Examples of this cajiipinclude turning the
values. Human analysis ofiR's weaknesses provides the gnacecraft to see if a gyro is measuring turn rates correctly,
most stressful but most expensive test scenarios for thgq turning selected devices on and off to detect shorts.
system. The second source is brute force automatic

scenario generation. ThBRAX MIR models are small |n terms of knowledge engineering, we discussed how the
enough that many classes of tests can be performgdrious reasoning engines in the RA use different
eXhaUStively given a set of reasonable IImItlng assumptio%presentaﬁons of know]edge' In many ways this is a
and a fast spacecraft simulator. For example, given thgecessary and useful feature, as it allows the planner to
simplicity of MIR’s models, each failure can be injected inreason at a more abstract level than the executive, and the
each combination of modes the model can achieve arglagnosis system to reason at a more detailed level. While
automatically checked for correct diagnosis and recovernheterogeneous representations have a number of benefits,
The third source is informed automatic scenario generatiofhey also raise some difficulties. Most significant of these

MIR models the spacecraft by modeling each component gge the possibility for models to diverge rather than
a finite state automaton. A large amount of work has beegonverge, and the need to duplicate knowledge



representation efforts. Ideally, we would like to head toward
an increasingly unified representation of the spacecraft, but
we intend to do so always generalizing from powerful

models capable of handling the complexities of our real-
world domain.

Many of these technology advances are currently targeted
for future Deep Space Missions of the Newillé&hnium
Program. Deep Space Three is a three spacecraft separated
optical interferometer and Deep Space Four is a Comet
nucleus Sample Return mission. Both are slated for
launches in the early years of the new millennium.
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APPENDIX A

Timelines and their respective tokens by Mod&gEC's perspective).

MODULE TIMELINE TOKEN DESCRIPTION

ACS Spacecraft Attitude constant_pointing_on_sun Point vector at Target, Solar Panels at Sun
transitional_pointing_on_sun Turn vector to Target, Solar Panels at Sun.
poke_primary_inertial_vector Small attitude change.

RCS_Health rcs_available Maintain information on thruster status.
RCS OK maintain_rcs Set and maintain desired RCS mode.
MICAS MICAS_Actions micas_take_op_nav_image Take a set of navigation pictures.
(Camera)
MICAS_Mode micas_off KeeMICAS off.
micas_ready KeeMICAS on.
micas_turning_on TurmICAS off.
micas_turning_off TurmICAS on.
MICAS_Health micas_availability Ensunm@ICAS is available for use.
Op-Nav Obs_Window obs_window_op_nav Wait for a specified duration.
Nav_Processing nav_plan_prep Send message to prepare navigation plan.

PASM PASM Available pasm_monitor Monitor the PASM switch.

SEP SEP sep_standby Achieve and maintain IPS standby state.
sep_starting_up Achieve and maintain IPS start-up.
sep_thrusting Maintain a thrust level.
sep_shutting_down Stop thrusting and go to standby state.

SEP_Time Accum accumulated_thrust_time Monitor thrust time accumulated.

SEP_Schedule thrust_segment Specifies desired thrust level and vector.

SEP_Thrust Timer max_thrust_time Set a timer and stop thrusting if time reached.
thrust_timer_idle Thrust timer is off.

Planner Planner_ Processing  planner_plan_next_horizon Request and get next plan from planner.
script_next_horizon Run the next scripted plan.

General EXEC Activity exec_activity Execute a low-level sequence file passed as a

parameter.
EXEC_Eval exec_eval_watcher Process a specified script.

Additional tokens not listed above are used by the Planner as "placeholders" in the timelines. These placeholder tokens do
not requireEXEC to perform any activity.



APPENDIX B

Detailed Planner model for SEP

Timelines

Tokens

Comments

SEP_Schedule [Go4d
timeline]

SEP_Thrust_Timer
[Goal timeline]

SEP_Time_Accum
[Internal timeline]

SEP [Executablg
timeline]

illdle_Segment
Thrust_Segment

Thrust_Timer_Idle
Max_Thrust_Time

SEP_Schedule is populated by NAV planning expert. Thrust_Segment
defines time period with heading and thrust level. Several sequential
segments constitute a schedule. Idle_Segments needed to pad the
timeline to precisely position the thrust segments.

Max_Thrust_Time is returned by the NAV planning expert. It
specifies the total burn duration to be achieved in the current planning
horizon.

Accumulated_Thrust_Time Tracks the amount of time in the plan during which SEP is scheduled

» SEP_Standby

SEP_Starting_Up

SEP_Thrusting/FIRST

SEP_Thrusting/NEXT

SEP_Shutting_Down

to thrust. Time accumulation occurs only during SEP_thrust tokens
(see below).

SEP is ready but power to the grid is turned off. Tracks the amount of
time since SEP was thrusting. Greater the time since last thrusted,
longer the duration of the SEP_Starting_Up token. Follows
SEP_Shutting Down. Followed by SEP_Starting Up. Schedule
appropriate power consumption retrieved from on-board power table.

Prepares the Xenon tanks to allow thrusting. Duration of this token is
dependent on when SEP was last thrusting and on previous thrust
level. Requires attitude of spacecraft to be kept constant on requested
thrust heading. Follows SEP_Standby. Followed by SEP_Thrusting.
Schedules power consumption retrieved from on-board power table.

SEP engine is actually thrusting immediately after having been started
up. Must be temporally contained in a Thrust_Segment token (see
above) from which it receives requested attitude and thrust level.
Attitude must be kept constant to requested attitude throughout the
token. Communicates its duration to an Accumulated_Thrust_Time
token to track total accumulation. Follows SEP_Starting_up. Followed
by either SEP_Thrusting/NEXT or  SEP_Shutting_Down.
Communicates requested heading to SEP_Starting Up and
SEP_Shutting_Down (if appropriate). Schedules power consumption
retrieved from power table.

SEP engine is continuing to thrust (without having shut down) after
change of attitude. Follows SEP_Thrusting/NEXT. Followed by
SEP_Thrusting/NEXT or SEP_Shutting_Down. A short duration turn
in TVC mode is requested to change attitude at the very beginning of
the token. Communicate requested heading to SEP_Shutting_Down if
appropriate.  Other  constraints  identical to those of
SEP_Thrusting/FIRST. Schedules power consumption retrieved from
power table.

Turns off SEP. Requires spacecraft to be kept constant on requested
thrust heading. Schedules power consumption from power table.
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