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Abstract: We design an all–dielectric Lüneburg lens as an adiabatic

space–variant lattice explicitly accounting for finite film thickness. We

describe an all–analytical approach to compensate for the finite height of

subwavelength dielectric structures in the pass–band regime. This method

calculates the effective refractive index of the infinite–height lattice from

effective medium theory, then embeds a medium of the same effective index

into a slab waveguide of finite height and uses the waveguide dispersion

diagram to calculate a new effective index. The results are compared with

the conventional numerical treatment – a direct band diagram calculation,

using a modified three–dimensional lattice with the superstrate and substrate

included in the cell geometry. We show that the analytical results are in good

agreement with the numerical ones, and the performance of the thin–film

Lüneburg lens is quite different than the estimates obtained assuming

infinite height.

© 2012 Optical Society of America

OCIS codes: (050.6624) Subwavelength structures; (310.0310) Thin films; (230.7400) Waveg-

uides, slab; (110.2760) Gradient–index lenses.
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1. Introduction

Gradient Index (GRIN) media have been known to offer rich possibilities for light manipu-

lation since at least Maxwell’s time [1]. More recent significant examples are the Lüneburg

lens [2], the Eaton lens [3], and the plethora of imaging and cloaking configurations devised

recently using conformal maps and transformation optics [4–8]. GRIN optics are of course also

commercially available, but the achievable refractive index profiles n(r) are limited generally

to parabolic in the lateral coordinates or to axial without any lateral dependence [9]. There is

an ongoing effort to achieve more general distributions using stacking of photo-exposed poly-

mers [10, 11].

For optics-on-a-chip or integrated optics applications, it is possible to emulate an effective

index distribution n(r) by patterning a substrate with subwavelength structures. If these are

sufficiently smaller than the wavelength, to a good approximation they can be thought of as a

continuum where the effective index is determined by the pattern geometry. For example, one

can create a lattice of alternating dielectric–air with slowly varying period and fixed duty cycle,

or with fixed period but slowly varying duty cycle [12, 13].

If the critical length of the variation is slow enough compared to the lattice constant that the

adiabatic approximation is valid, the lattice dispersion diagram can be used to estimate the local

effective index [12,13]. Refractive indices computed using a 2D approximation are valid for 2D

adiabatically variant metamaterials where the height in the 3rd dimension is much larger than

the wavelength so the assumption of infinite height can be justified. According to this, we have

designed a subwavelength aperiodic nanostructured Lüneburg lens [14,15]. This lens mimics a

GRIN element with refractive index distribution n(ρ) = n0

√

2− (ρ/R)2 (0 < ρ < R), where

n0 is the ambient index outside the lens region, R is the radius of the lens region and ρ is the

radial polar coordinate with the lens region as origin. The Lüneburg lens focuses an incoming

plane wave from any arbitrary direction to a geometrically perfect focal point at the opposite

edge of the lens [2, 16].

However, most such adiabatically variant structures are fabricated by etching holes or rods

on a thin silicon film, whose height is less than even the optical wavelength [6, 14, 15, 17, 18].

Hence, the infinite height assumption becomes questionable. Moreover, the structures are asym-

metric since typically beneath the structure there is a substrate such as glass, whereas above the

structure is air. Asymmetry also induces a long–wavelength cutoff in the guided modes [19];

therefore the thin–film metamaterial should operate in an intermediate regime where the wave-

length is neither too large nor too small. The problem of asymmetry and finite height have been

acknowledged in the literature on photonic crystals [20–24], where the most common solu-

tion is to compute a full 3D band diagram [25]. Most of them focus on photonic crystal slabs

operating at wavelengths comparable to the periodicity, discussing phenomena such as super–

collimation [26], negative refraction [27], etc. To the best of our knowledge, the same problem

has received insufficient attention in the context of 2D dielectric periodic or aperiodic metama-

terial devices, especially those operating at the propagation regime of the band diagram. It has

been briefly mentioned in [6, 28] without giving a detailed solution.

In our fabricated Lüneburg lens design, thin–film problem is obvious where the experimen-

tal results show dislocated and aberrated focal point [14, 15]. In this paper we re–designed the

Lüneburg lens to include the finite film thickness, improving the estimate of the expected focal

point position. To design such a lens, first we need a method for estimating effective refractive

index of thin–film metamaterials. Several methods have been proposed in the literature. A con-

ventional numerical approach (we refer to it as Direct Band Diagram, DBD) in photonic crystals

derives a 3D lattice cell from the original 2D cell by surrounding a finite–height rod with large

spaces of air above and glass substrate below [25]. Another method takes one unit cell and re-

trieve the refractive index by its reflection and refraction properties [29]. These methods yield
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accurate results but require either 3D band or finite–difference calculations. More heuristic (but

faster) effective–index methods estimate a slab–waveguide effective index first and then use it

to compute a 2D band diagram or effective index [30]. They are generally suitable for struc-

tures with etched substrates. In contrast, our proposal essentially reverses the order of these

steps: we compute an effective index from the 2D cross–section first, and then incorporate it

into a slab–waveguide mode. This is more suitable to the metamaterial regime.

In particular, we propose the following all–analytical method for effective refractive index

calculation. First, we replace the rods with a continuum of a certain effective permittivity ε2D
eff .

We calculate ε2D
eff from 2D lattice of infinite–height rods using second-order effective medium

theory, and then substitute ε2D
eff as the permittivity of a slab of finite thickness, acting as an

effective guiding medium, sandwiched between semi-infinite spaces of air above and glass be-

low. The geometry then becomes one of a weakly–guiding waveguide due to the small height

of the effective guiding medium. This weakly–guiding effect modifies the real part of the hor-

izontal wave–vector component, and thus a new effective permittivity ε3D
eff for the finite slab of

rods is derived from the waveguide dispersion relationship. We refer to this method as Effective

Guiding Medium (EGM). Comparing with rigorous 3D calculations, our method provides more

physical insights, and is generally faster to compute.

To validate our method, we compare it with the DBD method. It is shown that the results of

both methods are in good agreement.

(a) (b)

Fig. 1. (a) Finite height rod lattice structure investigated in this paper. (b) 2D rod lattice

structure assuming infinite height.

2. Analytical method for effective refractive index estimation

In this paper, without loss of generality, we investigate a silica glass slab covered by a square

lattice (lattice constant a = 258 nm) of silicon rods of finite height h = 320 nm, variable radius

r (0 < r < a/
√

2) and immersed in air, as illustrated in Fig. 1(a). The free space wavelength

of light is chosen as λ = 6a = 1550 nm. This choice of a is small enough to insure that we

remain in the metamaterial regime and in the propagating regime of the band diagram; and large

enough that the rods can be accurately fabricated by nano–lithography [14, 15] and we do not

reach the long–wavelength cutoff regime for the asymmetric waveguide, as mentioned above.

The dielectric permittivity constants for glass and silicon are εglass = 2.25 and εsilicon = 12.0,

respectively. These media are non–magnetic, so the relative permeability is taken as µ = 1

throughout this paper. The glass slab height is assumed to be much larger than the height of the

rods and the free space wavelength of the light. The corresponding 2D structure with infinite

height rods and without glass substrate is shown in Fig. 1(b). We now proceed to describe

all–analytical method, EGM, for analyzing these two geometries.
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2.1. Effective guiding medium (EGM) method

The EGM method requires analysis of a three–layer structure: (I) air, (II) effective medium

waveguide and (III) glass, as shown in Fig. 2. The effective permittivity of the guiding medium

is calculated from the second–order effective medium theory in 2D which have been derived by

various authors [31, 32]. This theory starts from the effective refractive index of 1D subwave-

length grating composed of air and dielectric with index n. Under TE (electric field parallel to

the grooves) and TM (electric field vertical to the grooves) polarization incidence the effective

index can be summarized, respectively, as [32, 33]

n2
TE = n2

0TE +
π2

3

(

T

λ

)

f 2(1− f )2(n2 −1)2, (1)

n2
TM = n2

0TM +
π2

3

(

T

λ

)

f 2(1− f )2n6
0TMn2

0TE

(

1

n2
−1

)2

, (2)

where

n2
0TE = f n2 +(1− f ), n2

0TM = 1

/(

f

n2
+(1− f )

)

(3)

are the zeroth-order effective refractive indices, T is the period of the grating and f is the

filling factor of the dielectric grooves. The effective indices of corresponding 2D subwavelength

structures are then estimated as a combination of 1D structures [32, 33]

n2D−TE =
√

1− f + f n2
TE, (4)

n2D−TM =

(

√

(1− f )+ f n2
TM +

√

n2
TE

n2
TE(1− f )+ f

)

/2 (5)

for both TE and TM polarizations. Note that TE and TM polarizations mentioned in this paper

are an approximation since the fields are not purely polarized in 3D structures. A more exact

way to describe them is TE–like/TM–like, where electrical field is mostly parallel/vertical to

the grooves [25]. However, this is still an approximation because the waveguide is asymmetric

so there is no horizontal mirror symmetric plane. The second–order terms used in Eqs. (1)

and (2) better approximate the effective index in the case that the wavelength is not very large

comparing with size of unit cell, e.g. λ = 6a used in this paper. Most current metamaterial

device designs are using the zeroth–order approximation only [6], even when the unit cell size

is not far smaller than the operational wavelength. This is fine for those devices where high

accuracy results are not important. However, for devices such as Lüneburg lens, all waves are

focusing to a single point so light manipulation is more challenging. Therefore, more precise

effective index prediction is needed and second–order corrections are included.

The dispersion relation of the effective guiding medium, i.e. the relationship between kz and

ω , is governed by the guidance condition of an asymmetric dielectric waveguide for both TE

and TM polarizations [34]

(TE :) tan(kIIyh) =
εIIkIIy(εIII

√

k2
z − εIω2/c2 + εI

√

k2
z − εIIIω2/c2)

εIεIIIk
2
IIy − ε2

II

√

k2
z − εIω2/c2

√

k2
z − εIIIω2/c2

≡ FTE(kIIyh), (6)

(TM :) tan(kIIyh) =
kIIy(

√

k2
z − εIω2/c2 +

√

k2
z − εIIIω2/c2)

k2
IIy −

√

k2
z − εIω2/c2

√

k2
z − εIIIω2/c2

≡ FTM(kIIyh), (7)

#158433 - $15.00 USD Received 21 Nov 2011; revised 16 Dec 2011; accepted 18 Dec 2011; published 10 Jan 2012
(C) 2012 OSA 16 January 2012 / Vol. 20,  No. 2 / OPTICS EXPRESS  1621



Fig. 2. Effective guiding medium (EGM) approximation of 2D finite height rod lattice

structure.
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Fig. 3. Graphical solutions of wave guidance condition [Eq. (6)&(7)] for TE (a) and TM

(b) polarizations. Blue and red lines are the left and right hand sides of these equations,

respectively. Operating frequencies ω1 = 0.11×2πc/a, ω2 = 0.16×2πc/a, ω3 = 0.14×
2πc/a and ω4 = 0.18×2πc/a. Rod radius r = 0.50a.

where kz =
√

εIIω2/c2 − k2
IIy is the phase–matched propagation constant. These equations can

be solved by a graphical method and an example is illustrated in Fig. 3. It is observed that one

and only one intersection is obtained for each frequency, meaning that only one fundamental

mode is supported. Full dispersion relations kz(ω) are shown in the following section.

The EGM method described above is compared with the conventional DBD method. To

apply the DBD method, we need to calculate the band diagram of the 3D super cell shown in

Fig. 4(a). The supercell height is taken as large as H = 20a to better emulate the real structure of

Fig. 1(a), where the air and glass spaces tend to infinity. In other words, we seek to minimize the

interference between neighboring unit cells along the vertical (y) direction. We used the MIT

Photonic–Bands (MPB) mode solver [35] to calculate the dispersion diagram. In Figs. 4(b)–

4(c) we show an example MPB result for our chosen lattice and the specific value r = 0.5a, for

temporal frequency ω = 1/6×2πc/a. From Fig. 4(b) we observe that for the chosen values of r

and ω , the isofrequency contour [25] is almost a circle, indicating that this unit cell is isotropic.

Therefore, when using DBD in this particular geometry, it is sufficient to consider kz(ω) only.

However, this is not generally true in other geometries as r or ω increase.

Figure 4(c) shows the mode shape for the same geometry. It can be seen that the field is

effectively concentrated near the silicon rod portion of the cell. The relative intensities at two

horizontal cell boundaries y = ±H/2 were 5.6× 10−6 and 3.8× 10−6 at the top and bottom,

respectively, compared to the peak value that occurred at y = 159 nm from the rod base. This
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validates our choice of H as sufficiently large.

Comparing with the DBD method, the EGM method can provide deeper physical insights

with all–analytical solutions, and is generally faster since it avoids solving numerical electro-

magnetic solutions in 3D.

(a)
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Fig. 4. (a) The supercell used in the DBD method for the finite height rod lattice structure.

(b) Isofrequency contour of the supercell with r = 0.50a where the first band only is shown.

Labels on the lines denote the corresponding normalized frequency ωa/2πc. The bold blue

line corresponds to the wavelength λ = 6a used in this paper. (c) Field distribution of the

waveguide slab at a particular x slice. Color shading denotes magnetic field (Hy) distribution

and black contours illustrate silicon rods.

2.2. Effective refractive index and rod radius relationship

In this section, the relationship between the effective refractive index and rod radius is calcu-

lated. The results of EGM method are compared with the ones obtained from DBD method.

Figure 5(a) shows the dispersion relation of the finite–height rod lattice calculated with both

DBD and EGM methods, as well as with the 2D (infinite rod height) assumption, for rod radius

r = 0.5a. Based on the dispersion relation, effective refractive indices for unit cells with differ-

ent rod radii are calculated as neff = ckz/ω , shown in Fig. 5(b). The results given by the DBD

and EGM methods are in good agreement with each other, with maximum percentage errors

of 7.3% and 6.0% for 2D and 3D cases, respectively. It is observed that the effective refractive

indices of the finite–height rods are significantly different than those assuming infinite height.

This is to be expected due to weak guidance: as can been seen in Fig. 4(c), a large portion of

the field extends outside the rods to spaces of air and substrate. When the rod radii are below

certain values (0.17a for TE and 0.35a for TM), the propagation modes are not guided so the

effective indices are not shown. The discontinuities observed in the 2D effective index curves

for DBD method beyond certain values of rod radii (0.40a for TE and 0.49a for TM) result

from the emergence of a photonic crystal bandgap at these values. At this frequency range,

even though the 2D infinite–height lattice is within the bandgap, the confined (slab waveguide)

geometry is still propagating; this is because the light is mostly outside the dielectric region, so

propagation takes place in the free space (hence the lower index). To calculate the propagation

constant in this regime, we still need an effective index value and EGM provides it (it turns out

to be large than 3, typically).
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Fig. 5. (a) Comparison between the dispersion relation for finite–height silicon rod lattice

[Fig. 1(a)] calculated from the EGM and DBD method, and the dispersion relation for

infinite–height 2D rod lattice [Fig. 1(b)]. For each case, the two lowest bands representing

the TM and TE modes are shown. (b) Relationship between effective refractive index and

rod radius calculated from both methods, compared with the relationship for infinite–height

2D rod lattice. Free space wavelength of light is λ = 6a = 1550 nm.

3. Optimal design of the subwavelength Lüneburg lens

We re–design and numerically verify the subwavelength Lüneburg lens [2,14,15,36], which was

previously designed under 2D assumption. Here, we still design the Lüneburg lens as a structure

consisting of finite–height rods with adiabatically changing radius r across the lattice of fixed

constant a. At each coordinate ρ , we emulate the Lüneburg distribution n(ρ) = n0

√

2− (ρ/R)2

by choosing the rod radius r at coordinate ρ from Fig. 5(b) such that n3D
eff = n(ρ), as opposed to

using n2D
eff = n(ρ). The design has to be carried out separately for the TE and TM polarizations.

The ambient index is chosen as n0 = 1.53.

Figure 6 illustrates the lens structures and the corresponding 3D finite–difference time–

domain (FDTD) simulation results for the actual adiabatically variant thin–film nanostructured

Lüneburg lens performed by MIT Electromagnetic Equation Propagation (MEEP) [37]. The

3D model used for FDTD consists of a rectangular box of size 41a×24a×41a which contains

perfectly matched layers on both sides of each dimension. The radius of the lens is chosen as

15a. With plane wave illumination, almost diffraction–limited focal points at the edge can be

observed for both TE and TM polarizations. For a more computationally efficient and intuitive

representation we also ray–traced the field inside the Lüneburg structure using the adiabatic

Hamiltonian method [12, 13]. The ray position q and momentum p are obtained by solving the

two sets of coupled ordinary differential equations

dq

dσ
=

∂H

∂p
,

dp

dσ
=−∂H

∂q
, (8)

where H(q,p) ≡ ω(ρ ,k) is obtained from the dispersion diagram at each coordinate |q| = ρ
and for k ≡ p. Ray tracing results are superimposed in Fig. 6 with FDTD results, and are seen

to be in good agreement. Furthermore, as a comparison, similar thin–film Lüneburg lens is

designed using the DBD method and simulation results are shown in Fig. 7. It is observed that

results of the all–analytical EGM method design agree with those from the DBD method.

In Section 2.1 we mentioned the second–order effective medium theory for better approxi-

mation of the effective index when the wavelength is not significantly larger than the size of

unit cell. To illustrate the importance of these second–order terms, we designed a thin–film
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Fig. 6. (a) Top view and side view of the thin–film subwavelength Lüneburg lens designed

by EGM method for TE mode and (b) the corresponding 3D FDTD and Hamiltonian ray

tracing results. (c) Top view and side view for TM mode and (d) the corresponding 3D

FDTD and ray tracing results. Red circles outline the edge of Lüneburg lens, where radius

R = 30a. Blue lines are the ray tracing results and color shading denotes the field [Hy for

(b) and Ey for (d)] distribution, where red is positive and blue is negative.
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Fig. 7. Structure and the corresponding 3D FDTD and Hamiltonian ray tracing for the

thin–film subwavelength Lüneburg lens shown in Fig. 6, but designed by the DBD method

instead.

Lüneburg lens using the EGM method, but the second–order terms were neglected when es-

timating the effective indices. The FDTD and ray–tracing results are shown in Fig. 8. The

performance of the lens is degraded with aberrations and shifted focal position. Note that to

clearly illustrate the focal points, we extended the size of the 3D FDTD model in z direction to

61a.

To compare the redesigned lens (3D, finite height) with the original design (2D, infinite

height), we repeated the design using the values of refractive indices predicted by the dispersion

relation of the infinite–height rod lattice (see Fig. 5(b) blue and red solid curves). In this case,

we are forced to use TM polarization only because the TE polarization reaches the bandgap for

relatively small value of r, not leaving enough room to implement the Lüneburg profile with

rod radius r large enough to be robust to practical lithography and etching methods (in our

experiment, this requires r ≥ 0.27a [14, 15]). Also, for better illustration, the size of 3D FDTD

model is modified to 41a× 24a× 101a. It can be observed from the FDTD and Hamiltonian

ray–tracing results shown in Fig. 9 that the focal point is outside the lens edge and it is strongly

aberrated. This is in good agreement with the experimental results of the original design [14,

15].

#158433 - $15.00 USD Received 21 Nov 2011; revised 16 Dec 2011; accepted 18 Dec 2011; published 10 Jan 2012
(C) 2012 OSA 16 January 2012 / Vol. 20,  No. 2 / OPTICS EXPRESS  1626



(a)

0 10 20 30 40

−15

−10

−5

0

5

10

15

z (a)

x
 (

a
)

(b)

(c)

0 10 20 30 40

−15

−10

−5

0

5

10

15

z (a)

x
 (

a
)

(d)

Fig. 8. Structure and the corresponding 3D FDTD and Hamiltonian ray tracing for the thin–

film subwavelength Lüneburg lens shown in Fig. 6, but designed using the EGM method

without second–order terms when estimating the effective refractive indices.
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Fig. 9. FDTD and Hamiltonian ray–tracing results of the subwavelength Lüneburg lens

made of finite height silicon rods, but designed assuming infinite height. The color conven-

tions are the same as in Figs. 6(b) and 6(d).
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