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Design of Three-Dimensional Digital 
Filters Using Two-Dimensional 

Rotated Filters 
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ANASTASIOS N. VENETSANOPOULOS, SENIOR MEMBER, IEEE 

Ahs~ucr-Two techniques for the design of three-dimensional (3-D) 

filters are introduced in this paper. The first one is based on coefficient 

transformations of two-dimensional (2-D) circularly symmetric filters. 

These filters can be designed by cascading 2-D rotated filters. Stability of 

the 3-D filters designed is discussed and a stabilization procedure based on 

cepstrum analysis, is proposed. Stable implementation schemes are intro- 

duced. The second technique is based on cascade arrangements of 2-D 

rotated filters and results in 3-D spherically symmetric filters. Examples of 

3-D filters designed on the basis of both techniques introduced are 

presented. Finally, some comparisons among several 3-D design techniques 

are given. 

INTRODUCTION 

T HREE-DIMENSIONAL (3-D) image processing has 
recently emerged as an essential tool in many areas of 

current interest. This is due to the increasing importance 
of many applications, where it plays a significant role, and 
the availability of high-speed computers with large mem- 
ory. 3-D signals offer significant advantages over 2-D 
signals, because they preserve spatial information. Depth, 
surface orientation or edges can be easily detected from 
3-D data. 

The most important applications of ?-D image processing 
are the following [l]: 

1) Biomedicine: 3-D CAT, which has the ability to pre- 
serve structures, finds applications in craniofacial surgical 
planning, the study of the central nervous system, stereo- 
static neurosurgery, stereostatic biopsy, irradiation, radia- 
tion therapy, reconstructive therapy, and the study of 
moving parts. 

2) Time- Varying 2-D Signals: In video it is customary to 
model the time-varying 2-D signals as 3-D signals, to 

preserve spatial and temporal correlations. 
3) Robotics: Robotics is one of the most rapidly grow- 

ing areas of current technology. There is an increasing 
effort to use robots in more sophisticated applications. For 
such applidations the availability of 3-D visual systems is 
necessary. 

4) Geophysics: 3-D seismic data processing was shown 
to have many advantages over 2-D processing. 3-D 
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migrated data describe more accurately the geology of the 
area under study, than corresponding 2-D data. 

Therefore, it is important that 3-D signal processing 
techniques are developed. The design of efficient 3-D 
filters is starting to emerge. Hirano et al. [2] developed 3-D 
filters for TV-signal applications, based on cascade and/or 
parallel combinations of 1-D component filters. Pitas and 
Venetsanopoulos [3] introduced symmetries to the design 
of m-D filters, and designed good 3-D IIR spherically 
symmetric and fan filters, by optimization techniques. 

Using various arrangements or transformations, a 1-D 
filter can be transformed into a higher dimensional filter. 
In Fig. 1, all possible transformations of a 1-D (analog or 
digital) filter to, at most a 3-D filter, are depicted. The 
objective is to obtain 3-D digital filters from 1-D proto- 
types. 

To increase the dimensionality of a 1-D digital filter, 
various techniques can be used. One of them is based on a 
transformation of its coefficients, with respect to the ad- 
ditional dimensions. This technique has been used to de- 
sign 2-D filters with predefined specifications from 1-D 

filters [4]. A second possible technique is to arrange, in 
parallel and/or in cascade, filters of low dimensionality, 
designed with respect to different dimensions. 3-D filters 
have been realized as parallel and/or cascade arrange- 
ments of 1-D filters, each one of which is designed with 
respect to one of the dimensions zi, z2, or zs [2]. 

Both of these techniques are employed, in this paper, to 
design 3-D filters with predefined specifications, using 
circularly symmetric filters designed on the basis of 2-D 
rotated filters. The first technique exploits coefficient 

transformations and yields spherically symmetric, fan, as 
well as other symmetric filters. The second uses cascade 
arrangements of 2-D rotated filters and yields only spheri- 
cally symmetric filters. With respect to Fig. 1, both tech- 
niques can be considered as a transformation of a 1-D 
analog filter to 2-D analog filter, then to a 2-D digital filter 
(rotated filter) and, finally, a transition to a 3-D digital 
filter. The first design technique is presented in Sections 
I-VI. In Section I, some aspects of the 2-D rotated filters 
are presented. Sections II and III deal with the design of 
3-D filters introducing the transformation functions ap- 
plied to the coefficients of the 2-D rotated filter. The 
stability of the filter designed is studied in Section IV, 
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Fig. 1. Transformations increasing the dimensionality of a filter. 

whereas the realization aspects are presented in Section V. 
Examples of spherically symmetric and fan filters designed 
on the basis of this technique are given in Section VI. 
Finally, Section VII deals with the second design technique 
based on cascade arrangements of 2-D rotated filters. 

PART I-DESIGN OF 3-D FILTERS USING 

COEFFICIENT TRANSFORMATIONS OF 2-D 
ROTATED FILTERS 

I. 1-D CUTOFF FREQUENCY AND 2-D 
BAND-EDGE CONTOUR 

Any 1-D analog filter can be described by its transfer 
function, which is of the general form 

fib-d 
H,(s) = Ho y 

Il(s-PjJ’ 
j=l 

(1.1) 

For stability purposes, n must be greater than, or equal to 
m. The cutoff frequency of any 1-D analog filter depends 
only on the coefficients of the filter’s transfer function. If 
the cutoff frequency of the analog filter is wc, then the 
transfer function (l.l), can be equivalently written as 

H,(s) = Ho{ UC} ;;;l 

~~l(s-Pj{wc~) 

(1.2) 

where the braces denote the dependence of the filter’s 
coefficients on its cutoff frequency, and vice versa. De- 
pending on the design technique, the relations of fil- 
ter coefficients to cutoff frequency, can be analytically 
(Butterworth, Chebyshev) or numerically (computer-aided 
design) determined. By rotating clockwise the filter (1.2) 
and applying the bilinear transformation si = (1 - zi)/(l + 
zi) over each one of the resulting variables, the 2-D digital 
rotated filter can be obtained [5]. Its transfer function is of 
the form 

n 

H2(z~~z~)=Ho~w~~i~l bi 
0 

+bi 
1Zl 

+biz 
2 2 

+bi 
12 

z z 
1 2 

(1.3) 

where 
n=max{m,n} 

ah= ~OS(fi)-SiIl(/3)-qi{w,}\ 

ai= cos(P)+sin(p)-qi{w,} 

I 
ui=-cos(j3)-sin(p)-qi{w,} ’ 

for 1 Q i < m 

ui2 = -cos(P)+sin(p)-qi{w,}) 

u; = u; = u; = (& cl, for m < i < n 

bi= cos(P)-sin(P)-pi{o,}) 

b’,= cos(P)+sin(p)-p,{w,} 

bi= -cos(/3)-sin(P)-pi{w,} 
i 

’ 
forl<i<n. 

bi,=--cos(/?)+sin(p)-p,{w,}) 

Stable filters, rotated over any angle /I, can be obtained 
(Appendix 11). Cascading a number of rotated filters based 
on the same 1-D elementary filter, whose rotation angles 
are distributed over 180”, results in a 2-D filter whose 
magnitude response approximates circular symmetry. The 
more rotated filters cascaded, the better the circular sym- 
metry achieved. The transfer function of this filter is of the 
form 

Ej,(Z,? 4 = J5 $(q, z2) (1.4) 
I=1 

where Hi(z,, z2) is given by (1.3). The only difference 
among the cascaded filters lies in their rotation angles /Ii. 
In the Fourier transform domain of a 2-D filter, any 
contour on which 

1 H2 (oi, 02) I= constant 

is called “isopotential contour.” The specific filter de- 
signed is normalized (max ]fi*] = 1). Its isopotential: 

which is called “band-edge contour” (corresponding to 
1-D cutoff frequency), approximates a circle with radius 

Oc2D. According to the design procedure, there is a mono- 

tonic relationship between o, and ~,*b. The larger the 
value of wc, the larger the value of w,*,,. 

Let us define the function that relates o, to o,*,, as 

0, = gbc2IJ (1.5) 

This function can be numerically determined. For each 
value of the radius w,~,, of the circle to be approximated 
by the band-edge contour of the filter designed, a value of 
the cutoff frequency o, of the elementary filter to be used 
is assigned. The proposed algorithm to compute o, is 
called Procedure I and comprises the following steps. 

Procedure I 

9 
ii) 

Read the value of w,~,,. 
For the circularly symmetric filter under considera- 
tion, form the root mean square error (RMSE): 

,i (~~2(wl~~2)(-o.7~~)2 
I 

l/2 

0 4 
1-l 
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Fig. 2. Curve relating mcZD of a quadrantally symmetric filter to wc. 
Design based on the cascade of 2-D rotated filters. 

at the points 

6-b 4 = 

iii) Minimize E with respect to 0,. 

The resulting w,, for a specific wc2,,, is the value of the 

1-D filter’s cutoff frequency that must be used, so that the 
2-D circularly symmetric filter designed (1.4) best ap- 

proximates the circle with radius w,~,,, by means of the 
RMSE. 

In Fig. 2, the curve relating w,~,, to w, for a circularly 
symmetric filter, is shown. 

The 2-D filter is designed by cascading two rotated 
filters based on the same second-order Butterworth ele- 
mentary filter; one rotated over ((3?r/2)+(~/4)) and the 
other over ((31~/2)-(7r/4)). This filter possesses quadran- 
tal symmetry in is magnitude response [appendix II]. The 
1-D elementary filter used, is not an ideal one. Further- 

more, the bilinear transformation si = (1 - z,)/(l + zi) used 
to produce (1.3), slightly deforms the contour plots of the 
2-D rotated filter. Keeping these imperfections in mind, 
one can easily realize that it is not possible to design a 
circularly symmetric filter, whose band-edge contour ap- 
proximates a circle with radius very close to V. Hence, in 
Fig. 2, it is understood that there is not any value of w. 
that results in a value of w,~,, very close to 7r. 

II. DESIGN OF 3-D DIGITAL FILTERS 

Suppose that we would like to design a 3-D filter, to 
meet the following specifications. 

i) On any plane wj = constant, its magnitude response 
is circularly symmetric. 

ii) Its band-edge contour, on any w3 = constant, is a 
circle with radius: 

W ,2,=fb3) - (2.1) 

where f(ws) is periodic with period 2m. 

Consider the 2-D circularly symmetric filter given by 
(1.4). This can be regarded as a 3-D filter independent of 
the third axis z3. Its band-edge contour, for any w3 = 
constant, approximates a circle with radius w,~,,. The filter’s 
coefficients depend on wc2n, since they depend on w,, 
which is a function of wc2n (1.5). To meet the above 
specifications, the radius w,~,, must be related to w3 by 
means of (2.1). Change the coefficients of the rotated filter 
(1.3), so that, instead of constant w,, they are functions of 

wc=df(wJ) (2.2) 

where f(a) and g(a) are functions given by (1.5) and (2.1), 
respectively. The resulting 3-D function, on the torus: 

T3= (hz2, Z3);]Zl]=ln]z2]=ln]z3]=1} 

is of the form 

A(w,,w2,w3)= fiH’(Wl,W2,W3) (2.3) 
I=1 

where H’(w,, w2, w3) is the frequency response of a rotated 
filter given by (1.3), under the transformed coefficients: 

ab(Ws) = cOS(P)-Sin(p)-qi[g(f(W,))l 
4bJ3) = cos(P)+sin(p)-q,[g(f(w,))l 

ak(W3) = -cOS(P)-Sin(P)-4i[g(f(W3))1 ’ 

ui2(w3) = -coS(P>‘S”(p)-qi[g(f(W3))I I 
for 16 i 6 m 

agw3> = ai = a;(w3) = u;2(w3) =l, 

for m < i < n 

bi12(W3) = -cos(~)+sin(~)-hdf(w3))] I 

forl<i<n. 

bb(W3) = cOS(P)-Sin(p)-pi[g(f(w3))1 

bil(w3) = cos(P)+sin(P)-Pi[g(f(w,>)l 
Mw3) = -cos(P)-sin(p)-p,[g(f(w,))l ’ 

The fi( wi, w2, w3) depends on all three dimensions and for 
any w3 = constant, its band-edge contour approximates a 

circle with radius: 

W c2D = g-‘b,> = s-‘[g(f(ws))l =f(Ws). 

Consequently, this function meets all predefined specifica- 
tions. In order that (2.3) represent the frequency response 
of a finite-extent 3-D digital filter, its coefficients must be 
expressed as finite-extent functions of e(*i”‘). There are 
two possible ways to achieve this representation. The first 
one is to approximate the coefficients (2.3b) by a 1-D 
rational function of w3 (IIR filter). The IIR filter used in 
this approximation must be both stable and inverse-stable 
(the l/H(z,) filter must be stable). The inverse stability 
requirement is posed in order to achieve, in later stages, a 
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stable 3-D filter. This point is better explained in Section 
I-D, that deals with the stability of the resulting 3-D filter. 
However, the inverse stability requirement might be re- 
laxed, since, using 1-D cepsrum analysis, the 3-D filter 
obtained can be stabilized (see Section I-D). Since the 
implementation of this approach is in early stages, the 
results of this method are not presented in this paper. 

The simplest possible way to express the coefficients 
(2.3b) as finite-extent functions of e( +jw3) is by using 
windowed cosine Fourier series (FIR filter). For efficient 
approximations it is essential that: 

i) the function f(w3) must be even, and 
ii) the coefficients [Ho{ wc}, qi{ wf} and pi{ w,}] of the 

1-D elementary filter must be simple functions of w,. 

The first requirement constrains the magnitude re- 

sponses that can be implemented, to be symmetric over the 
plane w3 = 0. However, most of the responses to be ap- 
proximated, such as spherically symmetric or fan re- 
sponses, satisfy this requirement. To satisfy the second 
requirement, the poles and the zeros of the 1-D elementary 
filter used in the design, must not only depend on the 
filter’s cutoff frequency, but also be simple functions of it. 
Hence, the most appropriate 1-D analog filter is the 
Butterworth filter. Its coefficients are of the form 

ho = 4 

qiCwc) =O 

Pi(WC) = ciw, (2.4) 

where Ci is a complex number depending on the order n of 
the Butterworth filter. Furthermore, note that an increase 
of the order n, results in an increase of the number of 
coefficients (2.3b) which are approximated by windowed 
Fourier series, and, consequently, in a significant increase 
of the coefficients’ number in the 3-D filter introduced. 
Therefore, in the proposed design technique, a second-order 
1-D Butterworth is used as the elementary analog filter. 
However, the extension to any order Butterworth filter is 
straightforward. 

For this particular choice, 

n=2. 

c =-C(1+j) 
2 2 .- 

(2.5) 

For the coefficients (2.4), with n = 2, the following expan- 
sions into Fourier series, must be computed: 

dfb3)) = 4w3) = ? c,cos(nw3) 
n=O 

= $, 2 [ ej”w3 + e-jyq (2.6a) 

g2(fbJ3)) = G3) = E 4P4mW3) 

m=O 

= mco % [ ejmw3 + e-jm“3] (2.6b) 

where, u(w3) and u(wg) represent the windowed Fourier 
series of g( f ( w3)) and g2( f (w,)), correspondingly. Alter- 
natively, (2.6b) can be approximated by the first MS 1 
terms of the series 

= u2(w3) = f T$(ej9+e-jnw3 
[ )I 

2 

MfbdN2 . 
n=O 

(2.6~) 

Note that these functions are symmetric with respect to 
w3 = 0, and periodic with period 27~. 

The transfer function of the 3-D filter designed on the 
basis of a second-order Butterworth filter, is described by 

fqz,, z2, z3) = fiH’(z,,z2,z3) (2.7) 
I=1 

where 

WZl, z2,4 

= HOG,) 

II, = ; >(z;+ t;m) 
m=O 

u;(z3) =l 

ui’(z3) =l 

(2.8a) 

(2.8b) 

a;1(z3) =l 

u&(z3) =l 

bt(z3) =cos(P,)-sin(P,)-Ci f $(z;+z;“) 
[ n=O 

bi’(z3) =cos(P,)+sin(p,)-Ci : ?(z;+z;‘) 
[ n=O 1 

bf(z3) = -cos(P,)-sin(p,)-Ci f :(z;+z;’ 
[ n=O )I 

by2(z3) =-cos(P,)+sin(/?,)-Ci 5 ?(z;+z;” 
[ n=O )I . 

(2.k) 

The design algorithm, based on the previous analysis, is 
called Procedure II and involves the following steps. 

Procedure II 

i) Design the 2-D circularly symmetric filter by rotat- 
ing the same 1-D Butterworth filter over angles lying 
between 0 and P, and cascading the resulting rotated 
filters. 

ii) Divide the w3 axis into N distinguished frequencies, 
uniformly distributed over [0, n]. N must be suffi- 
ciently large, to prevent space domain aliasing. 
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iii) For every distinct frequency w;, compute the corre- 

sponding wL2,, from the function: 

w,*,=f(w3)* 

iv) 

v> 

For every wf2,,, using procedure I, compute numeri- 
cally the corresponding cutoff frequency wi of the 
1-D Butterworth filter, to be used on the plane 
w3 = w;. 
At the end of this step, the sampled function 
g( f(wi)), has been computed. The g2( f(wi)), can 
be then calculated easily. 
To achieve the Fourier series decomposition (2.6), 
the inverse discrete Fourier transform (IDFT) can be 
employed. Since f ( w3) is a periodic (with period 2m) 
and even function, the series { g( f (04))) is periodic 
and symmetric. The DFT analysis and synthesis 

pairs of a periodic and symmetric discrete series x, 
with period 2N - 1, are expressed as 

N-l 2vkn 
x,=x,+ c 2x,cos- 

n=l 
2N-1 

with an IDFT given by 

1 N-l 2?rkn 
x =- 

n 2N-1 
x0+ c 2x,cos---- 

k=l 2N-1 I 
Using an IDFT routine for the series {X,} = 

{ s(f(w3k))h th e coefficients c, of (2.6a) are com- 
puted. The coefficients d, of (2.6b), are similarly 
calculated. 
Impose the series { cn} and {d,} on the coefficients 
of each rotated filter, as in (2.9, to obtain the 
transfer function of the 3-D filter that approximates 
the desired magnitude response. 

III. SUBOPTIMUM APPROACH 

Procedure II for the design of 3-D filters, is cumber- 
some. Steps iv) and v) require complicated numerical com- 
putations including nonlinear optimization and inverse 
DFT. Furthermore, if in some region of w3, f ( w3) is close 
to 7~ (as for example in the case of a 3-D fan filter), the 
magnitude response of the 3-D filter designed, does not 
exactly approximate the desired response. The reason for 
this inability is the implication of Fig. 2, that it is not 
possible to design circularly symmetric filters with w,~,, 
very close to r, by cascading 2-D rotated filters. These 
imperfections encourage the development of a much less 
complicated, suboptimum procedure. In this approach, the 
relationship between the 1-D cutoff frequency w, and the 
2-D band-edge radius wc20, is assumed to be linear 

Wc2D = wc. 

According to Fig. 2, this assumption is valid on a 
considerable frequency region. Hence, in (1.3) the transfor- 
mation 

w,=f(wA (3.1) 

instead of (2.2), is applied. The Fourier series analysis of 
(3.1) can be now derived analytically, for simple functions 

f(w3), such as in the case of spherically symmetric or fan 
filters. The Fourier transform analysis pair is expressed by 

f(w3) =c,+ 5 c,cos(nw3) (3.2a) 
n=l 

where 

co= ;j; f(w3)dw3 
77 

(3.2b) 

and 

c, = 

The series (3.2a) 
N + 1 terms, i.e., 

k,: f(w3)cos(nw,;rw3. 
77 

must be truncated (by windowing) to 

N 

f(w3) = co + C c,cos(nw3). (3.3) 
n=l 

The number N can be chosen so that the maximum ap- 
proximation error: 

E=max{ f(w,)-f(w,)}, inO<w,<7r (3.4) 

does not exceed an accuracy E. Similar truncation must be 
carried out for the function f 2(w3). The new procedure, 
called Procedure III, involves the following steps. 

Procedure III 

i) Design the 2-D circularly symmetric filter by rotat- 
ing the same 1-D Butterworth filter over angles lying 
between 0 and r, and cascading the resulting rotated 
filters. 

ii) Compute (analytically) the series { c, } and { d, } 
from (3.2), for f(w3) and f 2(w3) correspondingly. 

iii) Impose these series on the coefficients of each rotated 
filter, as in (2.8). 

IV. STABILITY 

The 3-D filter (2.7) is designed by cascading various 

filters H’( zi, z2, 3). Hence, fi(z,, z2, z3) is stable if and 

only if (iff) each one of the cascaded filters is stable. In 

general, H’( zi, z2, z3) is a cascade of K pairs of conjugate 

3-D filters with complex coefficients, and I -2K 3-D 
filters with real coefficients. 

i=l 

I-2K 

. ,c. ReH,h z2, z3). 

Therefore, H’( zi, z2, z3) has real coefficients and 
sable iff each of Hi[(zl, z2, z3) is stable. From (2.8a): 

Ui( Z3) + Ui’( Z3)Z1+ U:( Z3)Z2 + a;;( Z3)ZlZz 

= b;( z3) + b’,‘( z3)z1 + bf( z3)z2 + b’:,( z3)z1z2 . 

it is 

(4.1) 

The filter’s coefficients are given in (2.8c), with ci defined 
in (2.6a). The function u(w3) is symmetric over its center 
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w3 = 0, and Re { Ci} < 0. The stability conditions of this 
filter, under causal implementation, are (Appendix 11): 

4W3) ’ 0, for 0 G w3 G 77 (4.2a) 

3s 
- 
2 

<p<277 (4.2b) 

b{(z3) =cos(fi)-sin(P)-Ci 2 :(z;+z;” 
[ n=O )I ZO, 

in ]z3] gl. (4.2~) 

The approximation function u(w3) can be controlled so 
that (4.2a) is satisfied. The second condition is removed by 
applying data transformations [6]. The last condition is 
never satisfied, since b&‘(z3) has zeros both inside and 
outside the unit circle ]z3] =l. Hence, the filter designed is 
unstable. Furthermore, there is no direction of recursion 
[8] on which this filter can be stably realized. However, 
elaborating more on the nature of the image processing 
applications, a question arises whether or not BIB0 stabil- 
ity is a fair requirement for filters used in this area. The 
signals (pictures) that image processing has to deal with, 
are of finite extent. Filtering such signals with even BIB0 
unstable filters does not result in an infinite-magnitude 
output. Hence, after filtering, a scaling factor can be 
applied, to restrain the output’s magnitude within ap- 
propriate values. With these ideas in mind, it is understood 
that BIB0 stability is a very restrictive requirement for 
systems to be used in image processing. In another contri- 
bution [13] the notion of practical-BIB0 stability was 
introduced. According to this approach, the stability be- 
havior of m-D systems having m-D inputs that are of 
unbounded duration in at most one variable, is considered. 
It was shown that practical-BIB0 stability is less restrictive 
and more relevant for practical applications than the con- 
ventional one. Nevertheless, we proceed with the BIB0 
stabilization of the filter designed. 

The stability conditions of this filter are (Appendix 11): 

B’(z,, z2> z3) + 0, for ]z2] = ]z3] = 1 n Jzi] < 1 (4.5a) 

NO, z2, z3) # 0, for ]z3] =ln ]z2] <l (4.5b) 

w4O, z3) + 0, for ]z3] Gl. (4.5c) 

If, for any 0 G w3 d 7~, the Fourier transform (2.6a) is 
strictly positive, i.e., 

4w3) ‘0 (4-6) 

and the rotation angle p: 

-377 
-<p<277 

4 
(4.7) 

the first two stability conditions are satisfied’ by (4.3), 
since they are satisfied by each one of B!(z,, z2, z3) (Ap- 
pendix 11). It is shown in Appendix 12, that the term 
/3; o( z3), on the unit circle ]z3] = 1, can be analyzed into 

B;,ob3) =w(z3)~‘(z,1) 

where $‘(z,) is recursively stable, i.e., 

(4.8) 

Y3’(z3) # 0, in ]z3] ~$1. (4.9) 

Furthermore, ‘/3’(~;~) is recursively stable if it is imple- 
mented using a routine that recurses in the negative direc- 
tion (- n), with respect to the dimension z3. Hence, fib,, is 
recursively stable, if it is realized as a cascade of the 
recursive filter l/‘/?(z3) and the same filter recursing on 
the (- n) direction. Alternatively, if the 3-D transforma- 

tion T( .) is defined as 

Stabilization Procedure: 

T X(v2, ( z,,) = x(q, z2, z;l) (4.10) 

filtering on the (- n) direction is equivalent to an input 
transformation, filtering on the (+ n) direction and an 
output transformation [6]. These operations are described 

by 

The filter (4.1) can be stabilized by using an appropriate 
realization scheme for bt( z3). The analysis is carried out in 
the case that an Ith order Butterworth filter is used in the 
design. 

X(z,, ~2, z,,) . (4.11) 1 
Each one of the cascaded filters H’(z,, z2, z3) (2.8a), has Since the transformation T( .) does not contribute into the 

real coefficients and can be represented by magnitude response, it is clear that, under this realization, 

where, 

= H”( z3) 
&I, z2, z3) 

WZ,? z2, z3) 

A’(z,, z2,z3> = i i a;.,z;z? 

(4.3) 

(4.4a) 

n=O m=O 
I I 

wz,, z2, z,) = c c P,‘,,b3Mz,m =PJ,o(z3> n=O m=O 
+ C’(z,, z2, z3). (4.4b) 

Po,o(z3) f 0, for ]z3] gl. (4.12) 

Hence, the stability condition (4.5c), is also satisfied. 
Summarizing, the first two stability conditions are satis- 

fied if (4.6) and (4.7) hold, whereas the third condition is 
satisfied if pi,,(z,) is realized through (4.8), with ‘p’(z,) 
recursing in the positive and ‘p’( z;l) recursing in the 
negative z3 direction. The only way to achieve such a 
realization is by using iterative techniques. This realization 
scheme is analyzed in the following section. 

‘The conditions (4.5a) and (4.5b) are satisfied by means of marginal 
stability. If, due to coefficients’ truncations, stability problems are de- 
tected, the nonessential singularities of the second kind are removed by 
slightly perturbing the coefficients (Appendix 11). 
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Fig. 3. Block diagram for stable realization of the 3-D filters designed. 

V. REALIZATION 

Let H(z,, z2, z3) represent any of the cascaded filters 
H’(z,, z2, z3) in (2.7). The conditions (4.6) and (4.7), are 
satisfied. This transfer function has real coefficients and 
can be written as 

H(z,, i,, z3) = Ho(z3) 
4% z2) 

~(Zl~ z2, z3) 

= HOG,) 
Ah z2> 

az3) + Wl, z27 z3) 
~o(z3Mw2) 

1 
= 

P(z3) D(z,, z2,4 . 
(5 4 

l+ Hz,> 

According to the previous section, H(z,, z2, z3) is stable, 
i.e., 

1+ 
qz,, z2,4 

p(z3) ZO inU3 

iff 1/p(z3) is realized as 

/3(:,) = y3(tz3) ‘a&) = y3tz3, TLp;z3) T (5-2) 

where T( .) represents a data transformation on the direc- 
tion z3. 

The block diagram representing this realization, is pre- 
sented in Fig. 3. 

The only part that needs further analysis is the feedback 
loop which is realized iteratively [7]. Define 

D(zl, z2~ z3) ’ 
F(z,, z2, z3) = - 

W3) T,P(z3) 

-T. (5.3) 

Since the data transformations do not contribute to the 
magnitude of F(z,, z2, z,), on u3, 

The convergence of the iterative procedure that realizes the 
feedback loop, is now investigated. The analysis becomes 
much less cumbersome in the Fourier transform domain. 
The equation that governs the ith iteration is 

yi(w,, +, u3) = %+, (‘+, w3) 

+ G,, 029 w3)~-,h~ w2~ w3) (5*5) 

where Y.(wi, w2, w3) and g(w,, w2, ws) are the Fourier 

transforms of the output and the input of the loop, 
after the i th iteration, correspondingly. If initially 
Y,( wi, w2, w3) = 0, the output of the (1+ 1)th iteration will 
be 

r,+1(% w2, w3) = f: F(I) 
[ 

(al9W2903) ~(~1,~2,~3) 

i=O 1 
1-F(‘f1)(w,,W2,W3) 

= l-F(O,,O,,O,) 
@ WI, Q2, W3). 

(5 4 

Therefore, the iterative procedure converges iff 

p(q,~2,~3)1<1. (5 -7) 

However, this is not a restrictive condition. Since, ‘p( z3) # 
0 on the torus T3, the function ]I - F( wi, w2, 03)] has a 
maximum F,: 

F,=max{ll-F(o,,w,,w,)I} <co. (5.8) 

The transfer function that describes the feedback loop is 

the following: 

l-F*(~,,%,@3) 

= [l-F(01,02,~3)][1--*(‘~1,~2,~3)] 

A[l- F*(w,,w,~w,)] 

= All- F(w,,w,,w,)12 

A [l- F*b,, w2,03>1 

= l-~(w,,O,,O,) 

where 

O<A2 
F,’ ’ 

(5.9) 

For the function C(w,, 02, w3) we derive 

IC(% w2> w,)I=Il-X11-F(w,,w2,w3)121<1. (5.11) 

Hence, the iteration procedure described by (5.9), con- 
verges at 

wwJ2? w3) = 
~[1-F*b,,w41 

l- c(q, 02, w3) 

~b,, ~2,~3) 

1 

= l-- F(W1,W2,a3) 
&4h, w2, a,). (5.12) 
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Fig. 4. Curve wc = f( w3) in the case of sph. sym. filter design. (a) 
results in unstable, whereas (b) in stable realization. 

Therefore, the feedback loop is realized using the converg- 
ing iteration procedure. 

VI. EXAMPLES 

In this section we present examples of 3-D filter de- 
signed on the basis of the method proposed. A 1-D sec- 
ond-order Butterworth filter is used as the elementary 
filter. The circularly symmetric filter is designed as a 
cascade of two 2-D rotated filters, based on the same 1-D 
prototype; one rotated over 225” and the other over 315”. 
The second rotated filter is stable if it recurses in the 
(+ 1, + n) direction (Appendix 11). The same filter can be 
used to achieve a rotation angle of 225’ by rotating the 
input and the output arrays [6]. The frequency response of 
the cascade of these filters, is quadrantally symmetric 
(Appendix II). The quadrantally symmetric filter is trans- 
formed, by means of (3.1), as in Procedure 3.3, to obtain 
the 3-D filter. The Fourier series (3.2) and this correspond- 
ing to the function f2(a3), are computed analytically. 

Spherically Symmetric Filters 
The function which gives the radius ti,2D(~3) of the 

circle, that the magnitude response of the filter designed 
approximates on any o3 = constant plane, is a periodic 
function, with period 2~. Furthermore, for - r < o3 d IT it 
has the form of a semicircle with radius w0 (see Fig. 4(a)). 

i 

$Fz, for 1031< o. 

W,2D(a3) = fb3) = 0, for lws( >, oo, (6.1) 

for - r < wj Q r. 

This function is symmetric with respect to its center o3 = 0, 
and can be analyzed into the Fourier series: 

f(q) =’ f c,cos(no3). (6.2) 
n-0 

The coefficients c,, are computed as follows: 

co=;/; f(u3)dw3=$ II (6.3) 

and 

C, = i/: f(w3)cos(nw3)du3 
n 

= fJo”j~cos(nu3) do,. 

Change the integration variable, using 

cd3 = cd0 sine. 

For the new integration variable: 

2 
c, = - 7T ~‘2~~~os(nwosinB)(cosB)2d8. 

= WOZ j~cos(nw,sinB)(cosB)‘dB. (6.4) 
n- 0 

It is well known that for n > - $ 

[cos(xsin8)cos2”Bd0 

where J,( .) is the Bessel function of first kind of order m 
and I( .) is the Gamma function. 

With m = 1 and P(l + i) = G/2, (6.4) becomes 

If the filter designed is to be numerically implemented, the 
series (6.2) must be windowed to 

N 

a(~,) = 1 c,cos(nq) (6.6) 
n=O 

where c, now represents the windowed coefficients of 

f( ws). For stability purposes, 

403) 5 0, forOQw,<m. (6.7) 

In the frequency transform domain, the windowing oper- 
ation is described by 

4~3) = &-- fte>Wb, - 0) de (6.8) 
n 

where W(w,) is the frequency response (spectrum) of the 
window applied on f(a3). Since 

f (03) ’ 0, for - r < w3 d IT 

a sufficient (not necessary) condition for the satisfaction of 
(6.7) is: 

m+) 2 0, for -1r<6+<~. (6.9) 

This is true for Bartlett (or triangular) window, but not 
true for other windows that provide better frequency re- 
sponse, such as Hamming, Harming, or Kaiser. 

In the specific case (6.1), the use of windows that do not 
satisfy, (6.9), results in negative u(ws), for some ws. To 
provide the ability to use such windows, a small constant e 
is added to f(c+) for o. Q wj < r. Under this formulation, 
the functions f(u3) and u(og) become 

fh) =fb,)+c (6.10) 

C(w,) = 2 (c, + d,)cos(nw,) (6.11) 
PI-0 
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Fig. 5. Curve w, = f(u3) in the case of 3-D fan filter design. 

where 

do = 
+ - wo) 

(6.12) 

d = cos(L7r)sin(n(s - wo)) 
” 

n7r 
(6.13) 

Finally, the spherically symmetric filter must be cascaded 
with a 1-D low-pass filter with cutoff frequency equal to 
wo,, at the zs direction. This filter is used to eliminate the 
passband, around the w3 axis, introduced b the small 
number e (see Fig. 4(b)). 

The coefficients d, of the Fourier series corresponding 
to f 2( w3), are similarly computed. Since f 2( w3) does not 
affect the stability, a simple rectangular window is used for 
its truncation. Hence, 

Y(c+) = E d,cos(mo,) 
m=O 

(6.14) 

where 

2 cd; 
u;-ti:)du3=-- 

3 77 
(6.15) 

and 

d,=i/: (u~-u~)cos(mu3)dw3 
?7 

4 
=- 

77m2 
- w,cos(mw,)+ k sin(mo,) . 1 (6.16) 

The first spherically symmetric filter, is one designed for 
o,, = 0.6n. The small constant e = O.lE-2 is added in the 
frequency response to be approximated, for w. Q w3 < r. A 
Kaiser window, of-length N = 20, is used for the trunca- 
tion of the series f(t+). A Kaiser window is also used to 
obtain the truncated series u(w3). For this window, the 
value M = 40 is chosen. The cutoff frequency, of the 1-D 
low-pass filter, used to eliminate the passband around the 
ws axis, introduced by z, is equal to (4/6)w,. The contour 
plots of the filter designed, on the planes o2 = 0, w2 = 7r/4 
and ws = 0, are presented, respectively, in Fig. 6(a)-(c). 

Fan Filters 
The periodic function that relates w,~,, to w3, in the case 

of fan filters, is shown in Fig. 5 and is described by 

w,2D( ~3) = f (ti3) = 1~31, for - +rr < 03 < 7~. (6.17) 

This is a symmetric over o3 = 0 function, and can be 
written as 

f(o,) = f c,cos(nw3). (6.18) 
n=O 

The Fourier series analysis (3.2b), results in the coeffi- 
cients: 

I7 
co = - 

2 
(6.19) 

1 n 
c, = - 7T I- I~31cos(n4 dw3 = 2 

n 
costf;; -’ . (6.20) 

To truncate this series, the windowing technique is used. 
The use of any kind of windows proved to result in a 
function u(w3), such that 

N 

u(w,) = C c,cos(nq) > 0, for 0 Q o3 G r. (6.21) 
n=O 

Similarly, the function f 2( 03) can be approximated by 

f ‘(a,) = u(w3) = f d,cos(mw,) (6.22) 
m=O 

where 

do=; (6.23) 

and 

d, = -$cos(mr). (6.24) 

The contour plots on the planes w2 = 0 and o3 = 0.47r, of a 
90” fan filter, designed on the basis of the technique 
proposed, are presented in Fig. 7(a) and 7(b), correspond- 
ingly. Two rectangular windows, one of length N = 20, and 
the other of length M = 40, are used for the truncation of 
the series f (ws) and f 2(w3), in (6.21) and (6.22), respec- 
tively. 

PART II-DESIGN OF 3-D SPHERICALLY SYMMETRIC 

FILTERS USING CASCADES OF 2-D CIRCULARLY 

BMMETRIC FILTERS 

VII. DESIGN OF 3-D FILTERS USING CASCADES 

Consider the cascade H2(z1, z2) of two rotated filters, 
one rotated over an angle j3 = 225” and the other over an 
angle /3 + 90” = 315”. This filter is designed with respect to 
the variables zi and z2. Its magnitude response F2(q, w2) 
is quadrantally symmetric (Appendix II) i.e., 

F,(%w,) = F,(- %w2) = F,b,, - 02) = F,b,4,). 

(7.1) 
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Fig. 6(a). Contour plots of 3-D spherically symmetric filter on w2 = 0 
Design based on prototype w,, = 0.697. 

8 
-T 

Fig. 6(b). Contour plots of 3-D spherically symmetric filter on w2 = r/4. 
Design based on prototype w0 = 0.6~. 

Theorem 3.1: Consider the 2-D filter H2(z1, z2), whose 
magnitude response F2( wi, w2) is quadrantally symmetric. 
Form the 3-D digital filter as the cascade 

~b,, z2, '3) =H2(z~9z2)H2(z2~z3)H2(z1~z3)~ (7.2~ 

Its 3-D magnitude response, given by 

~(w1~w2~w3) =F,t~,,~,)F,t~,,~,)E;t~,,~,) (7.3) 

possesses 48-hedral symmetry. 

Fig. 6(c). Contour plots of 3-D spherically symmetric filter on o3 = 0. 
Design based on prototype w0 = 0.677. 

Proof: Combining (7.1) and (7.2), the following relations 
are easily derived: 

F,b49 ~,)F,t~,>~,)~h 01) 

= F,t- ~1, dF2ts +)F,b,t - ~1) 

= F,(q, -~,)F2t-02~w3)F2tw3~01) 

=F,(O,,O,)F,(O,,-W,)F,(-W,,W,) 

=F,(w2~0,)F2(w,~03)F,(w3~w2) 

=F2(w,~w3)F,(w3~02)F,(w2~0,) 

or equivalently, 

Fh, ~2, -W3)=1;(02,01,W3)=F(W1,03,02). (7.4) 

Note that any 2-D circularly symmetric filter can be 
used, to form the cascade (7.2). Furthermore, the better the 
circular symmetry of the 2-D filters cascaded in (7.2), the 
better the spherical symmetry of the 3-D filter designed. 

The band-edge surface, i.e., the surface in the Fourier 
transform domain, on which 

1 
F(z,,z,,z,) = - 

fi 
(7.5) 

of the filter designed, approximates a sphere with radius 
w,~,,. The value of mc30, is monotonically dependent on 

the cutoff frequency o,, of the 1-D filter used in the design 
of the rotated filters. The curve that relates wcgn to o,, for 
the specific design procedure, is presented in Fig. 8. 
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\ 

I 

/ 

(b) 
Fig. 7. (a) Contour plots of 3-D fan filter on w2 = 0. (b) Contour plots 

of 3-D fan filter on wg = 0.4~. 

For every (discrete) a,sD, the root mean square error: 

1 
l/Z 

(7.6) 

is formed at the points: 

and minimized with respect to 0,. 

On the basis of the technique proposed in this section, 
two spherically symmetric filters were designed. The first 
was designed using a 1-D Butterworth, with cutoff 
frequency w, = 0.67r. Its contour plots, on the planes o3 = 0 
and w3 = 7r/2, are presented in Fig. 9(a) and 9(b), respec- 
tively. 

VIII. CONCLUSION 

2-D recursive filters, possessing circular symmetry in 
their magnitude response, were designed by cascading 2-D 
rotated filters. Appropriate transformations of their coeffi- 
cients, introducing the alternation of the filter’s magnitude 
response with respect to the third variable, result in 3-D 
filters satisfying lkedefined specifications. Low-pass spher- 
ically symmetric and 3-D fan filters, are examples of filters 

that can be designed using the technique proposed. Each 
transformation function has the form of an 1-D FIR, 

zero-phase filter, whose frequency response approximates 
a specific function. These transformations introduce non- 
essential singularities of the second kind in the filter’s 
transfer function. The BIB0 stable implementation schemes 
proposed, were based on iterative procedures, and were 
derived using results of the 1-D cepstral analysis. Since the 
technique proposed can be used for the design of 3-D 
filters satisfying a wide range of specifications, an interest- 
ing topic under consideration is that of approximating the 
1-D function by the magnitude response of an IIR filter. 
One possible way to achieve this representation is by using 
computer-aided design techniques. In this case, the filter 
designed as well as its inverse, must be BIB0 stable. 

On the basis of cascade arrangements of 2-D circularly 
symmetric filters, another technique was presented, for the 



ZERVAKIS AND VENETSANOPOULOS: DESIGN OF THREE-DIMENSIONAL DIGITAL FILTERS 1463 

“I 
P 

'I 

3 
4 

(b) 

Fig. 9. (a) Contour plots of 3-D spherically symmetric filter on w3 = 0. 
Design based on prototype o, = 0.677. (b) Contour plots of 3-D spheri- 
cally symmetric filter on oj = n/2. Design based on prototype. o, = 
0.677. 

design of 3:D spherically symmetric filters. Since the trans- 
fer function of the 3-D filter designed is separable, its 
stability is easily checked, by checking the stability of the 
2-D filter. This design technique was illustrated by using 
circularly symmetric filters, designed on the basis of 2-D 
rotated filters. 

At this point, it is interesting to make some comparisons 
among the filters designed using the various methods 
proposed. In Table I the number of filter coefficients, 

TABLE I 
COEFFICIENT COMPARISONS 

resulting in each technique under consideration, is pre- 

sented. 
The first technique used for the design of 3-D FIR 

filters, is a modification of the McClellan transformation 
[l]. This transformation, readily extended to 3-D, results in 
filters with an enormous number of coefficients. The sec- 
ond technique utilizes the symmetries in the frequency 
response of the FIR filter to be designed, to significantly 
reduce both the design and the implementation costs [l]. 
The following two techniques are those introduced in this 
paper. The last design technique under comparison is 
based on cascade arrangements of 3-D rotated filters [12]. 

In the FIR case, the region of support of the 1-D filter 
used in the design is assumed 2N + 1. Note that the use of 
symmetries reduces the number of filter coefficients sig- 
nificantly. For the rest of the techniques that are based on 
rotated filters (2-D or 3-D), we assume that the 1-D IIR 
elementary filter used in the design, is of order I. Further- 
more, we assume that the number of rotated filters cascaded 
is L. For the technique that transforms the coefficients of 
a circularly symmetric filter designed on the basis of 2-D 
rotated filters, the number of coefficients is computed 
from the cascade form (2.7) and (2.8). The numbers M and 
N refer to the regions of support of the finite-extent FIR 
filters used to approximate the functions of 03. In the next 
technique, the circularly symmetric filters are obtained by 
cascading L 2-D rotated filters, represented by (1.3). The 
number of filter coefficients in this case is computed from 
the cascade form (7.2). Finally, the last technique is based 
on cascade arrangements of L 3-D rotated filters. 

From Table I we conclude that the methods using 

cascades of (2-D or 3-D) rotated filters result in 3-D filters 
with a small number of coefficients. However, these tech- 
niques can be used for the design of only spherically 

symmetric filters. The technique that exploits coefficient 
transformations of 2-D rotated filters can be used to 
approximate a wide range of specifications, yet resulting in 
filters with much smaller number of coefficients compared 
to the number of coefficients of a 3-D FIR filter. Since it is 
an analytic design technique, it does not possess the com- 
plexity of the computer aided design techniques that use 
numerical minimization methods to compute the filter’s 
coefficients. This technique can be further simplified by 
using rational functions (transfer functions of 1-D IIR 
filters) to approximate the coefficients (2.3b) of the 2-D 
circularly symmetric rotated filter. The latest approach 
reduces significantly the number of 3-D filter’s coeffi- 
cients, so that it becomes a powerful design method in the 
sense of both reduced complexity of the resulting 3-D 



1464 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-34, NO. 12, DECEMBER 1987 

filter, and capability to approximate a wide range of 

specifications. 

APPENDIX 11 

With 

and 

Re{C,} <O (11.5a) 

In this appendix, some stability aspects of 2-D rotated 
filters are reviewed, and the stability conditions for the 
3-D rotated filters, are derived. 

The rotated filter described by (1.3), with 

(11.5b) 

Re{ pi> <O, for l< i < n (11.1) 

is marginally stable (recursing in the (+ I, + m)~direction), 
if and only if (iff) 

the filter H(z,, z2, z3) is marginally stable, iff 

403) ’ 0, for 0 Q w3 d r 

270” ( p G 360” 

(11.6a) 

(11.6b) 

270” < /3 < 360”. (11.2) 

It is called marginally stable because it possesses a nones- 
sential singularity of the second kind at the point (zi, zz) 
= (- 1, - 1) [5]. However, this singularity does not pose 

any problems, since it can be easily removed by slightly 
perturbing the coefficients b6 and bi [5]. Furthermore, [14] 
introduced transformations that result in rotated filters 
free from nonessential singularities of the second kind. 
Stable rotated filters, whose angle of rotation does not 
satisfy (11.2), can be realized by using, either a routine that 
recurses in the appropriate direction, or an input and 
output data transformation [6]. 

Theorem Il. 1 
Let H(z,, zz, z3) be a 3-D filter of the form 

b,(z,) =cos(/?)-sin(P)-Ci ; +(z;+z;~ ZO, 
n=O )I 

in ]z3] gl. (11.6~) 

Fuithermore, this filter is unstable. 
Proof: 

The filter (11.3) is associated with the causal filter [8]: 

HZ,> z*> 23) 

4v29z3) 

= B(z,, z2.3 z3) 

4z3) + %(z3bI+ 4z3b2 + ~12(Z3h zz 
= 

bob,) + b&&1 + b,(+, + b12b3h ~2 

1 2 3 

z3-N i i z ~,,,n2,n3+z;‘z;‘z;3 
n,=O n*=On,=O = 

(11.3) = z3M-Nf7(z,, 12, z3). (11.8) 

where a i( z3) are complex coefficients and bi(z3) are of the 
form 

bO(z3) =cos(P)-sin(p)-Cj : $(z;+zgn 
[ n=O )I 

(11.4a) 

The poles and the zeros of H(z,, z2, z3) and &zi, z2, z3) 
are identical. Thus if H( zi, z2, z3) is implemented as causal 
filter, its stability conditions are given by [9] 

b,(z,)=cos(p)+sin(p)-Ci 
I 

f :(z;+z;’ n=O )I 
(11.4b) 

b2(z3) = -cos(P)-sin(P)-Ci 2 ;(z;+Zgn 
[ n=O )I 

(11.4~) 

B(z,, Z2,Z3) #07 for ]z2] = ]z3] =117 ]zi] 6 1 (1.9a) 

B(O, z2, z3) + 0, for 1~~1 =ln lz21 Gl (11.9b) 

mo, z3) # 0, for ]z3] =Gl. (11.9~) 

The first two conditions are tested for ]zJ = 1. For any w3, 
the coefficients of H(zi, z2, e-iw3) are identical to those of 
the 2-D rotated filter (1.3), with 

pi = Ci#(03). (11.10) 

b,,(z,) =-cos(j3)+sin(p)-Ci $ :(zJ+z;‘) . 
n=O I 

(11.4d) 

Therefore, the first two stability conditions, for any 03, are 
identical to those of a 2-D rotated filter, which are satis- 
fied iff (11.1) and (11.2) hold. Consequently, (11.9a) and 
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(11.9b) are satisfied2 if and only if: 

and 

u(wJ > 0, for 0 G w3 Q v (Il.lla) 

270” < fl< 360”. (11 .llb) 

Furthermore, the third stability condition requires that 

=cos(jI)-sin(P)-Ci 
I 

2 ?(z;+z;“) 
n=O 1 

+ 0, for 1z3] Gl. (11 .llc) 

Hence, the stability conditions of H(z,, z2, z3) are those in 
(11.3). 

However, if zi is a zero of b,(z,), then its inverse 
{z,“}-’ is a zero of b,(z,) too. Hence, (11.11~) is never 
satisfied. The filter H(z,, z2, z3) in (11.3), is unstable. 

APPENDIX 12 

In this appendix, some results from the cepstrum analy- 

sis of a stable function are reviewed and a stabilization 
procedure for the 3-D filters designed in Section III, is 
developed. 

1-D Cepstrum Analysis 
The cepstrum analysis has been carried out for both 1-D 

and 2-D cases [lo], [ll]. 

Suppose a function, ‘b = {‘bn },, a o, periodically sampled 
on the positive direction, where 

f l’b,,l < 00. 
n=O 

(12.1) 

Its z-transform 

‘p(z) = g ‘b,z” (12.2) 
n=O 

is called recursively stable if 

I~(z)I#O, for IzIGl. 

In this case, the filter 

(12.3) 

1 
N4 = yqz) 

is BIB0 stable. 
‘The 1-D cepstrum of ‘/3(z) is defined by 

g(z) =ln{‘p(z)}. (12.4) 

2 Recall that these conditions are not completely satisfied. However, the 
nonessential singularities of the second kind can be easily removed. 

According to this definition, the product in z-domain is 
equivalent ( = ) to addition in the cepstrum-domain: 

‘p(z) =yqz)1p2(z) *y?(z) =l&(z)+yiT2(z). (12.5) 

Theorem 12.1 [I OJ 
The power series ‘/3(z) in (12.2) is recursively stable iff 

there exists a power series 

(12.6) 
n=O 

that is absolutely convergent and equal to In {‘p(z)} for 

IZI <I. 
Suppose now a function, 2b = {2bn}, Go, periodically 

sampled on the negative direction, and absolutely conver- 
gent. Its z-transform is of the form 

“p(z-‘) = f 2b-nz-“. (12.7) 
n=O 

Corollary I2.1 [lo] 
The power series ‘p(z-‘) is recursively stable (recursing 

in the negative direction) iff ‘p(z) is recursively stable, i.e., 
there exists a power series of the form 

‘/l(z) = E 2hnz” (12.8) 
n=O 

that is absolutely convergent and equal to In {“p(z)} for 
] z I G 1. Consequently, the series 

n=O 

is absolutely convergent and equal to In {‘p(z--‘)} for 

JZI 2 1. 
Corollary 12.2 [lo] 
Suppose that the absolutely convergent power series is 

given, such that: 

5 l&z” = ln{v(z)} for IzI Gl. (12.9) 
n=O 

Form the series {‘b, },, a o as 

lb, = exp (‘Lo) (12.10a) 

‘b = i (m/p)l&lbp-m, P p # 0 (12.10b) 
m=l 

This series is absolutely convergent and converges to 

E ‘b,,zn =9(z), for IzI gl. (12.11) 
n=O 

Suppose, on_the other side, the absolutely convergent 
power series {2b-,}~=o that converges to 

~~02&~zP~ = In { ‘p( z-l)}, for Iz] > 1 (12.12a) 

where ‘/3(z-‘) is the z-transform of a function, periodi- 
cally sampled on the negative direction, as in (12.7). Then, 
the transformation by means of (12.10) (with negative p 
and m), results in the absolutely convergent series 
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{2b-,}~=o, that converges to ally) 3 stable, i.e., 

2 ‘bpnz-” =2/3(z-1), for IzI >l. (12.12b) 
B(z,, ~2, ~3) + 0, in fllz,l< 1. (12.19) 

n=O Proof: 

This is readily proved, since (12.12a) can be equivalently The stability conditions of H(z,, z2, z3) expressed by 

written as (12.16) are (appendix 11): 

f 2&,z”=ln{2~(z)}, 
B(z,, z 2,Z3) #O, for lz21 = Jz31 =ln IfI1 <1 (12.20a) 

for IzJ gl 
?I = 0 B(O, ~2, ~3) + 0, 14 =ln 1~~1 d (12.20b) 

which is identical to (12.9). B(O,O, ~3) =+ 0, for 1~~1 gl. (12.2oc) 

Stabilization Procedure 
The procedure is carried out for the general case, that an 

The first two conditions are satisfied by B(z,, z2, z3) (by 

1th-order Butterworth filter is used in the design. 
means of marginal stability), since they are satisfied by 

Each transformed rotated filter is described by a trans- 
each one of the cascaded denominators Bi(zl, z2, z3) (ap- 
pendix 11). 

fer function similar to (2.8a) The third stability condition requires that po,o(z3) be 
recursively stable, i.e., 

H’(z,, ~2, ~3) = Ho(z3~,fiIf4%,, ~2, ~3) = H,(z,) 

I a~(z,)+a~‘(z,)z,+a~(z3)z2+a~~(z,)z,~, 

Po.ob3) = fp(z,) + 0, for 1~~1 gl. (12.21) 

4-I 
i=l b;(z3)+b~(z3)z1+bb;l(z3)z2+b&(z3)z1z2 ’ 

Let Hi(zl, z2, z3) be a complex-coefficients transfer 
function, a factor of the product (12.13). The transfer 

(12.13) function Hi* (z:, z;, z: ), where ( * ) denotes complex con- 
jugate, is also a factor of the same product. Hence, the 

Each filter’s coefficients are given by 2.k). Since a coefficients of H(z,, z2, z3) in (12.13) are real. 
Butterworth elementary filter is used in the design, C, 
belongs to the set: 

The specific coefficient &o(z3), is given by 

{C;} = {Ci;Ci(2’)+1=0nRe[Ci < O}. (12.14) Po,o(z,> = ;I&4 

Each one of the angles /3, lies between 37~/2 and 2~. 
Furthermore, the Fourier transform: 

N c 

= 1fiicos(b)-sin(j3)-Ci[ ; :(z;+z;.) 
n=O 

u( 03) = c $( ej”“3 + e-j”‘+) > 0 (12.15) 
NI 

n=O = c b”z;. (12.22) 
n=-NI 

is provided. Each one of the filters H’(z,, z2, z3) can be 
brought to the form 

Note that b,, = b-,. Consequently, 

H(z,, ~2, z3) = Ho(z3) 

4% z2, z3) 

l@o,o(z3) =Po,o(z,‘). (12.23) 

B(Zl, z29 z3) 

(12.16) On the unit circle lz31 =l, 

where Ho(zg) is given by (2.8b) and , P,,,(w,) = f! COs(P)-Sin(p)-Ciu(o,). (12.24) 

A(z,,z,) = i i a* nAz2m 
n=Om=O ’ 

(12.17a) 
If C, is complex, then both factors, one corresponding to 
C, and the other to Ci*, are included in the product 

(12.24). The product of these two factors is a real number, 
equal to the squared magnitude of each one of them. 

B(z,, z 2923) = i i Pn,m(z3b;z2m. (12.17b) 
\ n=Om=O b6(u3)[b6(u3)]* = (cos(fi)-sin(/!))2 

Theorem 12.2 + [Icilu(03)12>o* 

The coefficient fio,o(z3) of B(z,, z2, z3), on_ the unit 
circle It31 = 1, can be analyzed into the product bo,o(z3) of If C, is real, then it is negative. Consequently, the factor 

two functions ‘p( z3) and ‘p( z; ‘), where corresponding to C,: 

WJ + 0, in 1~~1 Gl. (12.18) 
b6(u3) =cos(P,)-sin(fi,)-Ciu(W3) >O 

If &o(zs) is substituted by p”,,,(z,), and H(z,, z2, z3) is 
since for 3~7/2 G j3 G 2a, cos(/3)-sin(P) > 0. Therefore, 

implemented in a way that l/3(z,) is recursing in the 
positive, whereas ‘fi(z; ‘), is recursing in the negative ‘The nonessential singularities of the second kind that may cause 

direction with respect to zl, then H(z,. z,. z,) is fmargin- 
unstability, are easily removed through a small perturbation of the filter’s **. I. *. -.\ 

_I, \ AI LI .,I \ u coernclents (Appenalx II). 
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on the unit circle ]z~] =l, &O(zs) is zero phase, strictly 
positive number. 

PO,,(%) ’ 0: (12.25) 

The cepstrum &,,( z3) of &,J z3) is readily obtained, by 
evaluating its z-transform on the unit circle ]z3] =l. 

W,o(4 = ln [P0,0Ml = ln 
[ 

n z~2NbnCP3]. (12.26) 

From (12.23) and (12.26), it is easily verified that 

Lfo,o(4 =w,oc- 4 (12.27) 

The logarithm does not present any problem, since &,O( w3) 
is real and strictly positive. Since &O( oj) # 0, all deriva- 
tives of &,(Q,) are continuous. Hence, the following 
analysis into a Fourier series can be carried out: 

~o,o(w3) = 2 &e--3 (12.28) 
n=-co 

where. 

hn = &j: r6,,o(6dg)ej”“~dw,. (12.29) 
77 

From (12.27) and (12.29) it is verified that 

hn = k,. (12.30) 

Lemma 
The series { hn};=,, = { ~-,}~BO is absolutely conver- 

gent. 
Proof: 

The function &,( 03) has continuous derivatives. 

$,I= ; [ j”lio,oC%) h] = Gl. 
0 

In general, 

l&l = L~jTBo,o(o,)co44 da31 

iT l~~o,ob3~ dsin(n4 1 =- 

Summarizing, if it4 = max(G,, G,), 

$01 G it4 

Hence, the series { &,}TBo-, is absolutely convergent, i.e., 

f f&c*. (12.31) 
PI-0 

Consequently, the decomposition, 

= E l&z;+ f 2g_nZ;n=1~(z3)+2~(Z;1) 
n=O n-0 

(12.32) 

results into two series $(z& that meet the convergence 
requirements of Theorem 12.1 or Corollary 12.1. Hence, 
the transformation by means of (12.10) in Corollary 12.2, 
results in two functions ‘p(z3) and ‘/?(z;i) that are recur- 
sively stable, if recursed in the appropriate direction; ‘p( zs) 
in the positive and 2/3(z;‘) in the negative z,-direction. 
From (12.30) and 12.32) it is verified that 

“Lqz;‘) =Nz3)lz3~z~l =‘I+;‘) 

Form the product 

~o,oM =Yw2Lqz,‘). 

Since, 

(12.33) 

(12.34) 

and 

‘P^<z3> = ln [W3)] 

‘B( z;‘) = In [‘p( z;‘)] 

(12.35a) 

(12.35b) 

%+)+2&-4 =!fo,o<d =ln{Po,obj)) (12.35~) 

the frequency responses of bo,,,,(w,) and &o(ws) are iden- 

tical. Therefore, the replacement of &O(zs) by &,,(z,) 
does not affect the frequency response of H(z,, z2, z~). 

It is understood that, &,,(z,) is recursively stable iff it 
is implemented such a way that, each $(zg) recurses ,in the 
appropriae direction. Furthermore, l/Bo,,( z3) can be im- 
plemented as [6] 

(12.36) 

where T(a) is a data inversion in z,-direction. Under this 
implementation, 

Bo,o(4 + 0, for ]z3( <l. (12.37) 

Hence, stability condition (12.20~) is satisfied, and the 
filter H(z,, z2, zs) is stable. 

Truncation Considerations 
Having formulated the cepstrum of &,( zs) by means of 

(12.32), the coefficients of the recursively stable functions 
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@(zg) are determined by using (12.10): 

ib, = ei60 

If the method developed is to be numerically implemented, 
each series must be truncated to {‘b,}; Ml. (Recall that for 
i = 1, p > 0, whereas for i = 2, p Q 0.) This truncation may 
affect the stability of &,(z,). The following theorem 
assures that there are finite numbers Mi, that result into 
stable truncated functions &J z3). 

Theorem 12.4 [IO] 
Suppose the recursively stable power series: 

P(Q) = f &,,4”. 
m=O 

The series { b, }r is absolutely convergent and 

IP(z3)l>0, for lz,lGl. 

The absolute convergence of {b,} guarantees that there 
exist a number M such that 

for every M1 > A4 and 1~~1~1. 
This theorem guarantees the existence of a pair (M,, M2) 

such that the power series 

‘p(z,) =. 2 ‘b,z,” 
m=O 

‘/3(z;‘) = z 2b-mz;” 
m=O 

and, consequently, 

(under the appropriate recursion scheme), are recursively 
stable. 

To find a first constraint on the truncation parameters 
Mi and M2, consider the arrays {lb, } and { 2b _ n } with 
length (Mi + 1) and ( M2 + 1) correspondingly. The array 
of their cascade PO o is of length ( M1 + M2 + l), whereas 

the array of the original function /3o,o is of length (2NI + 1). 

Therefore, if the array &0 is to be at least as large as &,O, 

the’following condition must be imposed. 

Ml + M2 > 2 NI. 

For arrays such as &O, which is symmetric with respect to 

m = 0, an appropriate choice is 

M,=M,= NI. 

The particular choice M1 = M2 = NI, may give satisfactory 
results in terms of stability. 

APPENDIX II 

Theorem II. I 
The cascade of two rotated filters, one rotated over an 

angle p = 225’ and the other over an angle /3 + 90” = 315”, 
possesses quadrantal symmetry in its magnitude response. 

Proof: 

The magnitude of the 1-D transfer function H(s), is 
centrally symmetric: 

INs)l=IH(-41. (11.1) 

The transfer function (in s-domain) of the first filter, 
rotated over an angle p, is 

#(.Q, x2) = H(s2cos(P)- q sin(P)) 

(11.2) 

The transfer function of the second one, rotated over 
/? + 90”, is 

= H( $(s2+sl)). (11.3) 

Define F:(s,, s2), F:(s,, s2) and F2(s1,.s2), the magnitude 
response of the first, the second filter and their cascade, 
correspondingly. From (II.l), (11.2) and (11.3) 

F:(s1, $2) = 42(s1, - 4 (11.4) 

and 

F:b,, 4 = F;(- $1, - 4 = F:(s,, sl). (11.5) 

Using (11.1) (11.4), and (11.5), the following relations can 
be easily proved: 

F,(s,, ~2) = F:(w,)F;(s,, - ~2) = F,(- ~17 32) 

= F:(- ~1, sz)F:(- ~1, - ~2) = F,(s,, - s2) 

= F;(s,, - s&h s,) = F,(s,, ~1) 

= F;(s,, s,)F:(s,, - sl). (11.6) 

Since (- s) corresponds to (z-l), by the bilinear transfor- 
mation s, = (1 - zi)/(l + zi), (11.6) is equivalent to 

F,(s ~2) = F2(- 01, ~2) = F,(q, - 02) = F,(w,, ~1) 

(11.7) 

PI 

121 

I31 

I41 

151 

[61 

[71 

PI 

REFERENCES 

M. E. Zervakis and A. N. Venetsanopoulos, “Three-dimensional 
digital filters using transformations, ” in Applied Digital Filtering; 
Adaptive and Nonadaptive, Ed. M. H. Hamza, Acta Press, pp. 
148-151, June 1985. 
K. Hirano, M. Sakane, and M. Z. Mulk, “Design of three-dimen- 
sional recursive digital filters,” IEEE Trans. Circuits Syst., vol. 
CAS-31, pp. 550-561, June 1984. 
I. Pitas and A. N. Venetsanopoulos, “The use of symmetries in the 
design of multidimensional digital filters,” IEEE Trans. Circuits 
Syst., vol. CAS-33, pp. 863-873, Sept. 1986. 
J. J. Murray, “A design of method for two-dimensional recursive 
digital filters,” IEEE Trans. Acourt., Speech, Signal Processing, 
vol. ASSP-30, pp. 45-51, Feb. 1982. 
J. M. Costa and A. N. Venetsanopoulos, “Design of circularly 
symmetric two-dimensional recursive filters,” IEEE Trans. Acoust. 
Speech, Signal Processing, vol. ASSP-22, pp. 432-442, Dec. 1974. 
J. M. Costa and A. N. Venetsanopoulos, “A group of linear 
spectral transformations for two-dimensional digital filters,” IEEE 
Trans. Acourt., Speech, Signal Processing, vol. ASSP-24, pp. 
424-425,Oct.1976. 
T. F. Quatieri and D. E. Dudgeon, “Implementation of 2-D digital 
filters by iterative methods,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. ASSP-30, pp. 473-487, June 1982. 
M. Zen&is, “Design of 3-D digital filters using transformations,” 
M.A.Sc. thesis, Univ. of Toronto, Ont., Canada, 1985. 



ZERVAKIS AND VENETSANOPOULOS: DESIGN OF THREE-DIMJXNSIONAL DIGITAL FILTERS 1469 

[91 

W-I 

1111 

VI 

[I31 

P41 

B. D. Anderson and E. I. Jury, “Stability of multidimensional 
digital filters,” IEEE Trans. Circuits Syst., vol. CAS-21, pp. 
300-304, Mar. 1974. 
P. Pistor, “Stability criterion for recursive filters,” IBM J. Res. 
Develop., pp. 59-71, Jan. 1974. 
S. G. Tzafestas, Multidimensional Systems. Techniques and Applica- 
tions. New York: Marcel Dekkei, 1986. 
M. E. Zervakis and A. N. Venetsanopoulos, “Desi 

r Of t@ee- dimensional rotated infinite imnulse response digital fi ters,” Sznnal 
Processing, pp. 30, in press. - - - 
P. Agathoklis, and L. T. Bruton, “Practical BIB0 stability of 
n-dimensional discrete svstems.” Proc. Inst. Elect. Enz.. vol. 130. 
pt.G, no. 6, Dec. 1983. _1 

VI 

G. V. Mentonca, A. Antoniou, and A. N. Venetsanopoulos, “De- 
sign of two-dimensional rotated digital filters satisfying prescribed 
specifications,” IEEE Trans. Circuits Syst., vol. CAS-34, pp. l-10, 
Jan. 1987. 

M. E. Zervakis was born in Crete, Hellas in 1961. He received the 
Diploma of Engineering from the University of Sallonica, Hellas, in 1983, 
and the M.A.Sc. from the University of Toronto, in 1985, all in electrical 
engineering. He is now working towards the Ph.D. degree in electrical 
engineering at the University of Toronto, Toronto, Ont., Canada. 

His interests are in multidimensional signal processing and pattern 
recognition using fuzzy set theory. 

Mr. Zervakis is a Scholar of the Public Benefit Foundation, “Alexander 
S. Onassis,” and a member of the Technical Chamber of Hellas. 

9 

Anastasios N. Venetsanopoulos (S’66-M’69-SM’79), for a photograph’ 
and biography please see page 10 of the January 1987 issue of this 
TRANSACTIONS. 


