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Abstract—This article proposes a Multi-objective Optimization
(MO) framework for the design of time-modulated linear antenna
arrays with ultra low maximum Side Lobe Level (SLL), maximum
Side Band Level (SBL) and main lobe Beam Width between the
First Nulls (BWFN). In contrast to the existing optimization-based
methods that attempt to minimize a weighted sum of SLL, SBL,
and BWFN, we treat these as three distinct objectives that are to
be achieved simultaneously and use one of the best known Multi-
Objective Evolutionary Algorithms (MOEAs) of current interest
called MOEA/D-DE (Decomposition based MOEA with Differential
Evolution operator) to determine the best compromise among these
three objectives. Unlike the single-objective approaches, the MO
approach provides greater flexibility in the design by yielding a set
of equivalent final solutions from which the user can choose one that
attains a suitable trade-off margin as per requirements. We compared
time-modulated antenna structures with other methods for linear
array synthesis such as the excitation method and the phase-position
synthesis method on the basis of the approximated Pareto Fronts
(PFs) yielded by MOEA/D-DE and the best compromise solutions
determined from the Pareto optimal set with a fuzzy membership-
function based method. The final results obtained with MOEA/D-DE
were compared with the results achieved by two state-of-the-art single
objective optimization algorithms and five other MO algorithms. Our
simulation studies on three instantiations of the design problem reflect
the superiority of the MOEA/D-DE based design of time-modulated
linear arrays.
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1. INTRODUCTION

Time-modulated antenna arrays are recently receiving a good deal of
attention from researchers due to their efficiency in realizing ultra-low
sidelobe levels in the far-field pattern [1–5]. This feature is mainly
attributed to the fact that time-modulated antenna arrays incorporate
an additional degree of freedom in their design-the time. For an
8-element slotted linear array the time modulation method and the
realization of a nearly ultra-low SLL (∼ 39.8 dB) were first achieved
by Kummer et al. [2]. The general principles for analysis of time-
modulated antenna system were first put forward by Bickmore in [5].

Although antenna arrays of this kind have greater flexibility for
design and offers significant reduction in the dynamic-range ratio of
the excitation for ultra-low SLLs as compared to that required in
ordinary SLLs, the design of time-modulated arrays is still complicated
due to the presence of a multitude of sideband signals. Since these
sideband signals are usually spaced at multiples of the modulation
frequency, a significant portion of the radiated or received power
is shifted to the sidebands. Certain applications demand complete
removal of sideband signals and hence they should be suppressed as
far as possible to improve the efficiency of array design. In [2], Yang
et al. proposed a Differential Evolution (DE) based approach for the
design of time-modulated linear arrays with effective suppression of
sideband radiation patterns. Such designs offer severe challenges to the
antenna researchers and as indicated by [6] metaheuristic algorithms
can be the best ways to handle them. Yang et al.. presented the design
of multiple radiation patterns from time-modulated linear antenna
arrays in [7]. They illustrated that compared to the conventional
linear arrays, in generating multiple patterns by switching among
different phase distributions, the time-modulated linear arrays are
capable of realizing more stringent requirements such as lower sidelobes
for the multiple patterns. In [8], Yang and Nie presented the study of
millimeter-wave low sidelobe linear arrays with time modulation and
used single-objective DE and Genetic Algorithm (GA) to obtain the
optimized time sequences. Li et al.. undertook an in-depth study of
the Amplitude Modulation (AM) and Frequency Modulation (FM)
signal transmission of time-modulated linear arrays in [9]. Yang
et al.. undertook a single-objective design of uniform amplitude time-
modulated linear arrays with both suppressed sidelobes and sidebands
in [10]. The approach utilizes a direct optimization of the “switch-on”
time sequence of each array element via the Simple Genetic Algorithm
(SGA). Some other recently reported and significant research works
on time-modulated antenna arrays include synthesis of shaped beam
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patterns [11], investigations on various time sequences [12, 13], full
wave simulation of time-modulated antenna arrays in frequency
domain [14], mutual coupling compensation [15], and time-domain
analysis of time-modulated antenna arrays [16].

In works like [2, 4, 10], separate objectives (which are often
conflicting) are combined through a weighted linear sum into a
single aggregated objective function. The weighted sum method is
however, subjective and the solution obtained will depend on the
values (more precisely, the relative values) of the weights specified.
It is hard, if not impossible, to find a universal set of weights, that
will click on different instantiations of the same problem. Motivated
by the inherent multi-objective nature of the antenna array design
problems and the overwhelming growth in the field of Multi-Objective
Evolutionary Algorithms (MOEAs), we started to look for the most
recently developed MOEAs that could solve the time-modulated linear
array synthesis problem much more efficiently as compared to the
conventional single-objective approaches. Our search converged to
a decomposition-based MOEA, called MOEA/D-DE [17, 18], that
ranked first among 13 state-of-the-art MOEAs in the unconstrained
MOEA competition held under the IEEE Congress on Evolutionary
Computation (CEC) 2009 [19]. MOEA/D-DE uses DE as its main
search strategy and decomposes an MO problem into a number of scalar
optimization sub-problems to optimize them simultaneously. Each
sub-problem is optimized by only using information from its several
neighboring sub-problems and this feature considerably reduces the
computational complexity of the algorithm.

Although MOEAs have recently received some attention from the
antenna array designers (e.g., see [43, 45]), to the best of our knowledge,
no MOEA has so far been applied on the time-modulated linear
array design problem till date. In this work we employ MOEA/D-
DE to design linear time-modulated antenna arrays using the static
excitation amplitude distribution and the switch on time intervals as
the parameters to optimize. The MO framework attempts to achieve
the best compromise among three design objectives: minimizing the
Maximum Side Lobe Level (MSLL), Side Band Level (SBL) and the
main lobe Beam Width between the First Nulls (BWFN) at the center
frequency f0. Since unlike single-objective optimization techniques
(that finish with a single best solution) the MOEAs return a set
of non-dominated solutions (the Pareto optimal set, to be briefly
outlined in Section 2), we used a fuzzy membership function based
approach [20] to identify the best compromise solutions over each
case. In order to validate the MO design method of time-modulated
linear arrays, we undertake a twofold comparative study over three
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significant instantiations of the design problem involving 16, 32, and
64 elements linear array. Firstly we compare the three kinds of
design methodologies for linear arrays: the time modulation, the non-
uniform excitation [21, 22] and the phase-position method [23] using
MOEA/D-DE to achieve the design objectives in each case. This
comparison reflects the superiority of the time-modulation method
over the two others. Secondly the results of MOEA/D-DE over
time-modulated array design are compared with the state-of-the-
art variants of two popular single objective optimization algorithms
of current interest, namely Differential Evolution (DE) [24] and
Particle Swarm Optimization (PSO) [25, 26]. The comparison indicates
that on the tested design instances MOEA/D-DE yields much
better solutions as compared to the single-objective algorithms. In
order to demonstrate the effectiveness of the decomposition-based
approach taken in MOEA/D-DE, we compared its performance
with five other MO algorithms: Normal-Boundary Intersection
(NBI) [27], Non-dominated Sorting Genetic Algorithm (NSGA-
II) [28], Pareto Archieved Evolution Strategy (PAES) [29, 30], Strength
Pareto Evolutionary Algorithm (SPEA2) [31], and Multi-Objective
Differential Evolution (MODE) [32]. MOEA/D-DE was found to
outperform all these algorithms in terms of the hypervolume indicator
and the R-indicator (IR2) [33] metrics.

2. MULTI-OBJECTIVE FORMULATION OF THE
DESIGN PROBLEM

In this article, we consider the following three design methodologies
for linear arrays and project each of them as an MO problem.

2.1. Time-modulated Antenna

We consider a time-modulated linear array of N isotropic elements
which are equally spaced and each element is controlled by a high
speed radio frequency (RF) switch and excited by complex amplitude.
The array is used to transmit a rectangular pulse of width T , with a
pulse repetition frequency prf = 1/Tp, and Tp is the pulse repetition
period. Here the array factor is given by [4, 11, 16]:

F (θ, t) = ej2πf0t
N∑

k=0

Ake
jαkUk(t)ejβ(k1)d sin θ, (1)

where f0 and β are the centre operating frequency and the wave number
in free space, respectively; θ is the angle measured from the broadside
direction; and d is the element spacing. Ak and αk are the static
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excitation amplitude and phase of the kth element, respectively and
Uk are the periodic “switch-on” time sequence functions in which each
element is switched on for τk (0 ≤ τk ≤ T ) in each period Tp. By
decomposing (1) into a Fourier series, the radiation patterns at each
harmonic frequency m·prf (m = 0,±1,± . . . ,±α) are readily obtained
and are given by:

Fm(θ, t) = ej2π(f0+m·prf)t ·
t∑

k=1

amk · ej[(k−1)βd sin θ+ak], (2)

where amk is the complex amplitude and is given by:

amk = Akτk · prf · sin[πmτk · prf ]
πmτk · prf

· e−jπmτk·prf . (3)

At the center frequency (m = 0), (3) becomes:

a0k = Akτk · prf. (4)

Thus we can use (3) and (4) to synthesize specific radiation patterns
at f0 and f0 + prf , including ultra-low side lobe levels. The radiation
pattern at central and first sideband frequency is given by Equation (4).
The parameters to be optimized are the static excitation amplitudes
Ak and “switch-on” times τk. The goal of design is to simultaneously
minimize the MSLL, SBLmax, and BWFN. Let the array pattern at
central frequency be F0(θ, t) and at first sideband frequency be F1(θ, t).
F0(θ, t) is a function of θ which is symmetric about 0◦. Let θmax

be the angle at which F0(θ, t) attains global maxima. We calculate
F0(θ, t) and F1(θ, t) for discrete values of θ. Let those discrete values
be represented by set ψ = [0, π/2]. Let the discrete steps in which the
array factor at central frequency is calculated be ∆θ0. Similarly the
discrete steps for the calculation of F1(θ, t) be ∆θ1.

The MSLL is taken as the decibel level of the maximum
sidelobe. We first calculate where the array factor reaches its local
maxima, and the maximum value of all the local maxima are then
used for calculating MSLL. Let, ζ = [θ ∈ ψ|{F0(θ, t) > F0(θ −
∆θ0, t)}Λ{F0(θ, t) > F0(θ + ∆θ0, t)}Λ{θ 6= θmax}] be the set of angles
where local maxima of F0(θ, t) occur.

Let Φ = {θ ∈ ψ|F0(θ, t) < F0(θ−∆θ0, t)ΛF0(θ, t) < F0(θ+∆θ0, t)}
be the set of angles where local minima of F0(θ, t) is reached. Let the
local minimum closest to 0◦ be α. Therefore α = min(Φ). Let θ′max
be the angle at which F1(θ, t) attains global maxima. Now we are at a
position to define the three objective functions to be optimized by an
MOEA as:

f1 = max
[
10 log10

(
F0(ζ, t)

F0 (θmax, t)

)]
dB (5a)
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f2 = 2 min(Φ) degrees (5b)

f3 = 10 log
(

F1 (θ′max, t)
F0 (θmax, t)

)
dB (5c)

The Dynamic Range Ratio (DRR) is usually given by:
DRR = Imax/Imin, (6)

where I is the static current amplitude. In practical situations we need
the dynamic-range to be low [4, 34]. Rather than minimizing dynamic
range ratio as well we have imposed a constraint on dynamic range
ratio as [4]:

Imax/Imin ≤ 4. (7)
The designer can impose a constraint according to his or her
requirement. We have based our research on the assumption that a
maximum dynamic range ratio of 4 can be allowed. However if the
designer needs a still lower dynamic range ratio then the constraint
needs to be changed. We again get a set of Pareto optimal solutions
only that they will be slightly inferior to the ones who had lesser
restriction on the DRR.

2.2. Non-uniform Excitation Method

In the non-uniform excitation method, only the excitations of the
antenna elements are kept as optimization parameters. The array
factor for an array of N isotropic radiators is given as follows:

AF (ϕ) =
N∑

n=1

In · cos[β · xn · cos(ϕ) + φn], (8)

where β = 2π
λ = wavenumber, In, ϕn, xn are the excitation magnitude,

phase and location of the n-th element. We vary only In and φn and the
elements are assumed to be uniformly spaced at λ/2. This is similar to
time-modulated antenna array synthesis only that here we don’t have
the extra degree of freedom pertaining to the switch-on times.

2.3. Phase-position Synthesis Method

We will also compare the time-modulated antenna array design with
Phase-position synthesis method which is a very well documented
method of linear antenna array design. Let us assume that 2N isotropic
radiators are placed symmetrically along the x-axis. The expression
for the array factor can be written as

AF (ϕ) = 2 ·
N∑

n=1

In · cos[β · xn · cos(ϕ) + φn]. (9)
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In this method of synthesis, we vary location xn and phase ϕn of the
nth element assuming In = 1. However we need to vary xn in such
a way such that mutual coupling effects is not introduced. Thus the
element spacing needs to be constrained. In this problem the element
spacing xn is normalized with respect to λ/2. The constraints that need
to be considered for normalized element spacing x′n is given below.

0.5 ≤ x′n+1 − x′n ≤ 1, n ∈ [1, N − 1] (10a)
0.25 ≤ x′1 ≤ 0.5 (10b)

The second condition comes from the symmetry of the antenna array.
Corresponding to the first element in the positive x-axis there is
another element at the same distance from origin (i.e., x1) on the
negative x-axis. Condition (10b) ensures that the 1st element is neither
too far nor too close to its mirror image.

For Non-uniform excitation method and Phase-position synthesis
method the principal lobe beam-width and MSLL are taken as the two
principal objectives.

3. THE MOEA/D-DE ALGORITHM-AN OUTLINE

Due to the multiple criteria nature of most real-world problems, Multi-
objective Optimization (MO) problems are ubiquitous, particularly
throughout engineering applications. As the name indicates, multi-
objective optimization problems involve multiple objectives, which
should be optimized simultaneously and that often are in conflict
with each other. This results in a group of alternative solutions
which must be considered equivalent in the absence of information
concerning the relevance of the others. The concepts of dominance
and Pareto-optimality may be presented more formally in the following
way [35, 36]:

3.1. General MO Problems

Definition 1: Consider without loss of generality the following
multi-objective optimization problem with D decision variables x
(parameters) and n objectives y:

Minimize : ~Y = f
(

~X
)

= (f1(x1, . . . , xD), . . . , fn(x1, . . . , xD)) , (11)

where ~X = [x1, . . . , xD]T ∈ P and ~Y = [y1, . . . , yn]T ∈ O and ~X

is called decision (parameter) vector, P is the parameter space, ~Y is
the objective vector, and O is the objective space. A decision vector
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~A ∈ P is said to dominate another decision vector ~B ∈ P (also written
as ~A ≺ ~B for minimization) if and only if:

∀i∈{1, . . . , n} : fi

(
~A
)
≤fi

(
~B
)
∧∃j∈{1, . . . , n} : fj

(
~A
)

<fj

(
~B
)

(12)

Based on this convention, we can define non-dominated, Pareto-
optimal solutions as follows:

Definition 2: Let ~A ∈ P be an arbitrary decision vector.

(a) The decision vector ~A is said to be non-dominated regarding the
set P ′ ⊆ P if and only if there is no vector in P ′ which can
dominate ~A.

(b) The decision (parameter) vector ~A is called Pareto-optimal if and
only if ~A is non-dominated regarding the whole parameter space
P .

3.2. The MOEA/D-DE Algorithm

Multi-objective evolutionary algorithm based on decomposition was
first introduced by Zhang and Li in 2007 [37] and extended with
DE-based reproduction operators in [17, 18]. Instead of using non-
domination sorting for different objectives, the MOEA/D algorithm
decomposes a multi-objective optimization problem into a number of
single objective optimization sub-problems by using weights vectors λ
and optimizes them simultaneously. Each sub-problem is optimized
by sharing information between its neighboring sub-problems with
similar weight values. MOEA/D uses Tchebycheff decomposition
approach [38] to convert the problem of approximating the PF into
a number of scalar optimization problems. Let ~λ1, . . . , ~λN be a set of
evenly spread weight vectors and ~Y ∗ = (y∗1, y

∗
2, . . . , y

∗
M ) be a reference

point, i.e., for minimization problem, y∗i = min {fi( ~X)| ~X ∈ Ω} for each
i = 1, 2 . . . M . Then the problem of approximation of the PF can be
decomposed into N scalar optimization subproblems by Tchebycheff
approach and the objective function of the j-th subproblem is:

gte
(

~X|~λj , ~Y ∗
)

= max
1≤i≤M

{
λj

i |fi(x)− y∗i |
}

(13)

where λj = (λj
1, . . . , λ

j
M )T , j = 1, . . . , N is a weight vector, i.e., λj

i ≥ 0

for all i = 1, 2, . . . , m and
m∑

i=1
λj

i = 1. MOEA/D minimizes all these

N objective functions simultaneously in a single run. Neighborhood
relations among these single objective subproblems are defined based
on the distances among their weight vectors. Each subproblem is
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then optimized by using information mainly from its neighboring
subproblems. In MOEA/D, the concept of neighborhood, based on
similarity between weight vectors with respect to Euclidean distances,
is used to update the solution. The neighborhood of the i-th
subproblem consists of all the subproblems with the weight vectors
from the neighborhood of ~λi. At each generation, the MOEA/D
maintains following variables:

1. A population ( ~X1, . . . , ~XN ) with size N , where ~Xi is the current
solution to the i-th subproblem.

2. The fitness values of each population corresponding to a specific
subproblem.

3. The reference point ~Y ∗ = (y∗1, y
∗
2, . . . , y

∗
M ), where y∗i is the best

value found so far for objective i.
4. An external population (EP), which is used to store non-

dominated solutions found during the search.

The MOEA/D-DE algorithm is schematically presented in
Table 1.

Table 1. The MOEA/D-DE algorithm.

Initialize the External Population (EP) 1. Initialization

Compute the Euclidean distances between any two weight vectors and find out the 

T closest weight vectors to each weight vector where T is the neighborhood size. 

Randomly generate an initial population
1,..., NX X

  
and evaluate the fitness values. 

 Initialize the reference points by a problem-specific method. 

2. Update Reproduction: reproduce the offspring 
iU

 
corresponding to  parent iX

 
 by  

DE/rand/1/bin scheme (Page 37 – 42, [24]). For j-th component of the i-th vector: 

     ),.(
,,,,

321 jrjrjrji iii xxFxu  +=   with probability Cr   

             ,,ijx= with probability 1 − Cr

Repair: Repair the solution if U
 

is out of the boundary and the value is reset to be 

a randomly selected value inside the boundary. 

Update of reference points, if the fitness value of U
 

 is better than the reference 

point. 

Update the neighboring solutions, if the fitness value of U
 

 is better. 

Update of EP by removing all the vectors that are dominated by U
 

and add U
 

to 

EP if no vector in EP dominates it.   

3. Termination 

Criteria
If stopping criteria is satisfied, then stop and output EP. Otherwise, go to Step 2 

→ →

− 

→

→

→

→ →
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4. SIMULATION RESULTS

We consider three different antenna array designs as three problem
instantiations. These are 16 element, 32 element, and 64 element
time-modulated antenna array. The time-modulated arrays in each
case are also compared with linear array synthesized by non-uniform
Excitation method and Phase-Position Synthesis method. In non-
uniform excitation the antenna array elements have non-uniform
excitation. In phase-Position synthesis both phase and position of
array elements are optimized. We have not considered just non-uniform
phase and nonuniform spacing here because it is obvious that phase-
position synthesis will yield better results than both of them due to
more degrees of freedom.

For MOEA/D-DE, the best compromise solution was chosen from
the PF using the method described in [20]. The ith objective function
fi is represented by a membership function µi defined as:

µi =





1 fi ≤ fmin
i

fmax
i −fi

fmax
i −fmin

i
fmin

i < fi < fmax
i

0 fi ≥ fmax
i

, (14)

where fmin
i and fmax

i are the minimum and maximum value of the ith
objective solution among all nondominated solutions, respectively. For
each nondominated solution q, the normalized membership function µq

is calculated as:

µq =

Nobj∑
i=1

µq
i

Ns∑
k=1

Nobj∑
i=1

µk
i

(15)

where Ns is the number of non-dominated solution. The best
compromise is the one having the maximum value of µq.

Over the time-modulated linear array design instances we
also compare the performance of MOEA/D-DE with that of two
single-objective optimization techniques, namely DEGL (DE with
Global and Local Neighborhood) [39] and CLPSO (Comprehensive
Learning PSO) [40] that are the state-of-the-art variants of DE
and PSO, two metaheuristic algorithms widely used in past for
various electromagnetic optimization [2, 4, 26, 41–44]. For single-
objective optimization techniques, we use a weighted linear sum
of the objective functions given in (5a)–(5c). We also compared
MOEA/D-DE results with five other MO algorithms: NBI [27], NSGA-
II [28], PAES [29, 30], SPEA2 [31], and MODE [32]. Parameters
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for all the algorithms are selected from their respective literatures
and the detailed parametric setup for MOEA/D-DE and the two
single-objective optimization algorithms have been shown in Table 2.
For comparing the performance of the MO algorithms, we used the
following performance indices:

(1) R indicator (IR2) [33]: It can be expressed as

IR2 =
∑

λ∈Λ u∗(λ,A)− u∗(λ,R)
|Λ| , (16)

where R is a reference set, u∗ is the maximum value reached by the
utility function u with weight vector λ on an approximation set A, i.e.,
u∗ = maxy∈A uλ(y). We choose the augmented Tchebycheff function
as the utility function.

(2) Hypervolume difference to a reference set (IH̄) [33]:
The hypervolume indicator IH measures the hypervolume of the
objective space that is weakly dominated by an approximation set A,
and is to be maximized. Here we consider the hypervolume difference
to a reference set R, and we will refer to this indicator as IH̄ , which
is defined as IH̄ = IH(R)− IH(A) where smaller values correspond to
higher quality as opposed to the original hypervolume IH .

In what follows, we report the best results obtained from a set
of 25 independent runs of MOEA/D-DE and its competitors, where

Table 2. Parametric set-up for single-objective optimization
algorithms.

MOEA/D-DE CLPSO DEGL
Param. Val. Param. Val. Param. Val.

Pop size 150
Swarm

size
150 Pop size 150

Crossover
Probability

CR
0.9 C1 1.494

Crossover
Probability

CR
0.9

F 0.8 C2 1.494 F 0.8

distribution
index η

20
Inertial
Weight

w

linearly
decreased
from 0.9
to 0.2

Neighborhood
size

15% of
Pop size

mutation
rate pm

1/D vd,max 0.9*rd
weight
factor

fixed,
0.5
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each run for each algorithm is continued up to 3 × 105 Function
Evaluations (FEs). Note that for MOEA/D-DE, after each run
we extract the best compromise solution obtained with the fuzzy
membership function based method outlined above. In the study that
follows the time-modulated antenna arrays are assumed to have the
following parameters: Time period T = 1 µs, modulating frequency
prf = 1 MHz and central frequency f0 = 3.0GHz.

4.1. Design Results for 16 Element Array

A 16-element linear array of isotropic radiating elements, with λ/2
spacing, is considered for the time-modulated antenna array. In
Table 3 we provide the R-indicator and hypervolume indicator-values
calculated over the best run of the following MO algorithms-MOEA/D-
DE, NSGA2, MODE, PAES, SPEA2, and NBI. Best values of these
performance metrics were obtained by MOEA/D-DE. Table 4 presents

Table 3. Best, worst, mean, and standard deviations of the
performance metrics for comparing the MO algorithms (16 element
array).

Performance 

Metric 

Value 

type 

MOEA/D-

DE
NSGA-2 MODE PEAS SPEA2

 
NBI 

R-indicator Best 5.67e-07 1.30e-04 3.41e-05 6.52e-04 5.63e-04 5.42e-03 

Worst 6.93e-05 5.61e-02 9.88e-02 0.1312 8.71e-02 0.3412 

Mean 1.13e-05 4.56e-03 6.71e-03 4.23e-02 2.11e-02 7.89e-02 

Std. Dev. 6.04e-06 1.21e-03 3.92e-03 2.31e-02 4.52e-03 1.19e-02 

Hypervolume- 

indicator 
Best 4.52e-03 8.86e-03 7.81e-03 2.83e-02 9.85e-03 4.87e-02 

Worst 1.15e-02 6.52e-02 8.12e-02 0.2419 0.1219 0.2613 

Mean  5.81e-03 1.42e-02 4.19e-02 0.1219 7.98e-02 0.1532 

Std. Dev. 1.34e-03 2.31e-03 8.49e-03 6.32e-02 5.76e-02 6.321e-02

Table 4. Optimal compromise table for 16 element antenna array
design.

Method
of Design

BWFN
(degrees)

MSLL
(dB)

SBLmax

(dB)
Time-modulated 13.015 −33.46 −58.88

Non-uniform Excitation 28.045 −14.09 NA
Phase-Position 16.2855 −16.06 NA
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three design objectives of the best compromise solution achieved by
MOEA/D-DE for the time-modulated array. BWFN and MSLL for
the best compromise solution achieved by MOEA/D-DE corresponding
to non-uniform excitation and phase-position based design methods
have also been shown in the same table. Figure 1(a) presents
the 3-dimensional approximated PF or trade-off curve obtained with
MOEA/D-DE for the linear time-modulated array. In Figure 1(b),
we show the 2-dimensional PF for all the three methods of linear
array design. Figure 1(b) indicates that it is possible to achieve much
better trade-off between MSLL and BW for time-modulated linear
arrays with MOEA/D-DE. The same fact is supported by Table 4
that shows for time-modulated arrays much smaller values of BW
and MSLL were obtained. Finally in Table 5, we provide values of
the three design objectives finally achieved with MOEA/D-DE and
the two single-objective algorithms. The static amplitude excitations
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Figure 1. Best approximated PFs obtained with MOEA/D-DE over
16-element array design instance. (a) 3-dimensional PF for 16 element
time-modulated array design. (b) 2-dimensional PF for three design
methods over 16 element array.

Table 5. Best values of the three design-objectives achieved by
best MO algorithm (MOEA/D-DE) and the two single-objective
optimization algorithms over 16-element array design.

Algorithm
BWFN

(degrees)
MSLL (dB)

SBLmax

(dB)
Dynamic
Range

MOEA/D 13.015 −33.46 −58.88 1.852
DEGL 15.08 −22.71 −56.79 3.823
CLPSO 15.08 −22.63 −48.21 3.742
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Figure 2. (a) Static excitations obtained by MOEA/D-DE. (b) Switch
on time sequence obtained by MOEA/D-DE.

Table 6. Best, worst, mean, and standard deviations of the
performance metrics for comparing the MO algorithms (32 element
array).

Performance 

Metric 

Value 

type 

MOEA/D-

DE 

NSGA-2 MODE PEAS SPEA2 NBI 

R-indicator Best 8.23e-08 7.81e-05 8.12e-05 3.12e-03 6.80e-04 8.41e-03 

Worst 4.53e-06 3.41e-03 5.61e-03 2.31e-02 7.94e-03 0.3192 

Mean 1.90e-06 4.79e-04 8.47e-04 9.63e-03 1.62e-03 4.60e-02 

Std. Dev. 7.54e-07 8.91e-05 9.72e-05 2.18e-03 7.45e-04 7.13e-03 

Hypervolume- 

indicator 

Best 9.45e-05 3.19e-04 5.37e-04 3.02e-03 9.98e-04 7.43e-03 

Worst 4.53e-04 2.95e-03 5.43e-03 8.74e-02 6.01e-03 0.1029 

Mean 1.67e-04 7.52e-04 8.95e-04 6.59e-02 2.94e-03 9.60e-02 

Std. Dev. 6.76e-05 2.96e-04 4.57e-04 8.43e-03 6.93e-04 1.19e-02 

and switch on time intervals are shown in Figure 2. Corresponding
array patterns have been shown in Figure 3. Table 5 indicates
that the best compromise solution of MOEA/D-DE is considerably
superior in comparison to the best results obtained with DEGL and
CLPSO. The Pareto front shown in Figure 1(b) for the time-modulated
antenna arrays might not seem optimal. Actually there are some
points that seem dominated by other points but in actuality they are
non-dominated because they have better 3rd objective (lower SBL)
compared to the other solutions.
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4.2. Design Results for 32 Element Array

Next the algorithms have been applied to a 32 element time-modulated
linear array with an equal spacing of λ/2. Table 6 shows that the
best R-indicator and hypervolume indicator values are obtained for
MOEA/D-DE. Table 7 shows three design objectives of the best
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Figure 3. Normalized power patterns of the time-modulated linear
array with optimized static excitations and switch-on time intervals:
f0 and f0 + prf for 16 element array.

Table 7. Optimal compromise table for 32 element antenna array
design.

Method of Design BWFN (degrees) MSLL (dB)
SBLmax

(dB)
Time-modulated 9.684 −51.76 −83.647

Non-uniform
Excitation

24.42 −37.16 NA

Phase-Position 9.95 −20.43 NA
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Figure 4. Best approximated PFs obtained with MOEA/D-DE over
32-element array design instance. (a) 3-dimensional PF for 32-element
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Figure 5. (a) Static excitations obtained by MOEA/D-DE. (b) Switch
on time sequence obtained by MOEA/D-DE.

compromise solution found by MOEA/D-DE for the time-modulated
array. BWFN and MSLL achieved by the best compromise solution
for MOEA/D-DE corresponding to nonuniform excitation and phase-
position based design methods have also been shown in the same table.
Figure 4(a) presents the 3-dimensional approximated PF or trade-off
curve obtained with MOEA/D-DE for the linear time-modulated array.
In Figure 4(b) we show the 2-dimensional PF for all the three methods
of linear array design. Table 8 presents values of the three design
objectives finally achieved with MOEA/D-DE and two single-objective
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algorithms. The static excitation amplitudes and switch on time
intervals are shown in Figure 5. Corresponding array patterns have
been shown in Figure 6. Figure 4(b) reveals that the approximated
PF obtained for time-modulated array contains far better solutions

Table 8. Best values of the three design-objectives achieved by
best MO algorithm (MOEA/D-DE) and the two single-objective
optimization algorithms over 32-element array design.

Algorithm
BWFN

(degrees)
MSLL (dB)

SBLmax

(dB)
Dynamic
Range

MOEA/D 9.684 −51.757 −83.64 3.96
DEGL 9.231 −32.408 −48.85 4.00
CLPSO 7.561 −37.523 −39.56 4.00
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Figure 6. Normalized power patterns of the time-modulated linear
array with optimized static excitations and switch-on time intervals:
f0 and f0 + prf for 32 element array.
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Table 9. Best, worst, mean, and standard deviations of the
performance metrics for comparing the MO algorithms (64 element
array).

Performance 

Metric 

Value 

type 

MOEA/D-

DE 

NSGA-2 MODE PEAS SPEA2 NBI 

R-indicator Best 6.12e-08 1.19e-05 4.83e-05 5.12e-03 3.26e-04 9.92e-03 

Worst    5.32e-05 2.13e-03 7.03e-03 8.09e-02 5.47e-03 0.2192 

Mean 8.93e-06 2.67e-04 5.81e-04 1.42e-02 1.04e-03 8.71e-02 

Std. Dev. 1.42e-06 8.15e-05 8.97e-05 3.45e-03 7.09e-04 2.45e-02 

Hypervolume-

indicator 

Best 2.06e-05 2.76e-04    7.04e-04 9.32e-03 1.05e-03 4.12e-02 

Worst 6.73e-04 4.78e-03 9.93e-03 4.01e-02 3.59e-02 0.2311 

Mean 7.81e-05 9.13e-04 2.04e-03 2.52e-02 8.81e-03 7.10e-02 

Std. Dev. 1.98e-05 3.98e-05 6.20e-05 6.12e-03    4.94e-03 1.21e-02 
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Figure 7. Best approximated PFs obtained with MOEA/D-DE over
64-element array design instance. (a) 3-dimensional PF for 64-element
time-modulated array design. (b) 2-dimensional PF for three design
methods over 64-element array.

(the knee-region being much closer to the utopia point) than the other
methods.

Though the final approximated PF corresponding to phase-
position synthesis has the least diversity the best compromise solution
obtained could be better than non-uniform excitation method of
design. Table 6 indicates that the best compromise solution of
MOEA/D-DE is considerably superior in comparison to the best results
obtained with DEGL and CLPSO.
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4.3. Design Results for 64 Element Array

Next the algorithms have been applied to a 64 element time-modulated
linear array with an equal spacing of λ/2. Table 9 shows that
once again the best R-indicator and hypervolume indicator values are
obtained for MOEA/DDE. Table 10 shows three design objectives of

Table 10. Optimal compromise table for 64-element antenna array
design.

Method
of Design

BWFN
(degrees)

MSLL (dB)
SBLmax

(dB)
Time-modulated 5.677 −67.08 −91.12

Non-uniform Excitation 13.57 −43.21 NA
Phase-Position 7.236 −21.95 NA

Table 11. Best values of the three design-objectives achieved by
best MO algorithm (MOEA/D-DE) and the two single-objective
optimization algorithms over 64-element array design.

Algorithm
BWFN

(degrees)
MSLL (dB)

SBLmax

(dB)
Dynamic
Range

MOEA/D 5.677 −67.08 −91.12 3.57
DEGL 7.039 −35.73 −83.82 3.85
CLPSO 5.415 −56.22 −63.12
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Figure 8. (a) Static excitations obtained by MOEA/D-DE. (b) Switch
on time sequence obtained by MOEA/D-DE.
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the best compromise solution found by MOEA/D-DE for the time-
modulated array. BWFN and MSLL achieved by the best compromise
solution for MOEA/D-DE corresponding to non-uniform excitation
and phase-position based design methods have also been shown in the
same table. Figure 7(a) presents the 3-dimensional approximated PF
or trade-off curve obtained with MOEA/D-DE for the linear time-
modulated array. In Figure 7(b), we show the 2-dimensional PF for
all the three methods of linear array design. Table 11 presents values
of the three design objectives finally achieved with MOEA/D-DE and
two single-objective algorithms. Figure 8 shows the static excitation
amplitudes and switch on time intervals obtained by the MOEA/D-DE
algorithm. Corresponding array patterns are presented in Figure 9.

Finally in Table 12, we show the mean CPU time taken by the
eight algorithms compared over the three design instances. As it is
evident from the table, among the MO algorithms, MOEA/D-DE is
the fastest. However, the MO algorithms take marginally greater time
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array with optimized static excitations and switch-on time intervals:
f0 and f0 + prf for 64 element array.
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Table 12. Mean CPU time taken (per run) by the compared
algorithms over three instances of the design problem.

Problem 
MOEA/D-

DE 
NSGA2 MODE PEAS SPEA2 NBI DEGL

 
CLPSO 

16-Element 156.54 sec 171.44 sec 163.80 sec 172.72 sec 178.20 sec 181.56 sec 129.16 sec 144.52 sec 

32-Element 409.24 sec 457.12 sec 441.32 sec 462.60 sec 473.92 sec 480.42 sec 405.08 sec 421.48 sec 

64-Element 832.04 sec 923.64 sec 916.16 sec 926.08 sec 934.24 sec 941.40 sec 862.76 sec 879.32 sec 

as compared to the single-objective ones. This can be attributed to
the complicated sorting and selection techniques employed by the MO
algorithms. However, when accuracy is the major bottleneck, since
the design process is off-line, we must choose an MO algorithm like
MOEA/D-DE in order to achieve the best trade-off among all the
objectives concerned.

5. CONCLUSION

In this article, we demonstrated a new approach to the design of time-
modulated linear antenna arrays that provide an attractive means
for synthesis of low/ultra-low sidelobes, in the framework of multi-
objective optimization. One of the most recent and best-known
MO algorithms, called MOEA/D-DE, has been applied over three
different instances of the design problem, keeping minimum maximum
sidelobe level, maximum sideband level and the beamwidth between
the first nulls at the center frequency as three design-objectives to be
achieved simultaneously. Through extensive simulation experiments,
we illustrated that the MO design method is more suitable for time-
modulated antenna arrays because as evident from the approximated
PFs provided in Figures 1, 4, and 7, the PF for time-modulated
arrays are more diverse producing a much better trade-off among
the design-objectives considered here, in comparison to the non-
uniform excitation and phase-position synthesis based methods for
linear arrays. Unlike the single-objective approaches, the MO approach
provides greater flexibility in the design by yielding a set of equivalent
final solutions from which the user can choose one that attains a
suitable trade-off margin as per requirements.We illustrated that the
best compromise solution returned by MOEA/D-DE was able to
comfortably outperform the best results obtained with two powerful
single-objective optimization algorithms CLPSO and DEGL over three
significant design instances.

Our research indicates that powerful multi-objective optimization
algorithms can be applied to obtain better results over many problems
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of electromagnetics where there are two or more conflicting design
objectives that are to be achieved simultaneously. A few examples of
such problems are like Ultra wideband TEM horn antenna design, Wire
antenna geometry design, difference pattern synthesis for monopulse
antenna arrays, radio network optimization, etc.
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