
IEEE TRANSACTIONS ON CIRCUITS AM) SYSTEMS, VOL. CAS-24, NO. 6, JUNE 1977 281 

Design of Two-Dimensional Recursive Filters 
by Interpolation 

HYOKANG CHANG AND J. K. AGGARWAL, FELLOW, IEEE 

Abstracf-A technique for rotating the frequency responses of separable 

filters is developed. In this technique transfer functions having rational 

powers of .z are introduced and realized by input/output signal array 

interpolations. Several applications of this technique to designing twodi- 

mensional recursive filters are presented. Two- and multi-dimensional 

manipulations are performed by a series of one-dimensional manipulations. 

I. INTRODUCTION 

R ECURSIVE digital filtering of two- and multi-dimen- 
sional signals is an important technique in the 

processing of two- and multi-dimensional data. However, 
the design of two- and multi-dimensional recursive filters 
is difficult due to the fact that polynomials in two or more 
variables may not, in general, be factored into lower order 
polynomials. This difficulty can be partly circumvented 
by designing two- and multi-dimensional systems as one- 
dimensional systems. Shanks, Treitel, and Justice [1] pro- 
posed two methods for synthesizing two-dimensional re- 
cursive filters, one in the spatial domain and the other in 
the frequency domain. Manry and Aggarwal [2] have 
developed an implementation of a two-dimensional recur- 
sive filter as a. one-dimensional recursive filter. Mersereau 
and Dudgeon [3] have presented a similar technique to 
that of [2] where two-dimensional sequences are repre- 
sented as one-dimensional sequences. An alternative ap- 
proach utilizing separable planar filters has been sug- 
gested by Treitel and Shanks [4]. 

The present paper develops a technique for rotating the 

frequency responses of separable filters. The resulting 
filters are separable with respect to the rotated frequency 
axes whereas Shanks’ rotated filters are not. The transfer 
function of a separable filter is essentially a product of 
one-dimensional functions. In the present technique, 
transfer functions having rational powers of z are in- 
troduced and realized by input/output signal array inter- 
polations. 

Several applications of the technique to designing two- 
dimensional recursive filters are presented. A circularly 
symmetric low pass filter, a nonseparable bandpass filter, 
and a ring-shaped bandpass filter are designed to illustrate 
the procedure. 
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Causality: A two-dimensional filter is said to be realiz- 
able or causal if its impulse response satisfies the property 

[51, [61 

h(m,n)=O, form<Oorn<O. (5) 

The authors are with the Department of Electrical Engineering, Uni- 
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Stability: A two-dimensional filter is said to be stable 
if and only if its impulse response satisfies the con- 

II. PRELIMINARIES 

A. Difference EquafionS for Digital Filters 

A one-dimensional recursive digital filter is described 

by the linear difference equation 

k-0 

and the corresponding transfer function is 

G(t) bo+b,z+... +b,z’ 
H(z)=-= 

F(z) 1+c,z+**. +c,z” (4 

where u and v are nonnegative integers. Similarly a two- 
dimensional recursive filter is described by the spatial 

difference equation 

r s 
g(M,N)= 2 c b(m,n)f(M-m,N-n) 

- i $ c(m,n)g(M-m,N-n) (3) 
m=O’n=O 

(m,n)#(O,O) 

and the corresponding transfer function is 

G (~1 4 
i 2 b(m,n)zyz,” 

H (z,,zz) = 
m=O n=O 

F(z174 = 5 5 C(m,n)zylz,” 
(4) 

m=O n=O 

with ~(0, 0) = 1. G and g denote output signals while F and 
f denote input signals. The numbers r, s, p, and q are 
nonnegative integers. It is assumed that f (m,n)=O for m 
or n negative and that g(m,n) is an initial condition for m 
or n negative. 

B. Causality, Stability, and Finite Area Array 
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straint [5], [6] 

Finite Area Array: A two-dimensional array that is 
nonzero for only a finite area in. the spatial domain. is‘. 
referred to as. a. finite..area array..[5]. _. _ . 

For a finite area array A(M, X NJ, simple array re- 
orientations are possible which include: 

1) 90” rotation 

a(m,n)=A(n,N,-m+l) 

2) transposition 

a(m,n)=A(n,m) 

3) 180” rotation about M,/2-axis (mirror image) 

a(m,n)=A(M,-m+l,n) 

4) 180” rotation about N,/2-axis (mirror image) 

A(m,n)=A(m,N,-n+l) 
LI 

where A(m,n) and A(m, n) denote the original and re- 
oriented arrays, respectively. 

C. Sampling Theorem and Interpolation Functions 

For a one-dimensional function f (t) the sampling theo- 
rem is stated as follows [7]. 

If the Fourier transform of a functionf(t) is zero above 
a certain frequency wC 

F(w)=O, for [WI >‘3= 

then f (t) can be uniquely determined from its values 

f,=f (nT) 

at a sequence of equidistant points, a distance T apart. In 

fact f(t) is given by 

f(t)= nTgm f,sinc (f -n) (7) 

where T= V/O, and sine (x)= sin(nx)/rx. 
Furthermore, given an arbitrary function f(t) and a 

constant T, consider the function 

d(t)= 5 f(nT)sinc(&-n). 
n=--00 

Now d(nT)=f(nT) and the spectrum of d(t) equals zero 
for /WI >wC. Thus d(t) offers a band-limited interpolation 
of f(t). Likewise for an arbitrary two-dimensional func- 
tion f (x,y), the band-limited interpolation d (x,y) is given 

by PI as 

( 1 
l-z, 

s,=cose 2 - 
l-z, 

L, 1+zi 
+sinB 4 - 

( 1 ‘2 l+z2 

( 1 

l-z, 
s2= -sin8 2 - 

1 - z2 

L, l+z, 
+cose 2 - 

( 1 L, 1+z2’ (14) 

+CO +CO - - 
d(w)= 2 X f (mLX2nL,) 

m=-m n--m 
sinc(,-m)sinc(t-n) 
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where LX and L, are sample intervals and d(mL,,nL,,) = 
f(mL,,nL,). Further, d(x,y)=f(x,y) if 

F(wx,w,)=O, for I4 >%, or byl >Qu, 

where ox, =v/LX and oy,=v/L,,. 
Thus interpolation is accomplished by injecting at each 

sample point an interpolation function consisting of a 
product of sine functions. This is by no means the only 
possible interpolation function. In general, d(x,y) can be 
thought of as an expansion of the continuous spatial 
signal in the form [5] 

where ~~,,(x,y) is an interpolation function. There are 
several classes of interpolation functions that can be used 

to express a continuous spatial function in the form of 
(lo), including sinusoidal functions, Laguerre functions, 

and Legendre polynomials. 

D. Shanks’ Rotated Filters 

Given a two-dimensional filter that varies in one dimen- 

sion only as 

H2 (SIJ2> = H, (Sl> (11) 

a rotated filter may be obtained by rotating the axes of 
the (s,,s,)-plane by an angle - 8 [l]. Let (s1,s2) and (s1,,.C2) 
represent original and rotated axes, respectively. Then, 

[ 

s1 = 

I [ 

cos 8 sin 8 ;I 

32 -sin 0 I[ 1 cos e f2 * (12) 
Substituting (12) into (11) one gets 

If2 (s^,,i2) = +, (cos 8-i, + sin 13.i~). (‘3) 

This filter varies in both frequency directions. To produce 
the equivalent two-dimensional discrete filter, one uses the 
bilinear z-transform 

1 2 l-z, 

sl= L, l+z, 

1 2 l-z, 

s2= L, l+z, 

where L, and L, are sample intervals. The overall trans- 
formation becomes 
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By substituting (14) into (1 1), one can get a two-dimen- 
sional digital filter 

H(z,,z*) = Hl ws,=s,(z,,z*~ (‘5) 

where the frequency response H (e-jOILl, e-jw2L2) has been 
rotated by an angle 8 with respect to that of the reference 
filter, H,(zl,zZ), obtained by setting 0=0. However, the 
frequency response is no longer an exact rotated version 
of the reference filter response and tends to be distorted at 
higher spatial frequencies. This effect is caused by the 
bilinear transform. 

III. ROTATED FILTERS IN THE (z,,z~)-PLANE 

The frequency transformation technique is one of the 
traditional approaches in deriving desired frequency selec- 

tive filters from simple prototype filters. This technique 
has been applied to one-dimensional digital filters [5], [6], 
and its extension to two-dimensional digital filters has 
been proposed by Pendergrass et al. [9]. Extending the 
notion of frequency transformation to include rational 
powers of z, and z2, one can rotate the frequency response 
with band contraction. To begin with, consider the prob- 
lem of rotating the frequency response which is related to 
the material of Section II-D. 

For a causal and stable two-dimensional filter, de- 
scribed as in (11) by 

H2 (Zl,Zd = Hl (z1) (‘6) 

consider the transformation 

z, = i,ip (‘7) 

Fig. 1. Frequency response of low-pass filter of (16) and’it\s rotated 
version (P/LX = t). 

where (Y and p are integers. The corresponding frequency 
transformation is 

exp (-jw,L,) = exp (-j&i,) exp (-j$&,i,) 

[ ( 
P A 

= exp -j ij,i, + ;ij,L, )I 
or 

Fig. 2. Recursion directions of transformed filter (/3/a = f). 
I’ 

w,L,=3,i,+ -%I i 
a 2 2 

where Lf = if + ( /ii/ ai,)’ and the angle of rotation is 

The responses before and after the transformation with 
P/a = l/2 are shown in Fig._ 1 wher_e (16) represents a 
low-pass filter. In this figure, L, and L, are assumed to be 
unity. Note that (w,,,O) and ( -wlC,O) are fixed points 
under the mapping of (18). 

Now the transformation of (17) and its effects on the 
resulting filter H,(i,i~/“) may be examined in detail. 

1) It may be thought of as a mapping from the unit 
circles of the (i,,i,)-plane into the unit circles of the 
(z1,z2)-plane. 

2) When P/LX > 0, the transformation is causal, other- 
wise it is noncausal [see (5)]. 

3) In the spatial domain it is equivalent to the rotation 
of recursion direction with a new sample interval. The 
transformed recursing scheme of the filter in (16) with 
P/a = l/2 is shown in Fig. 2. 

4) In the frequency domain the effect of the transfor- 
mation is a rotation of the frequency response with a 
contraction of the bandwidth as seen in Fig. 1. Since the 
filter of (16) is one-dimensional, we can extend the con- 
cept of bandwidth in one dimension to two dimensions 

along the frequency response varying direction. The band- 
width of. the passband is contracted by the ratio of cos0 
(0 = arctan (p/a)). 

5) It is clear that the stability of the resulting filter is 
not affected since the transformation can be viewed as a 
transformation of the delay unit which may be specified 
by both recursing direction and sampling interval. 
(Assume that the input data is available at any spatial 
point.) 
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In observation 2) above, the transformation with ,B/cx < 
0 may be utilized when noncausal recursions are available. 
For a finite area array input, one can always choose a 
causal recursion direction by reorienting the input signal 
array according to the ways listed in Section II-B. Refer- 
ring to observation 3) and Fig. 2, it is clear that an input 
signal array must be defined at the new grid points so that 
the transformation of (17) may be meaningful. The discus- 

sion of this is deferred to the next section. As seen in 
observation 4), the transformation of (17) makes it possi- 
ble to rotate the frequency response. The transformed 
filter H,(i,i!/“), which is obtained by substitution of (17) 
into (16) will be referred to as a (z,,z,)-plane rotated 

filter. To avoid confusion, Shanks’ rotated filter will be 
referred to as an (s,,s,)-plane rotated filter. Observations 
3) and 5) may be further clarified by examining the 
impulse responses of the original and transformed filters. 
In terms of the impulse response, the filter in (16) may 
alternately be described as 

Fig. 3. &equency response of bandpass filter of (24) and its rotated 
version. 

(20) consider the transformation 

where 

h(m,n)=O, for m < 0 or n #O. (21) 
(25) 

Also, 
where (Y and /? are integers. The transformed frequency .; 
response may be obtained as 

5 

because of the conditions on causality and stability for 
(16). Likewise the transfer function for the transformed 

w2L2= (26) 

filter is 

H,(i,i~/*)= +Cmh(m,O)(i,if/")m (23) 
m=O 

and (21), (22) are still valid here; hence the stability is not 
affected by the transformation. Note that the new coordi- 
nate system is employed to define grid points in the 
spatial domain of the transformed filter (see Fig. 7). 

Thus far we have considered the transformation of 
two-dimensional digital filters with one variable. In genl 
era1 there is no restriction to the type of transfer function 
to which the transformation of (17) is applicable. How- 
ever, our attention will be limited to separable prototype 
filters throughout this paper so that the two-dimensional 
filtering operation can be realized as a series of one-di- 
mensional filtering operations. 

For a separable filter which is stable and causal such 
that 

H (ZPZ2) = HI (zdff2 (z2) (24) 

where Lf = Lf + ( /3/ aiJ2, Lz = ( /?/ CX&)’ + ,$ and the 
angle of rotation is the same as (19). This relation is : 
illustrated in Fig. 3, where H,(z,) is a low-pass filter and 
H2(z2) is a bandpass filter. Note thal there are 6 fixed ’ 
points under the mapping of (26), and they are (& wlC, 0), 
(0, + aZa) and (0, t Oar). The ratio of linear contraction of 
the pass region incurred by the transformation is generally 
given by cos 0 (@ = arctan ( P/a)) as before. 

In addition it may be observed that the rotation of the 
Nyquist frequencies -yields the reduction of the effective - 
frequency range. Hereafter, we will refer to the effective _ 
frequency range as the Nyquist region. In Fig. 4, four 
possible recursion directions are shown with their corre- . 
sponding transformations. With these recursion directions s 
the Nyquist region will contract as shown-in Fig. 5(a). The 
minimum Nyquist region occurs when P/CX = 1 in (25) as ! 
shown in Fig. 5(b). ; 

’ Finally let us consider the range of (Y and /?. When p/a 
is an integer, the transformation falls in the category of 
ordinary two-dimensional frequency transformations [9]. ,t 



CHANG AND AGGARWAL: TWO-DIMENSIONAL FILTER DESIGN 285 

Fig. 4. Four possible recursion directions with corresponding transfor- 
mations given a and /.?. 

h 

-7T WI 

-lr -lT 
(a) Ibl 

Fig. 5. Contracted Nyquist region (p/a = $) and minimum Nyquist 
region (B/a = 1). 

When /3/a > 1, one may choose alternative transforma- 

tions such as ,5p/PZ2 in which the sample interval is shorter 
than for (17). Therefore there is no loss of generality if we 
restrict (Y and fi such that (Y > fi, (Y and p are integers. 

IV. IMPLEMENTATION OFTHE(Z,,Z~)-PLANE 

ROTATED FILTERSBYEMPLOYING INTERPOLATED 

FILTERSYSTEMS 

The previous section describes the rotation of separable 
filter frequency responses using the transformation of 

(17). However, this transformation is not readily applica- 

ble to standard rectangular arrays since the signal values 
for the transformed filter are not defined at the new grid 
points. If one uses a suitable interpolation function, that 
can reconstruct a continuous signal from a discrete signal, 
it is possible to generate an interpolated array where 
signal values are defined on the new grid points. Several 
interpolation functions are briefly discussed in Section 
II-C. 

Consider the two-dimensional band-limited interpola- 
tion function of (9). For a grid point at x= iL, and 
y = (k + AJL, where Ai denotes the decimal part of ( /3/(u)i 
[see Fig. 61 

fin, (i, k + Ai) = y 5 f(m,n) sine (i-m) 
p#=-* “c-m 

ssinc (k+Ai-n) 

= nIgwf(i,n) sine (k+Ai-n) (27) 

Fig. 6. Interpolation algorithm;: d30) with ci(ri) = sinc(Ai - n^) and 

I\ \ \ \I\ \ \ \ 1 \ \ 1 \ \ \ \I\ \ \I 
--- 

K K 
ORIGINAL SIZE OFA GWEN ARRAY 

Fig. 7. Grid points of interpolated array with augmentation along z, 
direction (P/a = 2/3). 

where i and k are integers and sine (i - m) = 0 except 
when m = i. Here, f&i, k + Ai) and f(m, n) denote the 
interpolated and standard array values, respectively. Now 
there are two problems with the interpolation function of 
(27). First, the interpolated array is not bounded even for 
a bounded input array (k is not bounded in (27)). Second, 
the interpolation of (27) at each new grid point is com- 
putationally inefficient. One possible way of obtaining a 
meaningful interpolation function which approximates 
(27) would be to truncate the infinite series at n = ? K. 

Define the rectangular window and truncated interpola- 
tion function as follows: 

rect (x) = 1, -1/2<x<1/2 

0, otherwise 
(28) 

qi(x)=sinc(x) rect & . 
( > 

, (29) 

With this new interpolation function q,(x), one may ap- 
proximate (27) i.e., 

fi,,(i,k+Ai)~ ~ f(i,n)~,,(k+Ai-n) 
n=-CC 

= 5 sine (Ai- ri)f(i,k+ h) 
ri=-K+l 

=f^ (i,k+Ai) ’ (30) 

where i2 = n - k and f^(i, k + AJ represents an interpolated 
array which is augmented by length 2K along the inter- 
polating direction. Furthermore, f(i, k + A;) is bounded in 
the same manner as the original array. The interpolation 
algorithm is illustrated in Fig. 6 and the grid points of an 
interpolated array are shown in Fig. 7. Note that the 
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Fig. 8. Interpolated filter system. 

interpolation occurs row by row. With the interpolated 
array shown in Fig. 7, one can perform recursive filtering 
-in the new direction. The output array will have the same 
grid points as shown in Fig. 7. To convert the output 
signal array to standard array form, one needs array in- 
terpolation once more. The augmented portion of the 

array is necessary only to produce the output in standard 
array form. Thus the domain of the final output array is 

the same as that of the input array. Consequently two 
interpolation operations are necessary to realize the trans- 
formation of (17), an input interpolation and an output 

one. 
There are several facts worth noting concerning the 

interpolation scheme of (30): 
1) It may be regarded as a moving average estimator 

where the set of coefficients is determined by the inter- 
polation function r~+(x) and the interpolating distance Ai 
which is a function of row index i(0 < Ai < 1 for a unit 
sample distance). 

2) The interpolation, operation is not performed uni- 
formly on the given data array. At the rows where given 
and new grid points coincide, the interpolation operation 
is no longer necessary (Ai = 0). ’ 

3) It does not pose any stability problem because it is a 
FIR (finite impulse response)-type estimator. 

V. FREQUENCY RESPONSES OF THE INTERPOLATED 
FILTER SYSTEMS 

An interpolated filter system that consists of in- 
put/output interpolators and a (z,,z,)-plane rotated filter 
is shown in Fig. 8. The necessity of input/output inter- 
polators at both ends of the (zl,z2)-plane rotated filter is 
obvious in view of the discussion above. Therefore the 
overall frequency response of the interpolated filter sys- 
tem is determined by the input/output interpolators as 
well as by the (zl,z2)-plane rotated filter. The frequency 
response of the interpolation function can easily be ob- 
tained by Fourier transforming the interpolation function 
r&x). When the interpolation function is cpl(x) as in (29) 

F{q,(x)}=F(sinc(x)r&(&)) 

=F{sinc (x)}*F(rect (&)) 

=rect ($)*[ 2Kosinc (%)I (31) 

where “*” denotes convolution. 

Fig. 9. Truncated interpolated function q,(x) of (29) with K=4 and its 
frequency characteristic. \ 

The interpolation function q,(x) and its Fourier trans- 

form are shown in Fig. 9. In Fig. 9(b), one.may observe 
the overshooting caused by the rectangular window. As 
already known in the theory of finite impulse response 
(FIR) filters, the use of generalized windows such as the 
Hamming, Hanning or Kaiser windows will improve the 
frequency characteristics of the interpolation function. 
For example, we may use the generalized Hamming 
window defined as 

qK(x)= r+(l-r) cos 
[ 

(z)] rect (&), O<r<l. 

(32) 

The resulting interpolation function is 

c&(x)=sinc (x)qK(*s). (33) 

cpz(x) with r = 0.7 and K = 4 and its frequency characteris- 
tic are shown in Fig. 10. Note that the frequency char- 
acteristic of (p2(x) is fairly flat except in the vicinity of the 
Nyquist frequency. Since there are two interpolators for 
input/output and their characteristics are identical, the 
overall frequency characteristic for both input/output in- 
terpolators may be denoted by [F { cp(.s)} J2. As long as one 
is concerned with the frequency transformation of (17), 
interpolation occurs along one direction only, either the z, 
or z2 direction. Thus the frequency characteristic along 
the other direction is not affected. Althou& the Fourier 
transform of an interpolation function may represent the 
frequency characteristic of input/output interpolators, it 
is not exactly the same as the actual characteristic since 
interpolations are not carried out uniformly. For instance, 
referring to Fig. 7, the first and fourth rows of the arra‘y 
are not interpolated while the second and third rows are. 
Therefore, it may hold in an actual case that the 
frequency characteristic of the input/output interpolators 
is better than that given by the Fourier transform of the 
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(0) 

0.2 

- wx 
0 I I I I 1 

-7T -T 0 3 7r 

(b) 

Fig. 10. Interpolation function Q+(X) of (33) using Hamming window 
(r = 0.7 and K = 4) and its frequency characteristic. 

interpolation function. An alternate way of finding the 
frequency characteristic of the interpolated filter system is 
to apply the discrete Fourier transform (DFT) to the 
impulse response. 

Example 1: Given the one-dimensional 6th-order low- 
pass filter 

H, (z)=(lO-*)(0.1052+0.6340~+ 1.5775z2+2.1033z3 

+ 1.5775z4+0.6340z5+0.1052z6)/(1 -2.9785~ 

+4.1361z2-3.2598z3+ 1.5173z4-0.3911~’ 

- 0.0434zy 

one may find the frequency responses of the interpolated 
filter system for H,(i,iJ/2) and Shanks’ rotated filter, and 
compare the two using the interpolation function q2(x) of 
(33) with r=0.7 and K=4 (8 terms). 

The overall frequency response of the interpolated filter 

system is obtained from the DFT of its impulse response. 
To include the effect of the input interpolator, the first 

row is interpolated where the impulse is applied. The 
amplitude response of the one-dimensional prototype 
filter in two dimensions is shown in Fig. 1 l(a). The 
amplitude responses of Shanks’ rotated filter and the 
interpolated filter system are shown in Fig. 1 l(b) and (c), 
respectively. In Fig. 11, the amplitude responses are dis- 
played in 16 grey levels. 

VI. DESIGN TECHNIQUES USING INTERPOLATED 

FILTER SYSTEMS 

In this section, design techniques of two-dimensional 
recursive filters using interpolated filter systems are 
illustrated through three examples: 

1) a circularly symmetric low-pass filter, 
2) a nonseparable bandpass filter, 
3) a ring-shaped bandpass filter. 

Cd 

Fig. 11. Amplitude responses of Example 1; (a) prototype filter, (b) 
Shanks’ rotated filter, (c) interpolated filter systems. 

Two inherent problems in employing interpolated filter 
systems are the high-frequency attenuation in the vicinity 
of the Nyquist frequencies, caused by windowing of the 
interpolation function, and the contraction of the Nyquist 
region resulting from the frequency response rotation [see 
Fig. 51. Because of the first problem, high-pass inter- 
polated filter systems should be used with apriori spectral 
considerations of the input signal. Due to the second 
problem, the presence of undesired pass regions beyond 
the contracted Nyquist region is possible in interpolated 
filter systems. However, the two problems above are not 
serious drawbacks in practical applications. 

In the following examples, we assume that the input 
signals are given as finite area arrays so that noncausal 
filters can be realized through the array reorientations 
listed in Section II-B. Also, we employ the zero-phase 
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Fig. 12. Approximation of circularly symmetric low-pass filter; (a) 
protot e filter, (b) its rotated filters and cascading of these three for 
Examp e 2. T 

Fig. 13. Actual amplitude response of Fig. 12(b) for Example 2. 

implementations for the given amplitude specifications. 
As one-dimensional filters, bilinear transformed Butter- 
worth filters are used. For an interpolation function, cp2(x) 
of (33) is applied with r =0.5 and K=4. Input/output 
interpolators are denoted by “[” and “I”, respectively, in 
the transfer function expressions of the following exam- 
ples. 

Example 2: Design a circularly symmetric low-pass 
filter with the following specifications: 

0.8< IH(e-i”l,e-i”i2)l < 1.0, 

0 < (H(e-j’l,e-j’2)1 < 0.1, 

where,j= m and p’=Gf+i$. 
The pass region is approximated 

p < 0.5?7 

pa0.65~ 

by cascading three 

Fig. 14. (a) Specification and (b) approximation for Example 3. 

basic filter sections, a .prototype filter and two rotated 
filters, as shown in Fig. 12. The basic angle of rotation 
used is 26.6” (0= arctan (l/2)). Because of the bandwidth 
contraction in the frequency transformation, two one-di- 
mensional ,filters, H,(z) and H2(z), with different cutoff 

frequencies are used to derive three basic filter sections. 
The overall amplitude response is shown in Fig. 13 and 

the transfer function is 

H(i,,i,)=HX( i,,z^,)HY(i,,i,,)HZ(i,,i,) 

where 

HX(i,,i2)=HL,(i,)HLI(i;‘)H1,1(L^2)HL,(i~’) 

HY(z^,,z^,)= [ HL2(i,i:/2)HL2(i;‘i;‘/2)] 

. [ HL2(i;‘/2i,)HL2(i:‘2i;‘)] 

HZ(i,,i,)= [ HL2(iI~~“2)HL2(i:;‘~:‘2)] 

. [ NL2(il/2i2)HL2(i;I/2i;‘)] 

HL,(z)=(0.39662+0.79325z+0.39662z2)/ 

(1+0.38816z+0.19833z2) 

HL2(z)=(0.47658+0.95317z+0.47658z2)/ 

(1 + 0.65732~ + 0.24901~~). 

Example 3: Design a nonseparable bandpass filter with 
the following characteristic [see Fig. 14(a)]: 

0.707< Iff(e-jGl,e-jG2)) G 1, 
77 p<- 
6 

O< IH(e-jil,e-jG2)l GO.2, P>; 
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Fig. 15. Actual amplitude response of Fig. 14(b) for Example 3. 

where 

Fi , 
f 

16. Approximation of ring-shaped bandpass filter; (a) prototype 
fl ter, (b) its rotated filters and cascading of these three for Example 4. 

or 

p2+,- ;)2+(iz2+ $ 

The pass region is approximated by rotating a separable 
filter as shown in Fig. 14(b). The basic angle of rotation 
used is 18.4” (0 = arctan (l/3)). The amplitude response 
of the actual filter is shown in Fig. 15 and the transfer 
function is given as follows: 

H(i,,i,)= [ HL(ili;/3)HL(i;‘i;“3)] 

. [ HB (i;1/3i2)~~ (i;“i;‘)] 

where 

HL( z) = (0.07672 + O.l5344z+ 0.07672z2)/ 

(1- 1.07832z+0.38519z2) 
Fig. 17. Actual amplitude response of Fig. 16(b) for Example 4. 

HB (z) =0.47260( 1 - z’)/(l +O.O8936z + 0.05481~~). 
subtracting the inner rectangular pass region from the 

Example 4: Design a ring-shaped bandpass filter with outer one. The latter scheme, which is used in this exam- 

the following specifications: ple, becomes possible because of the zero-phase character- 
istic. Now the desired response may be approximated by 

0.707 < IH(e-j’l,e-j’2)( < 1, 0.417 < p < 0.67r cascading three basic filter sections, a prototype filter and 

O(IH(e-j;l,e-j;2)1~0.05, p < 0.3~ or p > 0.75~ 
its two rotated filters, as shown in Fig. 16(b). The basic 
angle of rotation used is 26.6” (0 =arctan (l/2)). The 

where 
amplitude response is shown in Fig. 17 and the overall 
transfer function is 

H(i,,i,)=HX( i’,i,)HY(i,,i,)HZ(i’,i,) 

As a first step, a prototype filter with the frequency where 
response shown in Fig. 16(a) is realized by paralleling.two 
separable filters. Two different realizations are available 
in doing this: one of them is partitioning the pass region 

HX(i,,i,)= HL3(il)HL3(i;‘)HL3(i2)HL3(i;‘) 

into four strips as shown in Fig. 16(a), while the other is - HL,(~‘)HL,(~^;‘)HL,(I^,)HL,(Z;‘) 
Y 
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TABLE I 

H(z) = 63, + al= + a2z2 + a&(’ + b,z + b2z2 + b3z3) 

aO al a2 a3 % b2 b3 

HL3 
0.46904 0.93809 0.46904 0 0.63289 0.24329 0 

HL4 0.04562 0.13658 0.13659 0.04562 -1.22105 0.73445 -0.14846 

HLs 0.56781 1.13562 0.56781 0 0.93919 0.33206 0 

HL6 0.05975 0.17925 0.17925 0.05975 -1.01921 0.61133 -0.11416 

HY(il,i2)=[HLs(ili~~2)HL5(i;'i~"2)] 

.[~L,(i,l/2i,)~L,(i:'~i;l)]. 

- [~L,(i,i:/~)~L,(i;*i,-*'~)] 

~[HL6(i;'~2i2)HL6(i;~2i,')] 

HZ(i,,i,)=HY(i,,i,'). 

The one-dimensional filters HL,, HL,, HL,, and 'HL, are 
listed in the Table I. 

As seen in the examples, an interpolated filter system 
may be used to synthesize a two-dimensional recursive 
filter with a desired frequency response. Any convex low- 
pass shape in the frequency domain can be approximated 
by a convex polygon, which may be realized by cascading 
(zl,z2)-plane rotated filters. As a general approach to 
approximating a given frequency response, partitioning a 
complicated pass region into several elementary contigu- 
ous pass regions might be useful. An elementary pass 

region is one that can be realized by cascading (zlrz2)- 
plane rotated filters. To get an overall frequency response, 
one can sum up elementary contiguous pass regions. This 
is equivalent to paralleling elementary filters. Unlike the 
case for one-dimensional filters there is in general no 
cascade implementation which is equivalent to a parallel 
implementation in the case of two- or multi-dimensional 
filters. This is due to the lack of a factorization theorem in 
polynomials of two or more variables. If one tries to make 

use of the partitioning technique in realizing a nonzero 
phase two-dimensional filter, one may not avoid border- 
line matching problems between elementary contiguous 
pass regions. 

There are a few more comments worth noting in con- 
junction with Example 1. J. Costa and A. Venetsanopou- 
10s have suggested a design technique for a circularly 
symmetric low-pass filter using Shanks’ rotated filters [lo]. 
In their. work the desired frequency response is synthe- 
sized by cascading two elliptically shaped filters with data 
rotations of 90”. An elliptically shaped filter designed as a 
basic filter section is obtained by cascading three 2nd” 
order Butterworth filters rotated by 285”, 315”, and 345”. 

In our Example 2, a basic filter section is obtained by 
cascading two (z,,z,)-plane rotated filters with interpola- 
tors. Each rotated filter consists of one-dimensional filters 
whereas Shanks’ rotated filter consists of two-dimensional 

filters. For the case of Example 2, it is hard to say which 
technique is better. Each design technique involves many 
problems such as the degree of approximation, the com- 
plexity of the implementation and the performance of the 
filter. However, one may observe tha.t an interpolated 
filter system provides a designer with mlore flexibility.than 
Shanks’ rotated filters when one approximates frequency 
responses such as those of Examples 3 and 4. 

VII. CONCLUSION 

The problem of rotating a separable filter response 
through an interpolated filter system has been studied. 
Since a separable filter basically consists of one-dimen- 
sional filters, for which software and hardware structures 
are extremely simple over two- or multi-dimensional 
filters, our attention has been limited to the rotation of a 
separable filter response and its applications. A primary 
advantage of employing separable filters in interpolated 
filter systems is that one may perform two- or multi-di- 
mensional manipulations by means of a series of one-di- 
mensional manipulations. With this scheme the same in- 
terpolated filter system may be used iteratively, together 
with proper array reorientations, resulting in an apprecia- 
ble saving in hardware. 

Although most of the input signals are assumed to be 
finite area arrays throughout the paper, this condition 
may be weakened depending on the recursion direction 

and the input data structure. We have discussed a general 
approach to designing two-dimensional recursive filters in 
the frequency domain employing interpolated filter sys- 
tems. Further work is needed to generalize the technique. 
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Control of Limit Cycles in Recursive Digital 
‘--_ Filters by Randomized Quantization 

R. BRUCE KIEBURTZ, SENIOR MEMBER, IEEE, VICTOR B. LAWRENCE, AND KENT V. MINA 

Abstract-The different typ& of limit cycles~~whicQan occur in single 

second-order sections respond differently to efforts to reduce them. Length 

1 (dc) limit cycles plaj an important ‘complicatiqg role, especially in 

cascaded filters. We describe a simple method, involving random requanti- 

zation of multiplier outputs, which can reduce or eliminate limit cycles iG 

digital filters. We compare limit cycle and roundoff noise in three typical 

low-pass filters with and without the method. 

I. INTRODUCTION 

T HE PERFORMANCE of fixed point recursive digital 
filters is degraded by the requantization of products 

at the output of multipliers. The resulting errors. are ob- 
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07733. 

served as roundoff noise during signal processing or as 
limit cycle oscillations during idle channel conditions. The 
usual procedure for ensuring that either or both of these 

-,effects are tolerable is to increase the internal wordlength 
of the filter. For example a high performance low-pass 
filter used 15-bit input data and 21-bit internal data [l]. Iri 
principle $ther the roundoff noise or the limit cycie 
behavior may dominate in setting the required internal 
data wordlength. This paper discusses techniques for 
suppressing limit cycles by r&domly switching the quanti- 
zation between truncating and rounding [2]. This allows 

the internal data wordlength, hence the required memory, 
to be determined by signal to roundoff noise considera- 
tions. 

The implementation for which randomized quantization 
is analyzed is a cascade of second-order sections. The 


