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�is paper presents a design of UAVs-based 3D antenna arrays for a maximum performance in terms of directivity and side lobe
level (SLL). �is paper illustrates how to model the UAVs formation 	ight using 3D nonuniform antenna arrays. �is design of
3D antenna arrays considers the optimization of the positions of the antenna elements to model the UAVs formation 	ight. In this
case, a disk patch antenna is chosen to be used as element in each UAV. �e disk patch antenna is formulated by the well-known
cavitymodel.�e synthesis process is carried out by themethod ofDi
erential Evolution forMultiobjectiveOptimization (DEMO).
Furthermore, a comparison of the performance of 3D nonuniform antenna arrays is provided with respect to themost conventional
arrays (circular, planar, linear, and the cubic) for UAVs formation 	ight.

1. Introduction

Unmanned Aerial Vehicles (UAVs) embrace applications of
Precision Formation Flying (PFF) [1–3] in civil and military
usages.Military users such as tactical units on patrolmissions
can apply micro UAVs for intelligence, surveillance, and
reconnaissance tasks.UAVsown the capability of coordinated
area surveillance. In civil applications UAVs are used in
agricultural practices, police surveillance, pollution control,
environment monitoring, and �ghting �res [1, 3].

�e main problem presented in UAVs applications is the
limited range of operation for signal and power consumption.
Many applications consider an omnidirectional antenna for
UAVs communications. In this case, guaranteed quality
communication is required to support formation control and
a nonstop process of tracking and maintaining a chosen
geometric shape [2].�e way to �nd a better communication
is by utilizing antenna arrays. However, equippingUAVswith
antenna arrays is impractical. �is is because antenna arrays
need a lot of space and energy consumption.

A possible solution to this problem would be to form an
antenna array whose elements are the antennas on each of
the UAVs in the cluster. In this situation, the UAVs would
�rst share the information to be transmitted among each
other and then perform data aggregation, compression, and
additional processing such as feature extraction to condense
the data as much as possible [4]. Following the additional
processing, the UAVs would 	y into a formation conducive
to good array performance and then transmit together, using
electromagnetic interference to focus their limited power in
the direction of the intended receiver [4]. Not only does this
have the advantage of combining their transmitted power, but
it also improves the situation further by sending more of this
power in the direction of the receiver, causing less waste.�is
property of antenna systems, called directivity, is the primary
reason, beyond ineciencies of very small antennas, why an
antenna with large spatial extent has an advantage over a
smaller one [4].

�e idea of forming an antenna array from several
vehicles has been explored in [4, 5]. However, a performance
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evaluation of the problem for UAVs, including an analysis of
the expected performance in UAVs-based antenna arrays for
amaximumperformance in terms of directivity and side lobe
level, is lacking.

�e UAVs formation 	ight could be modeled by using
a chosen geometric shape such as a linear array, a planar
array, and a 3-dimensional array. Linear [6, 7] and planar
[8, 9] antenna arrays are the most studied and applied.
However, the UAVs formation 	ight could maintain any
geometric shape in space; that is, UAVs could take advantage
from a 3D antenna array considering optimal positions
for UAVs formation 	ight in order to have a maximum
performance in terms of directivity and enlarging the range
of operation. Communications at long range for UAVs could
be improved by considering optimal positions for UAVs in a
3D nonuniform array (as 	ight formation group).

�is paper presents a design of UAVs-based 3D antenna
arrays for a maximum performance in terms of directivity
and side lobe level (SLL). �is paper illustrates how to
model the UAVs formation 	ight using 3D nonuniform
antenna arrays. �is design of 3D antenna arrays considers
the optimization of the positions of the antenna elements to
model the UAVs formation 	ight. In this case, a disk patch
antenna is chosen to be used as element in each UAV. �e
disk patch antenna is formulated by the well-known cavity
model [10].�e synthesis process is carried out by themethod
of Di
erential Evolution for Multiobjective Optimization
(DEMO) [11–13].

Furthermore, a comparison of the performance of 3D
nonuniform antenna arrays is provided with respect to the
most conventional arrays (circular, planar, linear, and the
cubic) for UAVs formation 	ight.

�e remainder of the paper is organized as follows.
Section 2 states the antenna array design problem we are
dealing with. Section 3 describes the evolutionary multiob-
jective optimization algorithm employed. Section 4 presents
and discusses the simulation results. Finally, the summary
and conclusions of this work are presented in Section 5.

2. Problem Statement

Consider a 3D antenna array of elements nonuniformly
spaced on the space coordinates ���, as shown in Figure 1.
Please note that the radiation pattern is formed by each disk
patch of eachUAV.�e radiation pattern for this array is given
by [10]

� (�, �) = 
 (�, �)�� (�, �) ,

�� (�, �) =
��
∑
�=1

����[�(�� sin � cos�+	� sin � sin�+
� cos �)],
(1)

where � is the signal wavelength; � = 2�/� is the phase
constant; � is the angle of a plane wave in the elevation plane;
� is the angle of a plane wave in the azimuth plane; (��, ��, ��)
represents the space coordinates of antenna element �,
and (��, ��, ��) is given by the separation between antenna
elements.

z
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Figure 1: UAVs-based 3D antenna array with nonuniform spacing.

�e 
(�, �) term is the element pattern of a disk
patch antenna modeled by the cavity model as follows
[10]:

�� = cos � sin� [�0 (�� sin �) + �2 (�� sin �)] ,

�� = cos� [�0 (�� sin �) − �2 (�� sin �)] ,


 (�, �) = √��2 + ��2.

(2)

�e terms �� and �� are the normalized pattern compo-
nents at the fundamental mode ��11 of each disk patch
antenna via the well-known cavity model, where � is the
radius of the patch at the resonance frequency. �0 and �2
are Bessel functions of the zero and second order, respec-
tively.

�e antenna elements installed in UAVs will be of low
directivity with omnidirectional pattern. However, the radi-
ating characteristics of the array will prevail. �is is because
the relative position of the di
erent UAVs de�nes the steering
vector not the antenna elements. Comparing the individual
pattern of each UAV considering coupling with the UAV
structure (electric motors or electronics) could be hard work
and basis for another study or paper and could be integrated
with the results of this research.

�e idea of this paper is to demonstrate the possibility
of generating 3D arrays able to focus their limited power in
the direction of the intended receiver. In this case, the cavity
model is well suited for circular patches.

A full wave analysis would require an antenna model
and a UAVs model taking a high volume into account for
simulating.�ismakes it dicult for anymethod. A full wave
simulation considering the antennamodel and aUAVsmodel
could be integrated with the results of this research. However,
this is out of the scope of this paper.

�e amplitude excitations are set to be equal in the
array; that is, uniform amplitude excitation is utilized. In
this case, the positions of the antenna elements (��, ��, ��)
or (UAVs positions) are given by the separation between
antenna elements in the axes �, �, and �.
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�erefore, the decision variables for this design problem
are the positions of the antenna elements arranged in three
vectors of real numbers as follows:

x = [�1, . . . , ��, . . . , ���] ,

y = [�1, . . . , ��, . . . , ���] ,

z = [�1, . . . , ��, . . . , ���] .

(3)

�e objective functions of this design problem can be formu-
lated as follows:

�1 = SLLmax (x, y, z) ,

�2 =
1

DIR (x, y, z) ,
(4)

where SLLmax is the maximum side lobe level attained in � =
[0, 2�] and � = [0, �] and DIR represents the directivity of
the radiation pattern. �e directivity of the radiation pattern
is given by the next expression [13]:

DIR = 4�� (�, �)
max

∬�,2��=0,�=0� (�, �) sin �  �  �
. (5)

Based on these de�nitions the objective functions can be
written as the minimization of the maximum side lobe level
(�1), and in the second component it is the maximization of
the directivity (�2). �en the problem can be formulated as

Minimize (�1, �2)
Subject to x, y, z ∈ Λ,

(6)

whereΛ contains values of x, y, and z to avoid a possibleUAVs
crash on the array. In this case, to avoid a possible UAVs crash
on the array, the minimal Euclidean distance between each
pair of UAVs is restricted to 2 � on a cubic space of 10 �. �e
relations between the decision variables x, y, and zwith�1,�2
are not trivial, but highly nonlinear.

Since the UAVs formation 	ight could maintain any
geometric shape in space, the beam steering of the 3Dantenna
array is not considered in this design problem; that is, the
natural response of the array is considered to be optimized.

Shadowing e
ect in a 3D antenna array is highly probable
to occur as UAVs not collocated in the same plane will be
a
ected by the UAVs located in the planes below looking in
the horizon of the array.Also di
ractionwill occur in both the
UAVs directly a
ecting the installed element pattern (with
the possibility of a 	ower pattern with zeros in the visible
region under certain conditions) and from UAVs that are on
the horizon of the UAV 3D array main beam. Di
raction
and re	ection will create more problems as they will give
arbitrary installed element patterns. �e shadowing e
ect
would require a deeper study and could be integrated with
the results of this research.

�e next section presents the multiobjective evolutionary
optimization algorithm to be applied to this design problem.

3. The Multiobjective Evolutionary
Optimization Algorithm

�e optimization process is carried out by the DEMO
algorithm due to its e
ectiveness in antenna arrays design
[12]. DEMO is an optimization approach based on the clas-
sical method of Di
erential Evolution (DE) [14] combined
with the mechanisms of Pareto-based ranking and crowding
distance sorting, employed in the literature of evolutionary
algorithms for multiobjective optimization.

In order to resolve the proposed synthesis design prob-
lem, the DEMO algorithm was selected based on the perfor-
mance comparison of NSGA-II [15], EM-MOPSO [16], and
DEMOvariants [11]made by Panduro et al. [12] for the design
of concentric rings antenna arrays. �e results of that perfor-
mance comparison showed that the variants ofDEMO/parent
andDEMO/closest/dec foundbetter nondominated solutions
than the other algorithms.

Please note that the authors do not claim that DEMO is
the best algorithm for this design problem.�e �nding of the
best optimization algorithm for designing an antenna array
remains as an open problem.

�e used DEMO/parent is described as follows [11]:

(1) Evaluate the initial populationP of random individ-
uals.

(2) While stopping criterion is not met, do the following:

(a) for each individual �� (" = 1, . . . , popSize) from
P repeat:

(i) create candidate # from ��;
(ii) evaluate candidate;
(iii) if the candidate dominates the parent, the

candidate replaces the parent;
(iv) if the parent dominates the candidate, the

candidate is discarded. Otherwise, the can-
didate is added to the population;

(b) if the population hasmore than popSize individ-
uals, truncate it by sorting the individuals with
nondominated sorting and then evaluating the
individuals of the same front with the crowding
distance metric;

(c) randomly enumerate the individuals inP.

For the candidate creation, the DE schemeDE/rand/1/bin
[11–13] is used, and the procedure for this scheme is described
as follows:

(1) Randomly select three individuals ��1 , ��2 , ��3 fromP,
where ", "1, "2, and "3 are pairwise di
erent.

(2) Calculate candidate# as# = ��1+�×(��2−��3), where� is a scaling factor.

(3) Modify the candidate by binary crossover with the
parent using a crossover probability of $.

�e immediate replacement of the parent individual with
the candidate that dominates it emphasises elitism within
reproduction. �is provides a better convergence to the true
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Begin

Generate an initial population
� of size popSize

End

Evaluation of the population
i = 1; ITE = 1

with probability pc

Apply crossover to C from Pi

Evaluation of candidate C
(Compute of1 and of2)

C(of1, of2) <

Pi(of1, of2)

Pi = C
i = i + 1

or
C(of1) < Pi(of1)

C(of2) < Pi(of2)

i = i + 1
Add C to �

i = i + 1
Discard C

i > popSize

|�| > popSize

Truncate � to
|�| = popSize

Randomly 
enumerate

individuals of �
ITE = ITE + 1

ITE = total_ITE

Create candidate C from Pi
C = Pi1 + F × (Pi2 − Pi3)

Figure 2: Flow chart for the implemented DEMO/parent procedure.

Pareto front. And the use of nondominated sorting and
crowding distance metric in truncation of the extended pop-
ulation stimulates the uniform spread of solutions, �nding as
diverse nondominated solutions as possible [11].

�erefore, the procedure of the DEMO/parent process
for our synthesis problem is described in Figure 2. Each
individual is in general represented by three vectors of real

numbers (positions of the antenna elements in the axes �,
�, and �). �e stopping criterion is on the total number of
iterations.

In this case, the initial solutions do not a
ect critically the
algorithm result. �e interesting aspect of this system is that
if the synchronization of all elements is in phase, all the UAVs
can modify slightly their positions (within the feasible space)
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Figure 3: Final solution of the array factor obtained by DEMO/parent in comparison with respect to NSGA-II.

�nding the necessary positions in points close to the initial
solutions.

�e results of using this evolutionary multiobjective
optimization algorithm for the design of UAVs-based 3D
antenna arrays are described in the next section.

4. Simulation Results

�e DEMO/parent was implemented to study the behavior
of the radiation pattern for UAVs-based 3D antenna arrays.
�e behavior of the radiation pattern is analyzed for%� = 8
antennas. For this array con�guration, theminimal Euclidean
distance between each pair of UAVs is restricted to 2 � on
a cubic space of 10 �; that is, the positions of the antenna
elements are considered to be 0 � ≤ �� ≤ 10 �, 0 � ≤
�� ≤ 10 �, 0 � ≤ �� ≤ 10 �. �e operation frequency is
2.4GHz. Since the UAVs formation 	ight could maintain any
geometric shape in space, the beam steering of the 3Dantenna
array is not considered in this design problem; that is, the
natural response of the array is considered to be optimized
in the cut of � = 0∘.

In the DEMO algorithm the value of � is set to 0.5. �e
stopping criterion is met when a number of iterations ITE =
1000 are reached. �e crossover probability is set to $ = 1.0.
�e population size is set to popSize = 200. �e algorithm
was executed 5 times and the consolidated front for each run
is considered.

Figure 3 shows the �nal solution of the array factor
obtained by DEMO/parent. �e array factor response of
the DEMO/parent algorithm is compared with respect to
a well-known algorithm the NSGA-II [15]. DEMO/parent
outperforms the array factor characteristics generated by the
NSGA-II by providing a better solution in terms of the SLL
and directivity. In this case, the solution of DEMO provides a
DIR = 9.31 dB and SLL = 4.43 dB, while NSGA-II provides a
DIR = 8.92 dB and SLL = 2.77 dB.

�e average computation time for the 5 runs of DEMO/
parent is approximately 455 minutes for 1000 iterations
employed. �e DEMO/parent algorithm was implemented
in Matlab in a PC with a Processor Xeon 3.20GHz (28GB

Table 1: Comparison of the performance in terms of the SLL and
DIR of 3D nonuniform antenna array with respect to the most
conventional arrays for UAVs formation 	ight.

Array con�guration Directivity (dB) Side lobe level (dB)

3D nonuniform (DEMO) 9.31 −4.43
3D nonuniform (NSGA-II) 8.92 −2.77
Cubic 8.91 −0.24
Linear 9.29 −2.74
Circular 8.16 −0.46
Planar 9.12 −0.47

of RAM 64 bits). In this case the time for NSGA-II is 411
minutes, very similar to DEMO algorithm.

In order to make a comparison of the performance of
3D nonuniform antenna array with respect to the most con-
ventional arrays for UAVs formation 	ight, Figures 4(a)–4(e)
illustrate design examples obtained for a planar array
(Figure 4(a)), a linear array (Figure 4(b)), a circular array
(Figure 4(c)), a cubic array (Figure 4(d)), and the case of 3D-
nonuniform optimized by DEMO/parent (Figure 4(e)). Each
design example uses 8 antenna elements with a maximum
aperture or maximum dimension of 10 � for each array.

�e response of the radiation pattern for the design exam-
ples (illustrated in Figures 4(a)–4(e)) is shown in Figures
5(a)–5(d). As it can be seen in Figures 5(a)–5(d) the response
of the radiation pattern for the 3Dnonuniform array provides
a better performance in terms of the side lobe level and
directivity with respect to the most conventional arrays for
UAVs formation 	ight. �e values of the SLL and DIR of
3D nonuniform antenna array and the conventional arrays
for UAVs formation 	ight are shown in Table 1. As shown
in Table 1, the 3D nonuniform antenna array optimized by
DEMO/parent outperforms the array factor characteristics
generated by the NSGA-II and the cubic, linear, circular, and
planar array con�gurations.

Certainly, if long distances between antenna elements are
considered, any relativemovement could have an e
ect.How-
ever, a nonuniform array distribution provides advantages to
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Figure 4: Distribution of 8 antennas on �ve di
erent array con�gurations for UAVs formation 	ight: (a) planar, (b) linear, (c) circular, (d)
cubic, and (e) 3D nonuniform optimized by DEMO/parent.
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Figure 5: Comparison of the gain or normalized radiation pattern of 3D nonuniform antenna array with respect to the most conventional
arrays for UAVs formation 	ight: (a) 3D array optimized versus uniform circular array, (b) 3D array optimized versus cubic array, (c) 3D
array optimized versus uniform linear array, and (d) 3D array optimized versus uniform planar array.

the system; that is, the possible errors are individual and their
consequences too by limiting the e
ect of each element to
its particular contribution, 1/8 of the received power for this
study case.

In this case, if the synchronization is achieved in phase
(the simplest case), all the UAVs transmit in the same time in
a synchronousway.�e determination of the relative position
will determine the coherent sum in the adequate direction.
Once the positions are determined, the control algorithm
employed or the concrete locationmethod will determine the
goodness of the array.

It is clear that the correct synchronization will be more
critical for disperse UAVs, and the pattern of the array will
be more unstable, although it must be considered that each
element contributes with a part to that stability.

From the results shown previously, a perspective is
illustrated for designing 3D nonuniform antenna arrays
for UAVs formation 	ight using DEMO. �e evolutionary
multiobjective algorithm eciently computes a set of antenna
element positions in order to provide a radiation pattern
withminimum SLL andmaximum directivity.�e optimized
design case can be used as a UAVs formation 	ight for

long distances communications.�emaximum performance
in terms of directivity and SLL could enlarge the range of
operation for UAVs communications. Communications at
long range for UAVs could be improved by design of 3D
nonuniform array as 	ight formation group.

5. Conclusions

�is paper illustrates how to model the design of UAVs-
based 3D antenna arrays for a maximum performance in
terms of directivity and SLL. Simulation results reveal that the
design of 3D antenna array with positions of eight antenna
elements obtained by DEMO/parent outperforms the array
factor characteristics generated by the NSGA-II by providing
a better solution in terms of the SLL and directivity. In this
case, the solution of DEMOprovides a DIR = 9.31 dB and SLL
= 4.43 dB, while NSGA-II provides a DIR = 8.92 dB and SLL
= 2.77 dB. Furthermore, the 3D nonuniform antenna array
optimized by DEMO/parent outperforms the array factor
characteristics generated by the NSGA-II and the cubic,
linear, circular, and planar array con�gurations. In this case,
these values of SLL and directivity for the optimized design
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case are achieved with very similar values of aperture (10 �)
with respect to the other array con�gurations.�e optimized
design case can be used as a UAVs formation 	ight for
enlarging the range of operation for UAVs communications
as well as improving performance in coordinated 	ight
formations without compromising the energy and weight
load of the UAVs.
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