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Abstract: The paper proposes an ultra-narrow band graphene refractive index sensor, consisting of a
patterned graphene layer on the top, a dielectric layer of SiO2 in the middle, and a bottom Au layer.
The absorption sensor achieves the absorption efficiency of 99.41% and 99.22% at 5.664 THz and
8.062 THz, with the absorption bandwidths 0.0171 THz and 0.0152 THz, respectively. Compared with
noble metal absorbers, our graphene absorber can achieve tunability by adjusting the Fermi level and
relaxation time of the graphene layer with the geometry of the absorber unchanged, which greatly
saves the manufacturing cost. The results show that the sensor has the properties of polarization-
independence and large-angle insensitivity due to the symmetric structure. In addition, the practical
application of testing the content of hemoglobin biomolecules was conducted, the frequency of first
resonance mode shows a shift of 0.017 THz, and the second resonance mode has a shift of 0.016 THz,
demonstrating the good frequency sensitivity of our sensor. The S (sensitivities) of the sensor were
calculated at 875 GHz/RIU and 775 GHz/RIU, and quality factors FOM (Figure of Merit) are 26.51
and 18.90, respectively; and the minimum limit of detection is 0.04. By comparing with previous
similar sensors, our sensor has better sensing performance, which can be applied to photon detection
in the terahertz band, biochemical sensing, and other fields.

Keywords: graphene; ultra-narrow band; refractive index sensor; terahertz waves

1. Introduction

Surface plasmons (SPs) are two-dimensional plane waves propagating along the
interface between metal and dielectric, which can confine subwavelength of the electric
field in the direction perpendicular to the dielectric for the purpose of controlling light [1,2].
Surface plasmon resonance (SPR), as an embranchment of SPs, is excited by the coupling
of photon-electron resonance when the wave vector of the incident light matches that
of the surface plasmon wave [3]. The resonance frequency can be tuned by changing
the geometric parameters and material of the metal layer, etc [4]. SPR-based biosensors
are popular research topics in recent years and have been playing an important role in
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biological diagnosis and environmental detection on account of its high sensitivity and real-
time response [5–8]. For example, one of the most common applications of SPR sensors is
the detection and characterization of different biochemicals, including antibodies and other
proteins [9,10]. The conventional SPR sensor is a three-layer dielectric structure proposed
by Kretschmann, where a metal film is usually attached to the beveled edge of the prism
to adsorb biological or chemical molecules [11]. Since the resonant frequencies of metals
must be in the visible spectral range, gold or silver is generally chosen as the material for
metal thin films. However, both materials have some defects that cannot be improved (for
example, silver is easily oxidized, reducing performance and life of devices; the absorption
capacity of biomolecules on gold is poor, and the sensitivity and performance of sensors is
limited), thus limiting the effective use of the sensing performance of the devices [12,13].
Therefore, it is essential to find a new material to enhance the sensing performance.

Electromagnetic metamaterial is a new type of artificially designed composite material
with a structural size smaller than the wavelength of external incidence, which has peculiar
optical properties such as a negative refractive index and a negative magnetic permeability.
In addition, the desired metamaterial properties can be achieved by designing subwave-
length structures [14,15]. Currently, one of the most promising types of metamaterials for
application is graphene, which is a lattice material composed of hexagonal carbon atoms.
Graphene has excellent optical characteristic such as high optical transparency, strong elec-
trical conductivity, and strong biosorption due to its special electronic structure [16–20]. It
has been found that the optical characteristics of graphene change significantly on the SPR
curve, and the graphene increases the sensitivity of the device to changes in the refractive
index compared to conventional metallic materials [21]. On the other hand, similar to
metals, graphene can support the propagation of surface plasma waves in the mid-infrared
and terahertz bands [22]. However, unlike conventional metal SPR, the plasma of graphene
is tunable and exhibits dynamic tunability with the method of adjusting the Fermi level
and relaxation time of graphene by electrostatic or doping [23–26]. Using the feature, the
actual manufacturing cost of the device is greatly saved, and the device performance can
be tuned more easily and quickly.

Based on the advantages of the above properties of graphene materials, it is possible
to achieve optimization of sensor performance. In real life, optical sensors of graphene-
based SPR can be used for bio-detection such as single cells, antigen antibodies, proteins
and so on [27–29]. In recent years, a wide variety of graphene absorption sensors with
different properties have been proposed. However, most of these absorbers are single-
frequency absorbers with complex fabrication steps and poor performance in sensing
detection [30–33]. Therefore, the emergence of a sensor with a simple configuration, dual-
frequency absorption and high refractive index sensitivity is an inevitable trend.

Terahertz waves lie between 0.1 and 10 THz, and are mainly excited by intramolecular
and intermolecular vibrations [34,35]. Although the terahertz wave band has not yet
been fully explored in the electromagnetic spectrum, it has now shown great potential for
applications in communication, security, medical, and military, and is of great research
value [36–39]. Actually, there has been some research progress in the combination of
graphene absorption sensors and terahertz waves in recent years, but the majority of
these works are only one resonance mode or do not achieve perfect absorption [40–42],
hindering the expansion of application ranges of devices. Based on this, a novel ultra-
narrow band graphene THz absorption sensor structure is designed in this paper. The
absorption efficiency of the absorber is first calculated by simulation, and its intrinsic
electric field distribution and impedance matching principle are analyzed. Then the effects
of the Fermi level, relaxation time, polarization angle, and incident angle on absorption
are discussed separately. Next, the sensing performance is analyzed and compared with
similar ultra-narrowband absorber structures. Finally, the sensor capability is investigated
for the detection of biomolecules in the biomedical field. The results show that the designed
sensor has dynamic tunability, polarization-independence, large-angle insensitivity, and
good sensing characteristics.
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2. Model Structure

Our proposed ultra-narrowband absorber structure consists of a patterned graphene
layer on the top, a dielectric layer of SiO2 in the middle, and a bottom metal layer, as shown
in Figure 1. The chosen dielectric SiO2 has a relative permittivity of εd = 1.4 and a thickness
of ts = 28 µm. The structural period of the basic cell is P = Px = Py = 15 µm. The bottom
metal layer adopts lossy Au with conductivity σ = 4.09 × 107 S/m and the ply ta = 0.5 µm,
which can block the transmission of terahertz waves efficiently [43,44]. The inner ring radii
r1 and r2 of the top patterned graphene are 1 µm and 3.5 µm, respectively, and the outer
ring radii r3 and r4 are 5 µm and 7 µm, respectively. Based on this structure, the simulation
was conducted by using FDTD (Finite difference time domain) solutions software [45].
During the process, in x- and y-directions, periodic boundary conditions are used. In the z-
direction, perfect matching layer (PML) 24 layers is applied. The simulation temperature in
our work is set to 300 K. In the simulations of this paper, the thickness of the monolayer
graphene is set to 1 nm. By modulating the material parameters of the graphene layer, it
was found that the optimal absorption efficiency of this absorber in the terahertz band was
achieved when EF = 0.7 eV and τ = 0.7 Ps.
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form of the absorber.

The total conductivity of graphene we used can be obtained from σg = σintra + σinter,
with σintra represents intra-band conductivity, σinter is inter-band conductivity. According
to Kubo formula, the conductivity of graphene can be described by [46,47]:

σintra =
ie2kBT

π}2(w + iτ−1)

{
EF

KBT
+ 2 ln

[
exp(− EF

KBT
) + 1

]}
(1)

σinter =
ie2

4π}2 ln
[

2|EF| − }(w + iτ−1)

2|EF|+ }(w + iτ−1)

]
(2)

where the charge of electron e = 1.6 × 10−19 C, KB refers to the Boltzmann constant, h̄
represents the approximate Planck constant, T, ω refers to the ambient temperature and
angular frequency of the incident wave, respectively. EF and τ refer to the Fermi level and
relaxation time of the graphene layer, respectively. The σinter of graphene is negligible since
EF >> h̄ω in the terahertz band, and the surface conductivity of graphene depends mainly
on intra-band contribution. Therefore, the total conductivity of graphene can be simplified
as Drude formula [48]:

σ(ω) =
ie2|EF|

π}2(ω + iτ−1)
(3)

From the above equation, it is clear that the graphene optoelectronic devices can
achieve active adjustability by means of regulating the Fermi level and relaxation time.
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The property simplifies the design of optoelectronic devices and increases the flexibility in
different cases.

3. Results and Analysis

As displayed in Figure 2, the patterned graphene absorber achieves ultra-narrow band
perfect absorption in the incident frequency ranges of 5~9 THz, and absorption efficiency
of 99.41% and 99.22% are achieved at 5.664 THz and 8.062 THz, respectively. And these
results were calculated and simulated by 3D-finite difference time domain method in FDTD
software. The Q-factors of two resonant frequencies, defined as Q = f0/∆f [49], are 171.64
and 196.63, respectively.

Sensors 2022, 22, 6483 4 of 13 
 

 

( ) ( )
2

2 1
= Fie E

i
σ ω

π ω τ −+
 (3)

From the above equation, it is clear that the graphene optoelectronic devices can 
achieve active adjustability by means of regulating the Fermi level and relaxation time. 
The property simplifies the design of optoelectronic devices and increases the flexibility 
in different cases. 

3. Results and Analysis 
As displayed in Figure 2, the patterned graphene absorber achieves ultra-narrow 

band perfect absorption in the incident frequency ranges of 5~9 THz, and absorption ef-
ficiency of 99.41% and 99.22% are achieved at 5.664 THz and 8.062 THz, respectively. 
And these results were calculated and simulated by 3D-finite difference time domain 
method in FDTD software. The Q-factors of two resonant frequencies, defined as Q = 
f0/Δf [49], are 171.64 and 196.63, respectively. 

 
Figure 2. Absorption spectra of ultra-narrow graphene absorber in the range of 5~9 THz with res-
onance frequency f and absorption bandwidth Bw marked on the graph. 

To calibrate the bandwidth level of the absorber, the parameter relative absorption 
bandwidth Bw is used, which is expressed as the ratio of total bandwidth to center fre-
quency, and defined as [50]: 

( )
( )

max min

max min

2 100%w

f f
B

f f
−

= × ×
+  (4)

where fmax and fmin are the highest and lowest frequencies, respectively. If Bw is less than 
1%, it is considered narrowband. If Bw is in the range of 1~25%, it is considered wide-
band, and if Bw is greater than 25%, it is considered ultra-wide band. In our work, the 
absorption bandwidths of the two resonant frequencies where the absorption efficiency 
remains above 80% are 0.0171 (5.6552~5.6723 THz) and 0.0152 (8.0551~8.0703 THz), re-
spectively. Therefore, according to equation (4), the relative absorption bandwidths Bw at 
the two resonant frequencies were calculated to be 0.0301% and 0.0188%, respectively. 
Bw is much less than 1%, so the absorber is ultra-narrow band absorption. The total ab-
sorption bandwidths are 0.033 THz and 0.041 THz, respectively. 

To investigate the intrinsic mechanism of perfect absorption of the absorber, we set 
separate frequency-domain field monitors at 5.664 THz and 8.062 THz respectively in x-y 
plane first, then observed and plotted the cross-sectional electric field distribution dia-
gram, as demonstrated in Figure 3. It is worth noting that the electric field we calculated 
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resonance frequency f and absorption bandwidth Bw marked on the graph.

To calibrate the bandwidth level of the absorber, the parameter relative absorption
bandwidth Bw is used, which is expressed as the ratio of total bandwidth to center frequency,
and defined as [50]:

Bw = 2× ( fmax − fmin)

( fmax + fmin)
× 100% (4)

where fmax and fmin are the highest and lowest frequencies, respectively. If Bw is less than
1%, it is considered narrowband. If Bw is in the range of 1~25%, it is considered wideband,
and if Bw is greater than 25%, it is considered ultra-wide band. In our work, the absorption
bandwidths of the two resonant frequencies where the absorption efficiency remains above
80% are 0.0171 (5.6552~5.6723 THz) and 0.0152 (8.0551~8.0703 THz), respectively. Therefore,
according to equation (4), the relative absorption bandwidths Bw at the two resonant
frequencies were calculated to be 0.0301% and 0.0188%, respectively. Bw is much less than
1%, so the absorber is ultra-narrow band absorption. The total absorption bandwidths are
0.033 THz and 0.041 THz, respectively.

To investigate the intrinsic mechanism of perfect absorption of the absorber, we set
separate frequency-domain field monitors at 5.664 THz and 8.062 THz respectively in x-y
plane first, then observed and plotted the cross-sectional electric field distribution diagram,
as demonstrated in Figure 3. It is worth noting that the electric field we calculated was
normalized, different colors represented different intensities of electric field, and the electric
field became stronger and stronger from blue to red. The intensity values of electric field
corresponding to different colors is presented in the color bar of the electric field. Obviously,
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the electric field distribution patterns at the two perfect absorption bands were different.
For the electric field at 5.664 THz, it was mainly distributed at the upper and lower sides of
the outer ring. And at 8.062 THz, not only the graphene SPR of outer ring excited an electric
field, but also the inner ring contributed the electric field component. It can be attributed to
the coupling of the vibrational frequency of the patterned graphene layer with the terahertz
waves in these two frequency bands and providing electric dipole resonance, forming
different resonance modes that greatly consumed the energy of the incident light, and the
ultra-narrow graphene absorber achieved a perfect match with the free-space impedance in
the two resonance frequency bands, finally realizing the perfect absorption of the absorber.
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The impedance matching principle is a significant theoretical basis to achieve per-
fect absorption of the absorber. The equivalent impedance Z can be calculated by the
Equation (5) [51]:

Z =

√√√√ (1 + S11)
2 − S2

21

(1− S11)
2 − S2

21

(5)

Here, S11 and S21 were the scattering parameters related to the reflectance and trans-
mittance, respectively. Derived from the effective impedance matching theory, we could
obtain the equivalent impedance Z of the absorber from the simulation results, as suggested
in Figure 4. When the effective impedance Z of the absorber matched with the free space,
i.e., the real part (Re(Z)) of the effective impedance Z of the system had a value close to 1,
and the imaginary part (Im(Z)) was close to 0, so the reflection (S11 = 0) could be greatly de-
creased, for which a perfect absorption was acquired. According to Figure 4 and combined
with the absorption spectra, it could be found that the absorber achieved a perfect match
with the free-space impedance at the resonance wavelengths of 5.664 THz and 8.062 THz,
and obtained 99.41% and 99.22% perfect absorption, respectively. The values of real parts
of impedance at the two absorption peaks were 0.042 and 0.087, the values of the imaginary
part of impedance were 2.16 and −0.096. The resonance around 8.5 THz in the absorption
response was because that the impedance we discussed was effective impedance, which
was different from impedance. When the Re(Z) and Im(Z) of the effective impedance Z
deviated from 1 and 0, respectively, the absorption efficiency decreased sharply. It proved
that the proposed graphene SPR ultra-narrow perfect absorption was due to the impedance
matching at the frequencies of 5.664 THz and 8.062 THz.
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ultra-narrow SPR absorber.

Based on the tunability of graphene materials, the changes of absorption spectra of the
absorbers were next investigated by regulating the Fermi level and relaxation time of the
graphene layers, respectively, as shown in Figure 5. The equation for the external voltage
regulation of graphene Fermi level EF is as follows [52,53]:

EF = VF

√
πε0εrVg/e0ts (6)

where Vg, e0, VF and ts is external voltage, electron charge, Fermi velocity and the ply
of SiO2 layer, respectively. Among them, Vg can be modulated by adjusting the external
voltage or chemical doping. Besides, ε0 and εr denotes the vacuum permittivity and
relative permittivity, respectively. Figure 5a demonstrates the blue shift of both absorption
peaks of the absorber as the Fermi level incremented from 0.50 eV to 0.9 eV, and the
modulation ranges of the resonant frequencies are 5.389~5.951 THz and 7.680~8.474 THz
with modulation depths of 0.562 THz and 0.794 THz, respectively. The optimal absorption
efficiency is achieved as EF = 0.7 eV.
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τ= EFv/
(

ev2
F

)
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where EF, ν is the Fermi level, carrier mobility of graphene, respectively. e is the electronic
charge, and VF = 106 m/s. The absorption spectra of the absorber illustrated in Figure 5b
as relaxation time τ increased from 0.7 Ps to 5 Ps. The results showed that the absorption
efficiency changed gradually and the resonance frequency remained unchanged. Another
interesting phenomenon that appears in Figure 5b is the significant fluctuations around
the two absorption peaks, which can be attributed to the variation of relaxation time
of graphene. The carrier’s plasmonic oscillations can be enhanced with the increases
of τ, and the strong plasmonic oscillations will interact with the surrounding medium,
resulting in fluctuations around the two absorption peaks. The modulation ranges of the
absorption efficiency were 87.83% to 99.41% and 95.45% to 99.22%, and the modulation
depths were 11.58% and 3.77%, respectively. Therefore, graphene absorbers could achieve
the tunability of the absorption spectrum by regulating the Fermi level and relaxation time
of the graphene layer with the geometry of absorber unchanged, which had a higher value
than conventional metal absorbers in more actual fields.

In real life, vertical incidence plane wave was just one of these cases. The real situation
was more complicated and volatile. Therefore, the studies on the insensitivity to oblique
incidence of absorber were necessary [54–57]. Based on this, the variation of the sweep
spectra of the absorber under TE (Transverse Electric) polarization and TM (Transverse
Magnetic) polarization by changing the incident angle from 0◦ to 70◦ were investigated.
The TM polarization and TE polarization were defined in terms of whether the electric
or magnetic field only had a transverse component. The electromagnetic waves were
propagating along the z- axis, when the electric field only had a horizontal component
in the x-y plane, it was called TE waves. When the magnetic field only had a horizontal
component in the x-y plane, it was called TM waves [58]. Figure 6a is the sweep spectra of
the absorber under TE and TM polarization with the incident angle of the source increasing
from 0◦ to 70◦. The results revealed that when the incident angle was in the range of 0◦−70◦,
the absorption of TE polarization and TM polarization was the same, i.e., the absorber has
the polarization-independent property, and a similar conclusion can also be obtained from
the fitted spectrograms of TE and TM in Figure 6b. In addition, the phenomena in Figure 6a
also manifest that the ultra-narrow absorber was insensitive to the incidence angle in the
ranges of 0◦ to 70◦.
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The sensor capability is explored in Figure 7. The curves in Figure 7a suggest that
the frequency bands of the two resonance modes were blue-shifted and the absorption
efficiency decreased as n increased, which, indicating the resonance modes, were sensitive
to the refractive index. We then measured the sensor capability quantitatively by calculating
the parameters of S (Sensitivity) and FOM (Figure of Merit). According to the sensitivity
Formula (8) [59,60]:

S = ∆ f /∆n (8)
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where ∆f and ∆n are the changes in resonance frequency and ambient refractive index,
respectively. Figure 7b fits the sensitivity calculated for the two resonance frequencies of
this absorber, and the sensitivity at mode A (at 5.664 THz) and mode B (at 8.062 THz) were
875 GHz/RIU and 775 GHz/RIU, respectively. Then, the FOM of our sensor was obtained
from Formula (9) [61–63]:

FOM = S/FWHM (9)

where S (Sensitivity) had been given above, and FWHM (Full Width at Half Maximum)
was the full width of the half-peak at the resonance frequency. The value of FWHM
represents the peaks’ width in the position of the half of absorption efficiency, and can be
calculated according to the simulation data. Figure 7c,d calculate FWHM and FOM at the
two resonance frequencies, respectively, and these results show that the maximum FOM of
mode A = 26.51 and the maximum FOM of mode B = 18.90. In addition, the detection factor

P=FWHM/S (10)

is introduced to assess the sensing performance of our sensor quantitatively since the limit
of detection (LOD) is proportional to FWHM/S [64]. And according to formula (10), the
calculated detection factors P of the two resonance modes were 0.04, 0.05, respectively. The
smaller detection factor exhibited a higher refractive index sensitivity and better sensing
characteristics of our sensor. After comparing with the works of those who came before us,
our absorption sensor had the advantages of dual-band absorption, dynamic tunability,
high refractive index sensitivity, and good sensing performance, as shown in Table 1 [65–68].
The results demonstrated that the absorber had better sensing performance and broader
application prospects. The results demonstrated that the absorber had better sensing
performance and broader application prospects.
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Table 1. Comparison of various performance of similar absorption sensors.

References [65] [66] [67] [68] Presented

Resonance mode One Two Three Two Two
Wave band 0.508 THz 0.4–0.8 THz 1–2.4 THz 23–36 THz 5–9 THz

Couple mode Guided
Resonance EIT-like Plasmon PIT Plasmon

Tunability No No Yes Yes Yes
Sensitivity

(GHz/RIU) 23.08 96.2 152.5 26.6 875

FOM(1/RIU) ~ 7.8 4.26 ~ 26.51

Finally, we investigated the sensing performance of our absorption sensor applied in
real time. Figure 8 suggests the changing curves when the sensor was designed to measure
the content of hemoglobin molecules in organisms [69]. The functionalization of the sensing
surface was adsorption. Meanwhile, the problem of nonspecific adsorption was considered.
When detecting hemoglobin molecules with our sensor, modifying the sensor with anti-
protein nonspecific adsorption material was very significant. The material could effectively
prevent nonspecific adsorption of protein on the surface of the device, so as to improve the
compatibility of our sensors. Commonly used anti-protein nonspecific adsorption materials
are PEG, PEG derivative, and polysaccharide, etc [70]. The shift of frequency is a sign of
refractive index changes. And when our sensor detected materials, a different content of
hemoglobin molecules can cause different frequency offset, showing the different refrac-
tive index of materials. Then, we can find the corresponding content of the hemoglobin
molecule by consulting the refractive index libraries of substance. Thus, different content of
hemoglobin molecules can be determined. When the content of hemoglobin biomolecules
increases successively from 10 g/L (n = 1.34), 20 g/L (n = 1.36), 30 g/L (n = 1.39) to 40 g/L
(n = 1.43), the two resonance modes both show a blue shift. The resonance frequencies of
first resonance mode shifts from 5.604 THz to 5.587 THz, and the resonance frequencies of
second resonance mode shifts from 8.009 THz to 7.993 THz. Compared with the former
works, for example, Pang et al. experimentally designed a sensing strategy for specific
recognition of hemoglobin with the limit of detection (LOD) as low as 2 [71]. Our sensor
achieved the minimum limit of detection of 0.04. These phenomena prove that the sensing
system we developed had good sensing performance in specific applications, and it is
expected to be applied in more practical fields.
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4. Conclusions

In this paper, ultra-narrow perfect absorbers in the 5–9 THz band were obtained based
on the single-layer graphene SPR structure. By designing the structure, perfect absorption
was obtained at 5.664 THz and 8.062 THz with absorption efficiencies of 99.41% and 99.22%
and absorption bandwidths of 0.0171 THz and 0.0152 THz, respectively. The relative
absorption bandwidths Bw at the two resonant frequencies were calculated to be 0.0301%
and 0.0188%, and the Q-factors were 171.64 and 196.63, respectively. Associating with the
dynamic tunability of graphene, the resonant frequency bands can be modulated efficiently
by adjusting the Fermi level and relaxation time of the top graphene. The polarization-
independence and wide-angle insensitivity characteristics of the absorber were studied
by changing the polarization mode and incidence angle of the incident light. Finally,
the sensing characteristics of the absorption sensor were investigated. The calculated
sensitivities of the sensor were 875 GHz/RIU and 775 GHz/RIU, quality factors FOM
(Figure of Merit) were 26.51 and 18.90, and the minimum limit of detection was 0.04. In
addition, the practical application of testing the content of hemoglobin biomolecules was
conducted, and the results show that our sensor had good sensing performance, which can
be expected to be applied in optical detection, medical imaging, biosensing, and other fields.
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