
Design of User-Driven Interfaces Using Petri Nets
and Objects

Philippe A. Palanque 1, R6mi Bastide 1, Louis Doarte 2 aud Cluistophe Sibertin-Blanc 3

I: L.I.S., Universit~ Toulouse I
Place Anatolr France, 31042 Toulouse Cedex, France

2: D.I.R.O., Universit6 de Montreal
C.P. 6128 succursale A, Montr6al (Qu6bec) H4A 3L4, Canada

3: U.F.R. Informatique, Universit6 Toulouse I
Place Anatole France, 31042 Toulouse Cedex, France

Abstract. This paper presents a survey of three formalisms that are used for
modelling the dialogue of user-driven interfaces: state diagrams, events and Petri
nets. Petri nets are found to be the best suited formalism in this area, even if
they lack structure. In order to address this problem, the usefulness of the object-
oriented approach is discussed, and we present a formalism, called Petri Nets
with Objects (PNO), that integrates both object-oriented and Petri nets
approaches. A three-step method for building such models, consisting in
defining the object classes, definiting the presentation and modelling the
application's dialogue, is presented, and a detailed example illustrates the
application of this method. Finally, we present an overview of the benefits that
can be expected from the use of the PNO formalism in dialogue modelling.

1 Introduction

"Pne state of the art in human-computer interaction is nowadays what is commonly latown
as event-driven, direct manipulation interfaces. The event-driven nature of that kind of
interface puts file control of dialogue in tide hands of the user, and makes its specification,
validation and implementation very error-prone. Using such an interface, the user can hold
multi-threaded dialogues including several control flows, what may raise subtle
synchronisation or resource sharing problems. These characteristics of diaslogue in user-
driven interfaces make them resemble real-thne or reactive systems.
In classical interfaces, the control is always held by the application, which requests input
from the user. The set of possible inputs at a given time is very small and the dialogue
structure, which corresponds to the hierarchy of menus, is quite simple to manage.
Designing such applications has been studied for a long time and both formalisms and
design techniques have been involved in design methods such as USE [1] and AXIAL [2].
In USE the dialogue structure of the application is modelled by state diagrums while in
AXIAL only the sequence of screens attd the hierarchy of menus are modelled.
User-driven interfaces are reactive systems (by opposition to transformational ones [3]):
they are passive regarding to their enviromnent, and react to stimuli they receive by
triggering internal operations. In a general way, the application's control is external, i.e.
the application does not define its own sequence of procedures, but only replies to the
invocations it receives. Moreover, the application never asks the user for input (this
would imply a blocking dialogue) but for an imperative confirmation or when a
supplementary parameter is absolutely needed. Of course, the designer must minimise that
kind of interaction in order to respect the user-driven nature of the interface.

570

The difference between the control structure of an application featuring a conventional
interface and a user-driven one is depicted in Figures 1 mid 2.

Process input I $
] Displayr sult I

i Read inp tb --
i ead input ,,..or ,,,p,,t /

No

,Display result I

~ Y @ No

Fig. 1. Control structure of a conventional interactive application

Conventional applications feature a recursive transformational structure (obtain data,
process data and display result) where tile process part can invoke recursively the same
structure (see Figure 1). On die opposite, a user-driven application features a fiat structure
built on a set of event-handlers procedures which do not invoke each other. A dedicated
module, called the event manager (conceptually external to the application), manages an
event queue, aud ensures the interpretation of events by dispatching them to the event-
handler which is able to process them. In most user interface management systems
(UIMSes), the event loop and the event queue are transparent to tile designer, who is only
concerned by the design of the event-handlers and by the association of these procedures
with the different widgets (see Figure 2).
Conventional applications feature a centralised control and distributed inputs. The control
is located in the stack of functions call, and it is possible, by examining this stack, to
determine the history of calls which lead to the current state of the application.
User-driven applications feature a distributed control and centralised inputs. Only the event
loop catches inputs and all the event-haudlers synchronise themselves by accessing in read
and write on a set of variables defining the current state of the dialogue.
We can surmnarise the difference between conventional applications and user-driven ones
by stating that for the former the control is based on the history of inputs, while for the
latter the control is based on the state of the dialogue [4].
The hardest problem to be solved by the dialogue designer is precisely the modelling of
the state of the application, which determines the evolution of the dialogue between the
user and the application. Particularly, the designer must address the lack of control
structure by using a formalism that allows to model both the states and the reactive nature
of the application.

571

(Event Queue~)'~

-,'-I oa o o.t

Fig. 2. Control structure of a user-driven application

Control f low

........... ![llh.. Data f low

_ ~] Process-event 1

. - ~ Process-event 2

ialogue~'~
. I ~ ~ state

 ooo ovo., - . -
: /

In spite of the widespread use of such interfaces, the design methods or tools available
today are surprisingly weak at handling their more important aspect: the design of the
dialogue structure. According to the Seeheim architecture [5], this part of tile interface is
responsible for the syntactical analysis of the interaction language. In addition, [6 pp.
141] the dialogue structure must manage "the set of possible states and their relations".
Various formalism such as context-free grmnmars [7, 8], state-transition diagrams and
related formalisms [1, 9, 10] have already been investigated for modelling the dialogue
structure in human-computer interaction. In tile field of event-driven interfaces, these
formalisms do not help much in modelling concurrent activities (particularly necessary in
multi-threaded dialogues), do not provide structuring constructs, and do not allow tile
handling of data structures. Several extensions are available that tackle some of these
drawbacks, but most often at the sacrifice of their formal definition. We quote Van Biljon
[11] and say that "some investigation into extensions of finite state machines to enable
them to provide this power led to the realisation that Petri nets already do this".
Petri nets have also been used for a long time in the area of user interface design [12, 13,
14]. Although they handle well concurrency and data structure (at least for the high-level
models), Petri nets also used to lack structuring constructs. One of the alms of the Petri
Nets with Objects (PNO) formalism, that we use for dialogue modelling, is precisely to
allow the application of the object-oriented structuring constructs to high-level Petri nets.

Section 2 presents a survey of three formalisms that are used for modelling the dialogue of
user-driven interfaces: state diagrams, events and Petri nets. Petri nets are found to be the
best suited formalism in this area, even if they lack structure. In order to address this
problem, the usefulness of the object-oriented approach is discussed. In section 3 we
describe a complete example of a simple application featuring a user-driven interface.
Section 4 details a three-step method based on the PNO formalism for building such an
application. The last section (section 5) presents an overview of the benefits that can be
expected from the use of this method.

572

2 W h y d o w e N e e d P e t r i N e t s a n d O b j e c t s

This part justifies the use of Petri nets for the modelling of reactive systems by
comparing this approach with the state-based and event-based approaches, which are the
most eonunonly used in user interface design. Then, the need for object-based modelling
is considered.

2.1 State Versus Events in Model l ing : the Benefits of Using Petri
N e t s

A reactive system is characterised by tiuee components:
�9 tile set of its possible states, denoted by S, from which the current state is denoted

by s c and the initial state by s 0,

�9 tile set of events to which it reacts, denoted by E, from which the incoming event is
denoted by e i,

�9 the set of actions it can perform, denoted by A.
The system's response to an event is to perform one of its actions, which may result in a
change of state. The action performed depends on both the incoming event and the current
state (a = f(sc,ei)), and the state reached (s r) after the occurrence of the action depends on
both the previous state and the incoming event (s r = g(s c, el)). f is called file reaction
function while g is the side-effect function.
All the formalisms for tile description of reactive systems aim at defining S, E, A, f and
g in a more or less explicit way, often providing a graphical notation designed to enhance
the readability of models and generally putting the emphasis on one of the definition's
components.
In tile rest of this section, we use a toy example to illustrate the difference between event-
based and state-based modelling, and show how Petri nets have the advantages of both.
The system considered as example is defined as follows:

�9 S = {S1, $2, $3, $4}, s o = S1
�9 E = {Evl, Ev2},

�9 A = {A1, A2, A3, A4}, �9 g : S x E -> S, such that
�9 f : S x E -> A, such that g(S1,Evl) = g(S3,Ev2) = $2,

f(S1,Evl) = A1, g(S2,Evl) = g(S4,Ev2) = $3,
f(S2,Evl) = f(S3,Evl) = A2, g(S3,Evl) = $4,
ffS4,Ev2) = f(S3,Ev2) = A3, g(S2,Ev2) = S1.
f(S2,Ev2) = A4,

a. State-Based Modell ing
In state-based modelling, the emphasis is put on the system's states, which are explicitly
enumerated. The best suited formalisms for this approach are state diagrams and their
extensions (statecharts [15], augmented transition networks [16]).
In state-based modelling, the system is represented by a quadruplet <S, O, T, so> where:

�9 S and s o are as stated above,
�9 O is the set of state changing operators,
�9 T is the transition function such that T : S x O --> S.

573

In finite state automata (FSA), O = B and T is equivalent to the side-effect function,
whicll means that the reaction function is not modelled. Models derived from FSA take
into account the reaction function by defining O such that O ___ E x A.
Tile system considered as example may be modelled by a derived FSA as shown in fig. 3.

Ev2/A4 Ev2/A3 Ev2/A3

Fig. 3. State-based modelling of the toy example

Tile emphasis put on the system's states is highlighted by the graphical notation, since
each state has a dedicated graphical representation. On the opposite, the elements of the
sets A and E are duplicated in tile model (e.g. the association Evl/A2 is duplicated
between states $2-$3 and $3-$4; association Ev2/A3 is also duplicated), and those sets
may only be built by sorting out the inscriptions on the arcs. Moreover, if one wants to
know from which state a given operation may occur, every state of the model must be
studied. Likewise, the set of actions possibly triggered by a given event is not explicited,
and must be built in the same way.
When there is much concurrency in tile system, this leads to an automaton with a very
large ntunber of states, aud the replication of events and actions hinders the readability and
the conciseness of tile model.

b. Event-Based Modelling
Most current UIMSes rely on an event-based approach where file focus is on the set of
possible events to which the system h a s ~ respond. In practice, events and event-handlers
are embedded in general purpose progralmning languages [17].
In event-based modelling, the system is represented by a quintuplet <V, E, A, O, v0>
where:

�9 E and A are the Event and Action sets as stated above,
�9 V is a set of state variables,
�9 v 0 is the initial value of the state variables,

�9 O is a set of operators such that O c_ E x C x A x SI where C is a set of conditions
(boolean expressions on the state variables) and SI is a set of instructions consisting
solely of affectations to state variables.

The system considered as example may be modelled with an event formalism, as shown in
Figure 4.

V = {v}, v 0 = 1 and v : integer.
O = { <Evl, v=l, A1, v:=2>,

<Evl, v=2, A2, v:=3>,
<Evl, v=3, A2, v:=4>,
<Ev2, v--4, A3, v:=3>,
<Ev2, v=3, A3, v:=2>,
<Ev2, v=2, A4, v:=l>}.

Fig. 4. The toy example modelled by an event formalism

574

The event-handlers as defined in the introduction may be deduced trivially from this
description. There is one event-handler for each event Ev i in E, built by selecting from O
all the quadruplets in which Ev i appears. The event-handler for Evl is shown in Figure 5.

Handler Evl is begin
Case v of

1 : A1; v:=2;
2 : A2; v:=3;
3 : A2; v:=4;

Faldcase
EndHandler;

Fig. 5. An example of an event handler

With such a formalism, the events appear very clearly. However, it is difficult to know
which events may trigger a given action. This can only be achieved by searching for that
action in all the event-handlers. Moreover, it is almost impossible to ensure that the
action may actually be triggered, because the triggering depends on a state whose
teachability is unknown. The set of all the possible states of the system is not explicit;
we can only know that this set of states is a subset of the cartesian product of the state
variables' domains. Of course, this problem does not appear in this toy example since
there is only one state variable.
Finally, as in tile state-based approach, actions are duplicated hi the models.

c. Petri N e t s - B a s e d Mode l l ing
Petri nets are often ranked amongst the state-based formalisms, which may be due to a
hasty assimilation witi~ finite state automata.
A Petri net is defined by a quintuplet <P, T, Pre, Post, M> where:

�9 P is the set of places,
�9 T is the set of transitions,
�9 Pre is the forward incidence function representing the input arcs of the transitions,
�9 Post is the backward incidence function representing the output arcs of the

transitions,
�9 M is the distribution function (such that M : P -> H) of tokens in the places,

stating the number of tokens in each place of the net.
Due to space reasons a more complete definition of Petri nets is not given, but the
interested reader may refer to [18, 19].

When modelling a reactive system with Petri nets, there is a need to represent the interface
between the system being modelled and its environment. Two approaches may be
followed to this end:

�9 consider a subset of T as interface transitions, which are triggered by the
environment,

�9 consider a subset of P as interface places, in which the enviromnent may deposit
tokens.

The former is not suited to the modelling of reactive systems because it considers that the
environment directly triggers actions in the system, whereas the latter allows to represent
the fact that an incoming event may trigger different actions in the system. Moreover, in
this second approach each event is directly modelled in the system by the deposit of a
token in an interface place.
The system taken as example may be modelled by a Petri net as shown in Figure 6.

575

Fig. 6. Modelling by a Petri net of the toy example

Events are explicited in file model by places without incoming arcs called event-places.
Contrarily to the state-based approach, events are not duplicated in tile model. Actions are
represented by transitions; they also appear explicitly and are not duplicated, contrarily to
both state-based and event-based modelling.
The set of states is not directly shown, preventing the model from combinatory
explosion. Instead, tile structure of the set of states is modelled by the state-places (the
ones which are not event-places). In tile toy example there are three state-places - P1, P2
and P3 - but actually four different states: (1, 0, 0), (0, 2, 0), (0, 1, 1) and (0, 0, 2).
However, Petri net theory allows for the easy calculation of the set of slates, which is
provided by the net's reachability graph.
The reaction function (associating events to actions) is clearly stated by the arcs from
event-places to transitions. This function is explicit neither in the state-based nor in tile
event-based approach. Finally, the side-effect function is described by the arcs between the
transitions and tile state-places. Let's remark that Petri nets allow to model a reaction
function which is not deterministic (and also provide mathematical tools to check if it is
or not), but as expected, any side-effect function will be deterministic.

2.2 Benefits of the Object-Oriented Approach in the Area of HCI
Modelling

Object-oriented modelling is particularly well suited to the area of reactive systems
because it allows to consider such a system "from the outside", as a black box offering to
its environment a set of operators and encapsulating a private state.
In reactive systems' modelling, tile operators (often called methods) are mapped to the
events, and tim encapsulated state as well as tile state changes may be modelled either by
an automaton, by the set of variables of an event system or by a Petri net.
Moreover, the fact that most current UIMSes are object-based highlights file interest of
following an object-oriented approach throughout tile design of user-driven interfaces.

Building on the conclusions of this analysis, we have built a model, called Petri Nets
with Objects (PNO), which combines the benefits of both objects and Petri nets [20]. The

576

example given in tile next section illustrates how this formalism may be used ill tile
modelling of the dialogue of user-driven interfaces.

3 An Example of PNO for the Modelling of Dialogue

First, we present the informal specification of the application's user interface. Then we
define the window displayed to the user.I

3.1 Informal Specifications

The example chosen to illustrate the use of tile formalism is a fairly common one: an
editor for tuples in a relational database table whose attributes are (Identifier, X, Y). This
editor allows adding new tuples into tile table, deleting tuples, selecting tuples from those
already stored and changing their value. Of course, our goal is to provide a fully user-
driven dialogue, as opposed to menu-driven interactions.
The overall look of tile interface is shown in Figure 7. Three different areas can be
distinguished in that window:

�9 The editing area in which the attributes of a selected tuple may be edited through tile
use of standard interface components (radio buttons, check box, simple-line entry
field).

�9 A scrollable list (list box) shows the tuples of tile table, presenting them by their
distinctive attribute Identifier (a primary key). Items in this list may be selected by
clicking on them with the mouse.

�9 A commmld zone in which database operations (addition, deletion) may be
launched by clicking on command pushbuttons.

-l-I, Tupl e edi tar

, ,enti,i.r: I't.m 04 [
Attribute x- ~I 0 2 03

Attribute y- I~

[RePlace] [Reset 1

[Add } [I)e, lett. ~}

I tem 02 (~
I tem 03 iii]iZ

i t . m 0 5 i!!ili
i tem 06 @

Fig. 7. Overall look of the interface window

The actions available to file user change through time and depend on file slate of file
dialogue. Those dialogue rules are expressed here informally. One of the goals of

577

modelling by PNOs is to make formal and non ambiguous such informal requirements
expressed in natural language:

�9 It is forbidden to Select a tuple from the table when another one is being edited.
�9 It is forbidden to Quit the application while the user is editing a tuple. In any other

case it must be possible to quit.
�9 It is forbidden to Delete a tuple whose value has been modified by the user.
�9 After modification of the current tuple, only the actions Add, Replace and Reset are

available.
�9 The user must be able to act on the items of the edit area at any time.
�9 Only tuples that satisfy tile integrity constraints may be added to the table.

3.2 Modelling of Dialogue Using PNOs

The tuple editor's dialogue is presented in Figure 8. It is modelled by a PNO: this
provides a concise, yet formal and complete specification of the control structure of the
application. Tile modelling power of the formalism allows to describe a lot of constraints,
otherwise hard to describe in natural language. This PNO must be read in the following
way:
.nitialisation
The initial marking of the net depends on the actual contents of the table at the lime tile
window is opened. Figure 8 shows an initial marking: the places list, selected and edited
are empty, m~d the place default contains tile template for the first item to be edited. If the
table was not empty, one tuple would be automatically selected while all the others would
be in the place list.
Processing
In this initial state, only the two services edit and add (or transitions T1 and T2) may
OCeUL

Tile occurrence of tile edit service removes the template token from the place default,
modifies its value and puts it back in the same place.
The occurrence of tile add service depends on the precondition o.correct, which checks
integrity constraints on the object, eventually producing a modal error dialogue. If tile
precondition is verified, the token is moved from the place default to the place selected and
the tuple is stored in the table.
From then on, the table has one tuple. As tile place selected is the only one holding a
token, only tile delete (transition T3) and edit (transition T4) services may occur. The
occurrence of the delete service puts tile PNO back in its initial state. The occurrence of
the edit service results in the creation of a local copy of tile tuple and the deposit of the
original (o) and the copy (dup) in the place edited.
While the place edited holds a token, several services may occur:.

�9 Modify tile value of the copy by the occurrence of the service edit (T8).
�9 Replace the original by the copy through the service replace ('1"5).
�9 Cancel all changes by the occurrence of the service reset (T7); tile copy is then

deleted.
�9 Add tile edited tuple to the table (T6); the added tuple becomes selected, while the

orighml one becomes unselected.
If this cycle (e d i t / a d d) is performed a number of times, we will reach the state
corresponding to Figure 7, where tile place selected is empty, the place edited holds one
token - a tuple with ident = "Item 04" -, and the place list contains at least tokens
corresponding to tuples items 02, 03, 05, 06. This picture shows three activated
pushbuttons, which correspond to the operations currently allowed on the table. The

578

active or inactive state of tile pushbuttons is fully determined by the possible occurrence
of the transitions they relate to in the PNO. For example, the delete button is not
activated since place selected holds no token.

Edited: <o, dup: Tuple>;
Selected, List, Default: <o : Tuple> ;

f o
.1o.. i I self.destroy] dup.setvalue

:)> <o.duD> ~n dlln,~ TM <o,dup> , up <o,dup> <o,dup> T8

/ O~duP ~/t'c~ ~ "

up.store o.display I I dup.store~176 ! dup := o.copy
I dup.setvalue dup.destroy J

I 7 T4 <dup>

I r- - v , : . , ,~'%./ I I ~._ K-i-~'~---~
i , I ,e,ee, I <o>.L I <k> _\iosto,e I<O>

<o> ! H o

T111 d e l e t ~ i �9 delete I 3 <o> O
~ "~u;''',.~l x. dest roy I ix-destroy I / ~r

o.display o.create T-I I ~ellt l

D I o,setvalue I

Fig. 8. The tuple editor's dialogue

The small places linked to transitions by squared arrows represent the event-places related
to the environment. Tile occurrence of events am deposited as tokens in those places when
the user acts on a widget of the presentation. The name of the event is not inscribed in the
place in order to alleviate the diagram; instead it is inscribed in tile transition(s) handling
this event, since there is a one-to-one correspondence between events a id tile name of
services. Several transitions bear the same name when an event is carried out in a different
maturer, according to the circmnstance of its occurrence.
Figure 9 shows both file list of widgets (and events they may generate) associated to flae
tuple editor, and how file user can request a user service. All the widgets of the editing area

Widget

PushButton Add

trigger tile edit service since their purpose is only to inform tile dialogue that an editing
action has been performed.
All the transitions of the PNO presented in Figure 8 are related to event-places, which
means that the action can only occur when the enviromnent (in this case the user) triggers
them. This is a characteristic of reactive systems which are fully controlled by their
environment.

PushButton Reset

Use~saction Event / Triggered
service

Click Add
PushButton Delete Click Delete
PushButton Replace Click

Click
Replace
Reset

Click PushButton Close=Box
RadioButton 1

Quit
Edit Click

RadioButton 2 Click Edit
RadioButton 3 Click Edit

Any (Click r Ke~,boardr ...)
Click
Click

Fig. 9. Activation function

EntryText
CheckBox
ListBox

Edit
Edit

Select

579

4 A Design Method of User Interface Dialogue

In this section we will present a way for building the PNO modelling the dialogue of a
user-driven interface.
The highly reactive nature of a user-driven application has a great influence on the way of
designing it. For that reason, the method presented here differs greatly from usual Petri
nets design methods, which generally aim at modelling transformational applications.
The methodology for the design of user-driven interfaces, using file PNO formalism, is
divided in three steps:

4.1 Define the Object Classes

identify tile objects handled by the application: in the example, there is only one
class of objects, namely the tuples;
define file operations that the objects must perform (or that may be applied to the
object, according to its active or passive nature); in tile example tile operations
which may be applied to a tuple are: create, copy, destroy, display, correct, setvalue,
and store;
define file objects' life cycles: the life cycle of an object states what are the operation
sequences that the object may perform while keeping a consistent state and value;
thus it gives the dynamic aspects of the object: how it behaves and how it may be
used. A FSA is well suited for modeUing an object's life cycle; the FSA's states are
the states the object may be in. A transition from Sl to s2 labelled by an operation
OP means that OP may be performed when the object is in state Sl, and that
performing OP results in state s2. A transition not labelled by any operation

580

corresponds to a change of state which may occur while no object's operation is
performed (only passive objects which are fully controlled may have such
transitions). The life cycle of a tuple shown in Figure 10 shows five states for an
object: not existent, created, in the list, selected and substitutable. A tuple arrives ill
the created state by the create operation (cf. transition T3 of Figure 8) or by the copy
operation (transition T4) and then it may be stored in the table. Once it is in the
table, a tuple may become either in the list or selected or substitutable (a copy of tile
tuple is made whenever it goes from the selected to the substitutable state).

store ~rd~t;t,,mh~la destroy . ~ . . _ ~

store I I des oy/ I create
value / " destroy copy

_ _ . , olec,.

(i n t h e h ' s t ~ _ ~ , s t ~ " ~ s~re ~ ~

Fig. 10. Life cycle of a tuple modelled by a FSA

4.2 Define the Presentation

The design of the presentation is generally achieved using an UIMS and consists in
drawing the layout of the different windows of the application. This step defines both the
characteristics (type, rifle, size, etc.) of tile windows and the list of widgets they contain.
The virtual dialogue space of tile application may then be automatically computed from
the presentation. This virtual dialogue space is the set of all possible dialogues that could
be expressed by a user provided with such a presentation if the availability of the
window's widgets was not constrained by file state of the application. It consists of a
service-transition having an event-place for each widget of each window featured in the
presentation. Figure 11 presents the dialogue space of the tuple editor example, where
each transition corresponds to a widget defined in the presentation shown in Figure 7.

4.3 Model the Application's Dialogue

The design of the application's dialogue consists of associating tile virtual dialogue space
together with the sets of states of tile objects handled by the application (that is: what can
be performed) while taking into account additional constraints expressed by the
application's specifications (such constraints may be of various concerus: organisarion,
ergonomics, data integrity, etc.).

581

The set of states of file application is the synchronisation of the life cycles of the objects
it handles, since the application's objects are processed in such a way that ti~e constraints
relating their respective value and state are fulfilled.

or-,
j j I eP e I

j~. <x>

<y> [select

,,,/ I.o.

Oelete

I i e~ I
Fig. 11. Dialogue space of the Tuple-editor exanple

The tuple editor example features a single object class, Tuple. Any number of tuple
occurrences may be simul~leously managed, willl synchronisation constraints such as the
following: when a selected tuple becomes substitutable, another tuple passes from not
existent to created by the copy operation; if the substitutable tuple is destroyed or goes to
the in the list state then the created one becomes selected by the store operation, and if the
substitutable tuple comes back to tile selected state then the created tuple is destroyed.
Another synchronisation constraint is that whenever an in the list tuple becomes selected
then a selected tuple becomes in tire list. The synchronisation of the life cycles results in
a PNO for which each place corresponds to one state of an object or to tile gathering of
several states of several objects (e.g. tile Edited place of Figure 8 results from the merging
of the substitutable and created states). The transitions of this PNO are related to these
places according to state changes, and their actions are tile operations labelling the
transitions of the life cycles.

Now, the PNO modelling tile dialogue results from the merging of the dialogue space and
the life cycle FSAs of the different object classes. In addition to file services at the user's
disposal, some transitions of the FSA are related to an event-place and become service-
transitions. Taking into account the additional constraints of the application's
specification, some transitions corresponding to unauthorised skate changes are eliminated
(although these state changes match the consistence of objects), some places may be added
in order to restrict the transition enabling, aud some transitions may be guarded by a
precondition.

5 Expected Benefits of the Method

PNOs are a powerful formalism offering precious features such as validation, graphical
representation, simulation and static analysis.

582

5.1 Design Validation

Using PNOs allows the designer to use mathematieal properties of Petri nets for
validation of the models. A lot of results are available in that area ([21, 17] among others)
and we give some examples of results which may be used for event-driven interfaces.

�9 Service availability: Deadlocks are easy to avoid in a conventional, application-
driven style of dialogue. However, in an event-driven dialogue, where the flow of
control cannot be predicted because the user carries on concurrent dialogue flows
with several parts of the application, the designer should have a way to ensure that
whatever state the application is in, any command of the application will have a way
to become available again through a given sequence of commands. In our design,
this problem is directly connected to liveness in Petri net theory: for a given
operation to be accessible, at least one of the transitions it relates to should be live
in the PNO. Liveness of several trm|sitions can be verified through static analysis of
the models. For example, it can be proved that the edit service is always available
to the user during the use of the application.

�9 Limiting the number of occurrences: It is frequently meaningful to specify
limits on the number of occurrences in a model in order to represent physical limits
of the real system. That kind of restriction is related to boundedness in Petri net
theory. A place in a Petri net is k-bounded if there exists an integer k such that the
number of tokens in this place cannot exceed k. For example, given the initial
marking stated in Figure 8, place Edited is 1-bounded, thus establishing the desirable
property that only one tuple can be acted upon at a time. This shows how bounds
checking can help enforcing that the models have the right semantical properties.

�9 Initial state reachability: While modelling a system, it may be important to
ensure that the initial state is always reachable. This is related to analysis of
transition sequences in Petri net theory. Given an initial marking, a net is
reinitialisable if there is a finite sequence of transition occurrences that can bring it
back to its initial state. In our design, this means for the user the ability to
reproduce his initial working environment, which might be desirable in most cases.
In the example, this initial marking is a token in the Default place.

�9 Verification of specific properties: The techniques for the calculation of
invariants [20, 22] allow to check that the model fulfils some properties expected of
the real system. For instance, mutual exclusion may be proved in the PNO pictured
in Figure 8: there is an S-invafiant on places Default, Selected and Edited, ensuring
that the total number of tuples held by these places cannot exceed their initial
marking (in this ease, one tuple, initially in place Default).

The design properties detailed above may be verified by static analysis on the PNO. That
kind of validation allows evaluation of the quality of the model before implementation.
The global formal validation of this example may be found in [23].

5.2 Prototyping an Application

Available UIMSes mainly focus on the definition of the external "look and feel" of the
interface and provide only minimal definition of the dynamics of the dialogue. The
prototyping possibilities are thus rather poor because they restrict the definition of
dynamics to a mere sequencing of screens, like in former character-based applications.
Actually, the most complicated part of the dynmnics occurs inside each application
window, as the sequence of windows is usually user-driven.

583

What UIMSes lack is a formal definition of the application's dialogue structure. The PNO
formalism is formal and yet fully executable. Many tools, called "Petri nets interpreters"
or "token-game players" and allowing tile execution of Petri nets, have already been built
[241.
Such an interpreter must be tightly integrated into an UIMS supporting tile PNO
formalism. Then both the internal dialogue state (provided by tile PNO) and the external
representation (provided by the presentation par0 would be automatically supported.

5.3 Modelling Power of the PNO Formalism

Problems usually encountered in modelling are particularly due to tile lack of modelling
power of traditional formalisms. PNOs, with tile numerous extensions (emission rules,
emptying arcs, macro-places, macro-transitions) and the increase of modelling power riley
feature (preconditions, inhibitor arcs, object structuring), allow to model systems that
would otherwise be hard to specify. Modelling the behaviour of an event-driven
application with PNOs offers several benefits:

�9 A full description of the interface control structure, including causal dependencies
between the application's services, i.e. dealing fully with file concurrency inside tile
application and between several applications.

�9 A single formalism may be used for different purposes: for drawing tile application
specifications, for validating the models, for prototyping them, and even for
executing them with a PNO interpreter.

�9 Tile graphic (but still formal) modelling allows an easy communication between
designers, programmers and users. Moreover, the descriptions are explicit as all tile
possible states and state-changing operations are clearly shown to the reader.

�9 Modelling tile behaviour of a system may be done from tile point of view of states
(what ,are the reachable states and the transitions between them) or from the point of
view of operations (what are the operations and their pre/post-conditions). Both of
these points of view are useful for different purposes, and the PNO formalism
enables to adopt one as well as tile other.

6 Conc lus ion

This paper has presented a survey of three dialogue formalisms, state diagrams, events and
Petri nets. By opposition to Green's survey [16] comparing grammars, transition
networks and events, and affirming that events is the most powerful formalism, we have
highlighted in our study tile fact that Petri nets is the most concise, powerful and explicit
formalism. Moreover, it is well known that Petri nets prevent the combinatorial
explosion that is typical of state diagrams.
The advantages of using an object-oriented approach has also been discussed and tile use of
a formalism, called Petri Nets with Objects (featuring both object-oriented and Petri nets
approaches), is then introduced.
An example of dialogue design using tile PNO formalism has been fully presented and a
three step method (define tile object classes, define the presentation, and model tile
application's dialogue) for building such models has been introduced.
Finally, we have presented an overview of benefits which can be expected from a
specification of dialogue using tile PNO formalism.
Tile example given in this paper describes an application featuring only one window.
Generally, user-driven applications will have many windows conununicating with each

584

others. A methodology based on the principles presented here is fully described in [25].
This methodology encapsulates each window in an objet called Interactive Cooperative
Object (ICO). An ICO is composed of attributes, methods, behaviour and presentation;
tile behaviour is modelled by a PNO such as described in the example of this paper, while
the presentation consists of both the layout of the window and the activition function.
Automatic implementation of ICO models by compilation has already been studied but
has not been presented here for space reasons [23].
Actually our efforts are on the building of a development environment supporting our
method. This enviromnent will integrate a graphical presentation editor, a syntactic editor
allowing the edition of PNOs, several analysis modules allowing to prove design
properties of fl~e models and a PNO interpreter acting as a run-time kernel.

R e f e r e n c e s

1 A.I. Wassennan: Extending state/transition diagrmns for the specification of human-
computer interaction. IEEE Transactions on Software Engineering 11, 8 (August
1985), 699-713

2 P. Pellaumail: Guide d'utilisation d'AXIAL. Tomes 1 et 2. F_xlitions d'organisation,
1986

3 A. Pnueli: Applications of temporal logic to tile specification and verification of
reactive systems: a survey of current trends. Lecture Notes hi Computer Science
224. Springer-Verlag, Berlin, 1986, pp. 510-584

4 W. Cowan, M. Wein: State versus history in user interfaces. In: D. Diaper et al.
(eds.): Human-Computer Interaction - INTERACT90. North-HoUand, 1990

5 G.E. Pfaff (ed.): Proceedings of IFIP/EG Workshop on User Interface Management
Systems (November 1983, Seeheim, FRG). Spdnger-Vedag, Berlin,.1985

6 J. Coutaz: Interfaces homme-ordinateur : Conception et r6alisation. Dunod
Infonnatique, Paris, 1990

7 A.V. Aho, R. Sethi, J.D. Ullman: Compilers: principles, techniques and tools.
Addison-Wesley, Reading, Mass., 1986

8 D.R. Olsen: Syngraph: A graphical user interface generator. Computer Graphics 17,
3 (July 1983), 43-50

9 D. Kieras, G. Poison: A generalized transition network representation for interactive
systems. In: Proceedings of CHr83, Human Factors in Computing Systems. 1983,
pp. 103-106

10 R.J.K. Jacob: A specification language for direct-manipulation user interfaces. ACM
Transactions on Graphics 5, 4 (October 1986), 283-317

11 W.R. Van Biljon: Extending Petri nets for specifying man-machine dialogues.
International Journal of Man-Machine Studies 28 (1988), 437-455

12 M. Zizman: A System for Computerisation of Office Procedures. Ph.D. thesis,
Warton School of Management, 1977

13 H. Oberquelle: Human-machine intercation and role/function/action-nets. In: W.
Brauer, W. Reisig, G. Rosenberg (eds.): Petri nets: applications and relationships to
other models of concurrency. Lecture Notes in Computer Science 254 & 255.
Springer-Verlag, Berlin, 1986, pp. 171-190

14 B. Roudaud, V. Lavigne, O. Lagnean, E. Minor: SCENAR1OO: A new generation
UIMS. In: D. Diaper et al. (eds.): Human-Computer Interaction - INTERACT'90.
North-Holland, 1990, pp. 607-612

585

15 D. Harel: Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8, 231-274 (1987)

16 W.A. Wood: Transition network gr~anmars for natural language analysis.
Communications of tile ACM 13, 10 (October 1970), 591-606

17 M. Green: A survey of three dialogue models. ACM Transactions on Graphics 5, 3
(July 1986), 244-275

18 J.L. Peterson: Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Englewood Cliffs, N.J., 1981

19 G.W. Brains: R6seaux de Petri : Th6orie et pratique. Tome 1 : th6orie et analyse ;
Tome 2 : mod61isation et applications. Masson, Pads, 1983

20 C. Sibertin-Blanc: High level Petri nets with dam structure. In: 6th European
Workshop on Petri Nets and Applications (June 1985, Espoo, Finland)

21 K. Lautenbauch: Linear algebraic techniques for place/transition nets. In: W. Brauer,
W. Reisig, G. Rosenberg (eds.): Petri nets: applications and relationships to other
models of concurrency. Lecture Notes in Computer Science 254 & 255. Springer-
Verlag, Berlin, 1986, pp. 142-167

22 K. Jensen: Coloured Petri nets and the invadant method. In: A. Pagnoni mid G.
Rozenberg (eds.): Applications mid Theory of Petri Nets, Informatik-Fachberichte
66. Springer-Verlag, Berlin, 1983

23 P. Palmique, C. Sibertin-Blanc and R. Bastide: Validation du dialogue par analyse
d'une sp6cification fond6e sur les r6seaux de Petri. In Actes IHM'92 Quatri~mes
joum6es sur ring6nierie des interfaces homme-machine (30 nov., 1 et 2 d6c. 1992,
Paris). Telecom Paris, 1992, pp. 121-127

24 F. Feldbrugge, K. Jensen: Petri net tools overview. In: W. Brauer, W. Reisig, G.
Rosenberg (eds.): Petri nets: applications and relationships to other models of
concurrency. Lecture Notes in Computer Science 254 & 255. Springer-Verlag,
Berlin, 1986, pp. 20-61

25 P. Palanque, Mod~lisatiou par Objets Coop6ratifs Interactifs d'interfaces homme-
machine dirig6es par rutilisateur. Th~se de doctorat de rUniversit6 Toulouse I
(France), 1992

26 R. Bastide mid P. Palanque: Petri nets with objects for the design, validation and
prototyping of user-driven interfaces. In: D. Diaper et al. (eds.): Human-Computer
Interaction - INTERACT'90. North-Holland, 1990, pp. 625-631

