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Abstract. This paper presents a survey of three formalisms that are used for 
modelling the dialogue of user-driven interfaces: state diagrams, events and Petri 
nets. Petri nets are found to be the best suited formalism in this area, even if 
they lack structure. In order to address this problem, the usefulness of the object- 
oriented approach is discussed, and we present a formalism, called Petri Nets 
with Objects (PNO), that integrates both object-oriented and Petri nets 
approaches. A three-step method for building such models, consisting in 
defining the object classes, definiting the presentation and modelling the 
application's dialogue, is presented, and a detailed example illustrates the 
application of this method. Finally, we present an overview of the benefits that 
can be expected from the use of the PNO formalism in dialogue modelling. 

1 Introduction 

"Pne state of  the art in human-computer interaction is nowadays what is commonly latown 
as event-driven, direct manipulation interfaces. The event-driven nature of  that kind of 
interface puts file control of dialogue in tide hands of the user, and makes its specification, 
validation and implementation very error-prone. Using such an interface, the user can hold 
multi-threaded dialogues including several control flows, what may raise subtle 
synchronisation or resource sharing problems. These characteristics of  diaslogue in user- 
driven interfaces make them resemble real-thne or reactive systems. 
In classical interfaces, the control is always held by the application, which requests input 
from the user. The set of  possible inputs at a given time is very small and the dialogue 
structure, which corresponds to the hierarchy of menus, is quite simple to manage. 
Designing such applications has been studied for a long time and both formalisms and 
design techniques have been involved in design methods such as USE [1] and AXIAL [2]. 
In USE the dialogue structure of the application is modelled by state diagrums while in 
AXIAL only the sequence of screens attd the hierarchy of menus are modelled. 
User-driven interfaces are reactive systems (by opposition to transformational ones [3]): 
they are passive regarding to their enviromnent, and react to stimuli they receive by 
triggering internal operations. In a general way, the application's control is external, i.e. 
the application does not define its own sequence of procedures, but only replies to the 
invocations it receives. Moreover, the application never asks the user for input (this 
would imply a blocking dialogue) but for an imperative confirmation or when a 
supplementary parameter is absolutely needed. Of  course, the designer must minimise that 
kind of interaction in order to respect the user-driven nature of  the interface. 
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The difference between the control structure of an application featuring a conventional 
interface and a user-driven one is depicted in Figures 1 mid 2. 

Process input I $ 
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Fig. 1. Control structure of a conventional interactive application 

Conventional applications feature a recursive transformational structure (obtain data, 
process data and display result) where tile process part can invoke recursively the same 
structure (see Figure 1). On die opposite, a user-driven application features a fiat structure 
built on a set of event-handlers procedures which do not invoke each other. A dedicated 
module, called the event manager (conceptually external to the application), manages an 
event queue, aud ensures the interpretation of events by dispatching them to the event- 
handler which is able to process them. In most user interface management systems 
(UIMSes), the event loop and the event queue are transparent to tile designer, who is only 
concerned by the design of the event-handlers and by the association of these procedures 
with the different widgets (see Figure 2). 
Conventional applications feature a centralised control and distributed inputs. The control 
is located in the stack of functions call, and it is possible, by examining this stack, to 
determine the history of calls which lead to the current state of the application. 
User-driven applications feature a distributed control and centralised inputs. Only the event 
loop catches inputs and all the event-haudlers synchronise themselves by accessing in read 
and write on a set of variables defining the current state of the dialogue. 
We can surmnarise the difference between conventional applications and user-driven ones 
by stating that for the former the control is based on the history of inputs, while for the 
latter the control is based on the state of the dialogue [4]. 
The hardest problem to be solved by the dialogue designer is precisely the modelling of 
the state of the application, which determines the evolution of the dialogue between the 
user and the application. Particularly, the designer must address the lack of control 
structure by using a formalism that allows to model both the states and the reactive nature 
of the application. 
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Fig. 2. Control structure of a user-driven application 
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In spite of the widespread use of such interfaces, the design methods or tools available 
today are surprisingly weak at handling their more important aspect: the design of the 
dialogue structure. According to the Seeheim architecture [5], this part of tile interface is 
responsible for the syntactical analysis of the interaction language. In addition, [6 pp. 
141] the dialogue structure must manage "the set of possible states and their relations". 
Various formalism such as context-free grmnmars [7, 8], state-transition diagrams and 
related formalisms [1, 9, 10] have already been investigated for modelling the dialogue 
structure in human-computer interaction. In tile field of event-driven interfaces, these 
formalisms do not help much in modelling concurrent activities (particularly necessary in 
multi-threaded dialogues), do not provide structuring constructs, and do not allow tile 
handling of data structures. Several extensions are available that tackle some of these 
drawbacks, but most often at the sacrifice of their formal definition. We quote Van Biljon 
[11] and say that "some investigation into extensions of finite state machines to enable 
them to provide this power led to the realisation that Petri nets already do this". 
Petri nets have also been used for a long time in the area of user interface design [12, 13, 
14]. Although they handle well concurrency and data structure (at least for the high-level 
models), Petri nets also used to lack structuring constructs. One of the alms of the Petri 
Nets with Objects (PNO) formalism, that we use for dialogue modelling, is precisely to 
allow the application of the object-oriented structuring constructs to high-level Petri nets. 

Section 2 presents a survey of three formalisms that are used for modelling the dialogue of 
user-driven interfaces: state diagrams, events and Petri nets. Petri nets are found to be the 
best suited formalism in this area, even if they lack structure. In order to address this 
problem, the usefulness of the object-oriented approach is discussed. In section 3 we 
describe a complete example of a simple application featuring a user-driven interface. 
Section 4 details a three-step method based on the PNO formalism for building such an 
application. The last section (section 5) presents an overview of the benefits that can be 
expected from the use of this method. 
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2 W h y  d o  w e  N e e d  P e t r i  N e t s  a n d  O b j e c t s  

This part justifies the use of  Petri nets for the modelling of  reactive systems by 
comparing this approach with the state-based and event-based approaches, which are the 
most eonunonly used in user interface design. Then, the need for object-based modelling 
is considered. 

2.1 State Versus  Events  in Model l ing : the Benefits  of  Using Petri 
N e t s  

A reactive system is characterised by tiuee components: 
�9 tile set of its possible states, denoted by S, from which the current state is denoted 

by s c and the initial state by s 0, 

�9 tile set of  events to which it reacts, denoted by E, from which the incoming event is 
denoted by e i, 

�9 the set of  actions it can perform, denoted by A. 
The system's response to an event is to perform one of its actions, which may result in a 
change of state. The action performed depends on both the incoming event and the current 
state (a = f(sc,ei)), and the state reached (s r) after the occurrence of the action depends on 
both the previous state and the incoming event (s r = g(s c, el)). f is called file reaction 
function while g is the side-effect function. 
All the formalisms for tile description of reactive systems aim at defining S, E, A, f and 
g in a more or less explicit way, often providing a graphical notation designed to enhance 
the readability of  models and generally putting the emphasis on one of the definition's 
components. 
In tile rest of  this section, we use a toy example to illustrate the difference between event- 
based and state-based modelling, and show how Petri nets have the advantages of  both. 
The system considered as example is defined as follows: 

�9 S = {S1, $2, $3, $4}, s o = S1 
�9 E = {Evl, Ev2}, 

�9 A = {A1, A2, A3, A4}, �9 g : S x E -> S, such that 
�9 f :  S x E -> A, such that g(S1,Evl) = g(S3,Ev2) = $2, 

f(S1,Evl) = A1, g(S2,Evl) = g(S4,Ev2) = $3, 
f(S2,Evl) = f(S3,Evl) = A2, g(S3,Evl) = $4, 
ffS4,Ev2) = f(S3,Ev2) = A3, g(S2,Ev2) = S1. 
f(S2,Ev2) = A4, 

a. State-Based Modell ing 
In state-based modelling, the emphasis is put on the system's states, which are explicitly 
enumerated. The best suited formalisms for this approach are state diagrams and their 
extensions (statecharts [15], augmented transition networks [16] . . . .  ). 
In state-based modelling, the system is represented by a quadruplet <S, O, T, so> where: 

�9 S and s o are as stated above, 
�9 O is the set of state changing operators, 
�9 T is the transition function such that T : S x O --> S. 
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In finite state automata (FSA), O = B and T is equivalent to the side-effect function, 
whicll means that the reaction function is not modelled. Models derived from FSA take 
into account the reaction function by defining O such that O ___ E x A. 
Tile system considered as example may be modelled by a derived FSA as shown in fig. 3. 

Ev2/A4 Ev2/A3 Ev2/A3 

Fig. 3. State-based modelling of the toy example 

Tile emphasis put on the system's states is highlighted by the graphical notation, since 
each state has a dedicated graphical representation. On the opposite, the elements of the 
sets A and E are duplicated in tile model (e.g. the association Evl/A2 is duplicated 
between states $2-$3 and $3-$4; association Ev2/A3 is also duplicated), and those sets 
may only be built by sorting out the inscriptions on the arcs. Moreover, if one wants to 
know from which state a given operation may occur, every state of the model must be 
studied. Likewise, the set of actions possibly triggered by a given event is not explicited, 
and must be built in the same way. 
When there is much concurrency in tile system, this leads to an automaton with a very 
large ntunber of states, aud the replication of events and actions hinders the readability and 
the conciseness of tile model. 

b. Event-Based Modelling 
Most current UIMSes rely on an event-based approach where file focus is on the set of 
possible events to which the system h a s ~  respond. In practice, events and event-handlers 
are embedded in general purpose progralmning languages [17]. 
In event-based modelling, the system is represented by a quintuplet <V, E, A, O, v0> 
where: 

�9 E and A are the Event and Action sets as stated above, 
�9 V is a set of state variables, 
�9 v 0 is the initial value of the state variables, 

�9 O is a set of operators such that O c_ E x C x A x SI where C is a set of conditions 
(boolean expressions on the state variables) and SI is a set of instructions consisting 
solely of affectations to state variables. 

The system considered as example may be modelled with an event formalism, as shown in 
Figure 4. 

V = {v}, v 0 = 1 and v : integer. 
O = { <Evl, v=l, A1, v:=2>, 

<Evl, v=2, A2, v:=3>, 
<Evl, v=3, A2, v:=4>, 
<Ev2, v--4, A3, v:=3>, 
<Ev2, v=3, A3, v:=2>, 
<Ev2, v=2, A4, v:=l>}. 

Fig. 4. The toy example modelled by an event formalism 
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The event-handlers as defined in the introduction may be deduced trivially from this 
description. There is one event-handler for each event Ev i in E, built by selecting from O 
all the quadruplets in which Ev i appears. The event-handler for Evl is shown in Figure 5. 

Handler Evl is begin 
Case v of 

1 : A1; v:=2; 
2 : A2; v:=3; 
3 : A2; v:=4; 

Faldcase 
EndHandler; 

Fig. 5. An example of an event handler 

With such a formalism, the events appear very clearly. However, it is difficult to know 
which events may trigger a given action. This can only be achieved by searching for that 
action in all the event-handlers. Moreover, it is almost impossible to ensure that the 
action may actually be triggered, because the triggering depends on a state whose 
teachability is unknown. The set of all the possible states of the system is not explicit; 
we can only know that this set of states is a subset of the cartesian product of the state 
variables' domains. Of course, this problem does not appear in this toy example since 
there is only one state variable. 
Finally, as in tile state-based approach, actions are duplicated hi the models. 

c. Petri  N e t s - B a s e d  Mode l l ing  
Petri nets are often ranked amongst the state-based formalisms, which may be due to a 
hasty assimilation witi~ finite state automata. 
A Petri net is defined by a quintuplet <P, T, Pre, Post, M> where: 

�9 P is the set of places, 
�9 T is the set of transitions, 
�9 Pre is the forward incidence function representing the input arcs of the transitions, 
�9 Post is the backward incidence function representing the output arcs of the 

transitions, 
�9 M is the distribution function (such that M : P -> H) of tokens in the places, 

stating the number of tokens in each place of the net. 
Due to space reasons a more complete definition of Petri nets is not given, but the 
interested reader may refer to [18, 19]. 

When modelling a reactive system with Petri nets, there is a need to represent the interface 
between the system being modelled and its environment. Two approaches may be 
followed to this end: 

�9 consider a subset of T as interface transitions, which are triggered by the 
environment, 

�9 consider a subset of P as interface places, in which the enviromnent may deposit 
tokens. 

The former is not suited to the modelling of reactive systems because it considers that the 
environment directly triggers actions in the system, whereas the latter allows to represent 
the fact that an incoming event may trigger different actions in the system. Moreover, in 
this second approach each event is directly modelled in the system by the deposit of a 
token in an interface place. 
The system taken as example may be modelled by a Petri net as shown in Figure 6. 
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Fig. 6. Modelling by a Petri net of the toy example 

Events are explicited in file model by places without incoming arcs called event-places. 
Contrarily to the state-based approach, events are not duplicated in tile model. Actions are 
represented by transitions; they also appear explicitly and are not duplicated, contrarily to 
both state-based and event-based modelling. 
The set of states is not directly shown, preventing the model from combinatory 
explosion. Instead, tile structure of the set of states is modelled by the state-places (the 
ones which are not event-places). In tile toy example there are three state-places - P1, P2 
and P3 - but actually four different states: (1, 0, 0), (0, 2, 0), (0, 1, 1) and (0, 0, 2). 
However, Petri net theory allows for the easy calculation of the set of slates, which is 
provided by the net's reachability graph. 
The reaction function (associating events to actions) is clearly stated by the arcs from 
event-places to transitions. This function is explicit neither in the state-based nor in tile 
event-based approach. Finally, the side-effect function is described by the arcs between the 
transitions and tile state-places. Let's remark that Petri nets allow to model a reaction 
function which is not deterministic (and also provide mathematical tools to check if it is 
or not), but as expected, any side-effect function will be deterministic. 

2.2 Benefits of the Object-Oriented Approach in the Area of HCI 
Modelling 

Object-oriented modelling is particularly well suited to the area of reactive systems 
because it allows to consider such a system "from the outside", as a black box offering to 
its environment a set of operators and encapsulating a private state. 
In reactive systems' modelling, tile operators (often called methods) are mapped to the 
events, and tim encapsulated state as well as tile state changes may be modelled either by 
an automaton, by the set of variables of an event system or by a Petri net. 
Moreover, the fact that most current UIMSes are object-based highlights file interest of 
following an object-oriented approach throughout tile design of user-driven interfaces. 

Building on the conclusions of this analysis, we have built a model, called Petri Nets 
with Objects (PNO), which combines the benefits of both objects and Petri nets [20]. The 
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example given in tile next section illustrates how this formalism may be used ill tile 
modelling of the dialogue of user-driven interfaces. 

3 An Example of PNO for the Modelling of Dialogue 

First, we present the informal specification of the application's user interface. Then we 
define the window displayed to the user.I 

3.1 Informal Specifications 

The example chosen to illustrate the use of tile formalism is a fairly common one: an 
editor for tuples in a relational database table whose attributes are (Identifier, X, Y). This 
editor allows adding new tuples into tile table, deleting tuples, selecting tuples from those 
already stored and changing their value. Of course, our goal is to provide a fully user- 
driven dialogue, as opposed to menu-driven interactions. 
The overall look of tile interface is shown in Figure 7. Three different areas can be 
distinguished in that window: 

�9 The editing area in which the attributes of a selected tuple may be edited through tile 
use of  standard interface components (radio buttons, check box, simple-line entry 
field). 

�9 A scrollable list (list box) shows the tuples of tile table, presenting them by their 
distinctive attribute Identifier (a primary key). Items in this list may be selected by 
clicking on them with the mouse. 

�9 A commmld zone in which database operations (addition, deletion . . . .  ) may be 
launched by clicking on command pushbuttons. 

-l-I, Tupl e edi tar  

, ,enti,i.r: I't.m 04 [ 
Attribute x- ~I 0 2  03 

Attribute y- I~ 

[RePlace] [ Reset 1 

[ Add } [I)e, lett. ~} 

I tem 02 (~ 
I tem 03 iii]iZ 

i t .  m 0 5 i!!ili 
i tem 06 @ 

Fig. 7. Overall look of the interface window 

The actions available to file user change through time and depend on file slate of  file 
dialogue. Those dialogue rules are expressed here informally. One of  the goals of  
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modelling by PNOs is to make formal and non ambiguous such informal requirements 
expressed in natural language: 

�9 It is forbidden to Select a tuple from the table when another one is being edited. 
�9 It is forbidden to Quit the application while the user is editing a tuple. In any other 

case it must be possible to quit. 
�9 It is forbidden to Delete a tuple whose value has been modified by the user. 
�9 After modification of the current tuple, only the actions Add, Replace and Reset are 

available. 
�9 The user must be able to act on the items of the edit area at any time. 
�9 Only tuples that satisfy tile integrity constraints may be added to the table. 

3.2 Modelling of Dialogue Using PNOs 

The tuple editor's dialogue is presented in Figure 8. It is modelled by a PNO: this 
provides a concise, yet formal and complete specification of the control structure of the 
application. Tile modelling power of the formalism allows to describe a lot of constraints, 
otherwise hard to describe in natural language. This PNO must be read in the following 
way: 
.nitialisation 
The initial marking of the net depends on the actual contents of the table at the lime tile 
window is opened. Figure 8 shows an initial marking: the places list, selected and edited 
are empty, m~d the place default contains tile template for the first item to be edited. If the 
table was not empty, one tuple would be automatically selected while all the others would 
be in the place list. 
Processing 
In this initial state, only the two services edit and add (or transitions T1 and T2) may 
OCeUL 

Tile occurrence of tile edit service removes the template token from the place default, 
modifies its value and puts it back in the same place. 
The occurrence of tile add service depends on the precondition o.correct, which checks 
integrity constraints on the object, eventually producing a modal error dialogue. If tile 
precondition is verified, the token is moved from the place default to the place selected and 
the tuple is stored in the table. 
From then on, the table has one tuple. As tile place selected is the only one holding a 
token, only tile delete (transition T3) and edit (transition T4) services may occur. The 
occurrence of the delete service puts tile PNO back in its initial state. The occurrence of 
the edit service results in the creation of a local copy of tile tuple and the deposit of the 
original (o) and the copy (dup) in the place edited. 
While the place edited holds a token, several services may occur:. 

�9 Modify tile value of the copy by the occurrence of the service edit (T8). 
�9 Replace the original by the copy through the service replace ('1"5). 
�9 Cancel all changes by the occurrence of the service reset (T7); tile copy is then 

deleted. 
�9 Add tile edited tuple to the table (T6); the added tuple becomes selected, while the 

orighml one becomes unselected. 
If this cycle ( e d i t / a d d )  is performed a number of times, we will reach the state 
corresponding to Figure 7, where tile place selected is empty, the place edited holds one 
token - a tuple with ident = "Item 04" -, and the place list contains at least tokens 
corresponding to tuples items 02, 03, 05, 06. This picture shows three activated 
pushbuttons, which correspond to the operations currently allowed on the table. The 
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active or inactive state of  tile pushbuttons is fully determined by the possible occurrence 
of the transitions they relate to in the PNO. For example, the delete button is not 
activated since place selected holds no token. 

Edited: <o, dup: Tuple>; 
Selected, List, Default: <o : Tuple> ; 

f o  
.1o.. i I self.destroy ] dup.setvalue 

:)> <o.duD> ~n dlln,~ TM <o,dup> , up <o,dup> <o,dup> T8 

/ O~duP ~/t'c~ ~ "  

up.store o.display I I dup.store~176 ! dup := o.copy 
I dup.setvalue dup.destroy J 

I 7 T4 <dup> 

I r- - v , : . ,  ,~'%./ I I ~._ K-i-~'~---~ 
i , I  ,e,ee, I <o>.L I <k> _\iosto,e I<O> 

<o> ! H o 

T111 d e l e t ~  i �9 delete I 3 <o> O 
~ "~u;''',.~l x. dest roy I ix-destroy I /  ~r 

o.display o.create T-I I ~ellt l 

D I o,setvalue I 

Fig. 8. The tuple editor's dialogue 

The small places linked to transitions by squared arrows represent the event-places related 
to the environment. Tile occurrence of events am deposited as tokens in those places when 
the user acts on a widget of the presentation. The name of the event is not inscribed in the 
place in order to alleviate the diagram; instead it is inscribed in tile transition(s) handling 
this event, since there is a one-to-one correspondence between events a id  tile name of 
services. Several transitions bear the same name when an event is carried out in a different 
maturer, according to the circmnstance of its occurrence. 
Figure 9 shows both file list of widgets (and events they may generate) associated to flae 
tuple editor, and how file user can request a user service. All the widgets of the editing area 
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PushButton Add 

trigger tile edit service since their purpose is only to inform tile dialogue that an editing 
action has been performed. 
All the transitions of the PNO presented in Figure 8 are related to event-places, which 
means that the action can only occur when the enviromnent (in this case the user) triggers 
them. This is a characteristic of reactive systems which are fully controlled by their 
environment. 

PushButton Reset 

Use~saction Event / Triggered 
service 

Click Add 
PushButton Delete Click Delete 
PushButton Replace Click 

Click 
Replace 
Reset 

Click PushButton Close=Box 
RadioButton 1 

Quit 
Edit Click 

RadioButton 2 Click Edit 
RadioButton 3 Click Edit 

Any (Click r Ke~,boardr ...) 
Click 
Click 

Fig. 9. Activation function 
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4 A Design Method of User Interface Dialogue 

In this section we will present a way for building the PNO modelling the dialogue of a 
user-driven interface. 
The highly reactive nature of a user-driven application has a great influence on the way of 
designing it. For that reason, the method presented here differs greatly from usual Petri 
nets design methods, which generally aim at modelling transformational applications. 
The methodology for the design of user-driven interfaces, using file PNO formalism, is 
divided in three steps: 

4.1 Define the Object Classes 

identify tile objects handled by the application: in the example, there is only one 
class of objects, namely the tuples; 
define file operations that the objects must perform (or that may be applied to the 
object, according to its active or passive nature); in tile example tile operations 
which may be applied to a tuple are: create, copy, destroy, display, correct, setvalue, 
and store; 
define file objects' life cycles: the life cycle of an object states what are the operation 
sequences that the object may perform while keeping a consistent state and value; 
thus it gives the dynamic aspects of the object: how it behaves and how it may be 
used. A FSA is well suited for modeUing an object's life cycle; the FSA's states are 
the states the object may be in. A transition from Sl to s2 labelled by an operation 
OP means that OP may be performed when the object is in state Sl, and that 
performing OP results in state s2. A transition not labelled by any operation 



580 

corresponds to a change of state which may occur while no object's operation is 
performed (only passive objects which are fully controlled may have such 
transitions). The life cycle of a tuple shown in Figure 10 shows five states for an 
object: not existent, created, in the list, selected and substitutable. A tuple arrives ill 
the created state by the create operation (cf. transition T3 of Figure 8) or by the copy 
operation (transition T4) and then it may be stored in the table. Once it is in the 
table, a tuple may become either in the list or selected or substitutable (a copy of tile 
tuple is made whenever it goes from the selected to the substitutable state). 

store ~rd~t;t,,mh~la destroy . ~ . . _ ~  

store I I des oy/ I create 
value / "  destroy copy 

_ _ . ,   olec,. 

( i n t h e h ' s t ~ _ ~ , s t ~  " ~  s~re ~ ~  

Fig. 10. Life cycle of a tuple modelled by a FSA 

4.2 Define the Presentation 

The design of the presentation is generally achieved using an UIMS and consists in 
drawing the layout of the different windows of the application. This step defines both the 
characteristics (type, rifle, size, etc.) of tile windows and the list of widgets they contain. 
The virtual dialogue space of tile application may then be automatically computed from 
the presentation. This virtual dialogue space is the set of all possible dialogues that could 
be expressed by a user provided with such a presentation if the availability of the 
window's widgets was not constrained by file state of the application. It consists of a 
service-transition having an event-place for each widget of each window featured in the 
presentation. Figure 11 presents the dialogue space of the tuple editor example, where 
each transition corresponds to a widget defined in the presentation shown in Figure 7. 

4.3 Model the Application's Dialogue 

The design of the application's dialogue consists of associating tile virtual dialogue space 
together with the sets of states of tile objects handled by the application (that is: what can 
be performed) while taking into account additional constraints expressed by the 
application's specifications (such constraints may be of various concerus: organisarion, 
ergonomics, data integrity, etc.). 
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The set of states of file application is the synchronisation of the life cycles of the objects 
it handles, since the application's objects are processed in such a way that ti~e constraints 
relating their respective value and state are fulfilled. 

or-, 
j j I eP e I 

j~.  <x> 

<y> [ select 

,,,/ I.o. 

Oelete 

I i  e~ I 
Fig. 11. Dialogue space of the Tuple-editor exanple 

The tuple editor example features a single object class, Tuple. Any number of tuple 
occurrences may be simul~leously managed, willl synchronisation constraints such as the 
following: when a selected tuple becomes substitutable, another tuple passes from not 
existent to created by the copy operation; if the substitutable tuple is destroyed or goes to 
the in the list state then the created one becomes selected by the store operation, and if the 
substitutable tuple comes back to tile selected state then the created tuple is destroyed. 
Another synchronisation constraint is that whenever an in the list tuple becomes selected 
then a selected tuple becomes in tire list. The synchronisation of the life cycles results in 
a PNO for which each place corresponds to one state of an object or to tile gathering of 
several states of several objects (e.g. tile Edited place of Figure 8 results from the merging 
of the substitutable and created states). The transitions of this PNO are related to these 
places according to state changes, and their actions are tile operations labelling the 
transitions of the life cycles. 

Now, the PNO modelling tile dialogue results from the merging of the dialogue space and 
the life cycle FSAs of the different object classes. In addition to file services at the user's 
disposal, some transitions of the FSA are related to an event-place and become service- 
transitions. Taking into account the additional constraints of the application's 
specification, some transitions corresponding to unauthorised skate changes are eliminated 
(although these state changes match the consistence of objects), some places may be added 
in order to restrict the transition enabling, aud some transitions may be guarded by a 
precondition. 

5 Expected Benefits of the Method 

PNOs are a powerful formalism offering precious features such as validation, graphical 
representation, simulation and static analysis. 
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5.1 Design Validation 

Using PNOs allows the designer to use mathematieal properties of Petri nets for 
validation of the models. A lot of results are available in that area ([21, 17] among others) 
and we give some examples of results which may be used for event-driven interfaces. 

�9 Service availability: Deadlocks are easy to avoid in a conventional, application- 
driven style of dialogue. However, in an event-driven dialogue, where the flow of 
control cannot be predicted because the user carries on concurrent dialogue flows 
with several parts of the application, the designer should have a way to ensure that 
whatever state the application is in, any command of the application will have a way 
to become available again through a given sequence of commands. In our design, 
this problem is directly connected to liveness in Petri net theory: for a given 
operation to be accessible, at least one of the transitions it relates to should be live 
in the PNO. Liveness of several trm|sitions can be verified through static analysis of 
the models. For example, it can be proved that the edit service is always available 
to the user during the use of the application. 

�9 Limiting the number  of occurrences: It is frequently meaningful to specify 
limits on the number of occurrences in a model in order to represent physical limits 
of the real system. That kind of restriction is related to boundedness in Petri net 
theory. A place in a Petri net is k-bounded if there exists an integer k such that the 
number of tokens in this place cannot exceed k. For example, given the initial 
marking stated in Figure 8, place Edited is 1-bounded, thus establishing the desirable 
property that only one tuple can be acted upon at a time. This shows how bounds 
checking can help enforcing that the models have the right semantical properties. 

�9 Initial state reachability: While modelling a system, it may be important to 
ensure that the initial state is always reachable. This is related to analysis of 
transition sequences in Petri net theory. Given an initial marking, a net is 
reinitialisable if there is a finite sequence of transition occurrences that can bring it 
back to its initial state. In our design, this means for the user the ability to 
reproduce his initial working environment, which might be desirable in most cases. 
In the example, this initial marking is a token in the Default place. 

�9 Verification of specific properties: The techniques for the calculation of 
invariants [20, 22] allow to check that the model fulfils some properties expected of 
the real system. For instance, mutual exclusion may be proved in the PNO pictured 
in Figure 8: there is an S-invafiant on places Default, Selected and Edited, ensuring 
that the total number of tuples held by these places cannot exceed their initial 
marking (in this ease, one tuple, initially in place Default). 

The design properties detailed above may be verified by static analysis on the PNO. That 
kind of validation allows evaluation of the quality of the model before implementation. 
The global formal validation of this example may be found in [23]. 

5.2 Prototyping an Application 

Available UIMSes mainly focus on the definition of the external "look and feel" of the 
interface and provide only minimal definition of the dynamics of the dialogue. The 
prototyping possibilities are thus rather poor because they restrict the definition of 
dynamics to a mere sequencing of screens, like in former character-based applications. 
Actually, the most complicated part of the dynmnics occurs inside each application 
window, as the sequence of windows is usually user-driven. 
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What UIMSes lack is a formal definition of the application's dialogue structure. The PNO 
formalism is formal and yet fully executable. Many tools, called "Petri nets interpreters" 
or "token-game players" and allowing tile execution of Petri nets, have already been built 
[241. 
Such an interpreter must be tightly integrated into an UIMS supporting tile PNO 
formalism. Then both the internal dialogue state (provided by tile PNO) and the external 
representation (provided by the presentation par0 would be automatically supported. 

5.3 Modelling Power of the PNO Formalism 

Problems usually encountered in modelling are particularly due to tile lack of modelling 
power of traditional formalisms. PNOs, with tile numerous extensions (emission rules, 
emptying arcs, macro-places, macro-transitions) and the increase of modelling power riley 
feature (preconditions, inhibitor arcs, object structuring), allow to model systems that 
would otherwise be hard to specify. Modelling the behaviour of an event-driven 
application with PNOs offers several benefits: 

�9 A full description of the interface control structure, including causal dependencies 
between the application's services, i.e. dealing fully with file concurrency inside tile 
application and between several applications. 

�9 A single formalism may be used for different purposes: for drawing tile application 
specifications, for validating the models, for prototyping them, and even for 
executing them with a PNO interpreter. 

�9 Tile graphic (but still formal) modelling allows an easy communication between 
designers, programmers and users. Moreover, the descriptions are explicit as all tile 
possible states and state-changing operations are clearly shown to the reader. 

�9 Modelling tile behaviour of a system may be done from tile point of view of states 
(what ,are the reachable states and the transitions between them) or from the point of 
view of operations (what are the operations and their pre/post-conditions). Both of 
these points of view are useful for different purposes, and the PNO formalism 
enables to adopt one as well as tile other. 

6 Conc lus ion  

This paper has presented a survey of three dialogue formalisms, state diagrams, events and 
Petri nets. By opposition to Green's survey [16] comparing grammars, transition 
networks and events, and affirming that events is the most powerful formalism, we have 
highlighted in our study tile fact that Petri nets is the most concise, powerful and explicit 
formalism. Moreover, it is well known that Petri nets prevent the combinatorial 
explosion that is typical of state diagrams. 
The advantages of using an object-oriented approach has also been discussed and tile use of 
a formalism, called Petri Nets with Objects (featuring both object-oriented and Petri nets 
approaches), is then introduced. 
An example of dialogue design using tile PNO formalism has been fully presented and a 
three step method (define tile object classes, define the presentation, and model tile 
application's dialogue) for building such models has been introduced. 
Finally, we have presented an overview of benefits which can be expected from a 
specification of dialogue using tile PNO formalism. 
Tile example given in this paper describes an application featuring only one window. 
Generally, user-driven applications will have many windows conununicating with each 
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others. A methodology based on the principles presented here is fully described in [25]. 
This methodology encapsulates each window in an objet called Interactive Cooperative 
Object (ICO). An ICO is composed of attributes, methods, behaviour and presentation; 
tile behaviour is modelled by a PNO such as described in the example of this paper, while 
the presentation consists of both the layout of the window and the activition function. 
Automatic implementation of ICO models by compilation has already been studied but 
has not been presented here for space reasons [23]. 
Actually our efforts are on the building of a development environment supporting our 
method. This enviromnent will integrate a graphical presentation editor, a syntactic editor 
allowing the edition of PNOs, several analysis modules allowing to prove design 
properties of fl~e models and a PNO interpreter acting as a run-time kernel. 
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