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This paper deals with the optimal de- 
sign of transmission lines and waveguides 
so as to minimize the reflected power due 
to mismatch over a frequency band. The 
problem is formulated on a distributed 
parameter control problem, and the maxi- 
mum principle for distributed parameter 
systems is used to derive the optimal 
capacitance (permittivity) per unit length; 
this is evaluated by an algorithm which 
solves the resultant two point boundary e value problem. Numerical results are pre- 
sented for a waveguide example. 

I. Introduction 

! 

This paper deals with the application 
of the results of the maximum principle 
for distributed systems to the design of 
optimal lossless transmission line and 
waveguide coupling structures. In the 
case of the waveguide, the solution 'sought 
is the optimal choice of dielectric filler, 
i.e., the permittivity ~(z),z~[-d,O], when 
p(z) f poi in the transmission line, we 
seek the optimal distribution along the 
line for the capacity per unit length, 
C(z), when the inductance per unit length 
is constant. 

The cost functional of interest in 
each example w i l l  measure how effective a 
"match" the electromagnetic structure pro- 
vides between an arbitrary source at z = 
-d and an arbitrary load at z = 0. Spec- 
ifically, let the source be a transmitter 
with impedance Z s ( w )  = Rs(w) t jX ( w ) ,  
with an available spectral power 8ensity 
S ( w ) ,  and let the load at z = 0 be an arbi- 
trary impedance Z ( w )  = R ( w )  t jX (a). 
Denote the re fleckion coeificient hoking 
into the coupler at z = -d as p(w,-d). 
Then the total power reflected back into 
the source (not delivered into the load) 
i s  : 2 

(1) J 1 S(w)lp(w,-d)l do. 
W E Q  

This is the functional which we wish to 
minimize by finding the optimal parameter 
distribution E*(z) or C*(z), zo[-d,O]. 

The constraint on this minimization 
is that E(Z) is in (E~,E~,...E~) or C(z) 
is in (C1,c ,... c 1, i.e., some finite 
discrete se$ of arlowable values. 
ample, the permittivities can be made to 

For ex- 

SI = Im{Ey*Hx /21. 

(2) 
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correspond to those of conveniently avail- 
able dielectric materials. 

A similar transmission line problem 
is treated by Moyer, Wohlers and Kopp 
(Refs. 1,2), but the constraints imposed 
are a fixed electrical line length (rather 
than physical line length) and C(z) is 
only constrained to be in some interval 
[CM N < C(z) 5 CM x]. 
(Re$s.-3,4) consiier a lossy transmission 
line with interval constraints as above, 
but, they minimize a cost functional which 
is the integral-squared difference between 
the output voltage and a desired voltage 
waveform. 

Rohrer et al, 

11. Coupling Structures 

Waveguide (TE1,O Structure). A lossless 
rectangular waveguide of width a is oper- 
ated above its low frequency cutoff in the 
TE1 mode. It is characterized by the 
perdttivity, ~(z), and the permeability, 
p(z) E po, of the material filling it. To 
examine real power flow i n  the z-direction, 
we need only worry about the components E.. and Hx. (Width of waveguide = a-Tx) Y 

(Ref. 6). 

Then 
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2 2 2  where e(z,w) = E(Z) - IT /pea w . 
E(Z) is constrained to lie in some finite 
discrete set, the parameter E(z), and thus 

successive intervals in z. The f l S  com- 
ponent is a constant so the above eqaation 
may be reduced to a third order piecewise- 
constant coefficient linear differential 
equation in z for each w: 

Since 

c ( z  ,W f .&ill be -i=c.?yice ccp-st2p-t c'.'pp 
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ax(z,w) A(w,E) x ( z , w ) .  (4) az 
The load at z = 0 is specified by its 

The wave impedance of the source is z ( w )  = R ( w )  + jXs(w), with available 
p8wer denhty S(w): 

11. Transmission Line (TEM Structure) 

A parallel problem statement is poss- 
ible f o r  a lossless TEM (transverse 
electro-magnetic) structure or trans- 
mission line, which is characterized by an 
inductance per unit length, L ( z ) ,  and a 
capacitance per unit length, C(z). 

x(z,w) is: 
The choice for the state vector 

= Re{VI*/2) (10) 

We omit here the development which 
parallels Eq. 3 - Eq. 9 :  the details may 
be found in Ref. 7, the thesis upon which 
this paper is based. In short, this sys- 
tem obeys a linear differential equation 
f o r  each w ,  and the coefficients are con- 
stant over successive intervals of z; Eq. 
4 is the appropriate description. The 
available power density and reflected 
power density are linear in x(-d,w): this 
parallels Eq. 7 - 9. 

- 
I 

111. Application of the Maximum 
Princ iple 

1. Introduction 

In the previous section, we obtained 
a model f o r  either a lossless transmission 
line or  a lossless waveguide structure; 
the state differential equation in either 
case was of the form 

- ax(z,w) = A(w,u)x(z,w) (11) 
az 

where u is the control parameter (C in the 
transmission line and E in the waveguide). 
There are linear boundary conditions on 
the state -- and 7 )  and the cost J is 
a linear functional on the terminal State: 

J I T(w)dw = I K'(w)x(-d,w)dw (12) 
us8 wE.n 

Optimal control of such distributed para- 
meter systems is treated in detail by Wang, 
(Ref.5) who develops an appropriate form 
of the maximum principle. An application 
of this maximum principle would, however, 
yield an algebraic condition which is gen- 
erally ambiguous in u, i.e., the trajectory 
of the state x(z ,w)  will generally corre- 
spond to a singular extremal. To avoid 
the computational difficulties which arise 
In the case of a singular extremal solu- 
tion, we solve a slightly different prob- 
lem which uses a modified cost functional 
and which does not suffer from the diffi- 
culties of singularity. 

2. Modified Cost Functional 

It is desirable to make a small modi- 
fication to the cost functional 
J = T(w)dw indicated in Eq. 12. In the 

case of the transmission line, we add a 
w€n 
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term such that 

In the waveguide, tile term added is 

of ehe intermediate caBacity between the 
largest and smallest permissible capa- 
cities. Since we are concerned about re- 
flected power, but not about (C-C 12, A is 
selected sufficiently sm 11 that &he con- 

ligible with respect tb the /T(w)dw term. 

This extremely small term is a mathe- 
matical artifice that greatly simplifies 

# consideration of the solutions that corre- 
spond to singular extremals; we would like 
to solve the problem in the limit as A+O, 
but it is necessary to keep A sufficiently 

does not disappear in round-off and trun- 
cation errors. 

-d 
(E-Ea)2dz* The C term is some value 

tribution of the I(C-C ) !! dz term is neg- 

large in the numerical procedures that it 

3.  Necessary Conditions 

as : 
Define the Hamiltonian H(x,P,u,z) 

H(x,P,u,z) = 
I <p(z,w),A(w,u)x(z,w)>dw-A(u-ua) 2 

(14) wcn 2 

where ua represents Ca or and u repre- 
sents C or E.  It is a necessary condition 
for optimality that there exist a costate 
function p*(z,w) such that 

-A'(U,U*)P*(~,W) 

(Here the superscript 
quantity.) 

(15) 

denotes an optimal 
7 

1 
2 I z s l  

f i  xs 
(16) 

i-f i  i RsJ 
It is also necessary that the state obey 
the differential equation 

(17) 

with boundary conditions given in Eq. 6 
and 7. 

In accordance with the distributed 
maximum principle, the optimal parameter 

u*(z) must maximize the Hamiltonian: 

I p* ( z , w ) A ( w  ,u* ) x* ( z , w )dw-A ( u*-ua) 2 
UEQ 

Since A is linear in u (Eq. 3 ) ,  
and u is independent of w ,  u may be taken 
outside the first integral: this implies 
that u* must maximize a quadratic function 
of u. 

H(x*,p*,u*,z) = 

I (-A( u-ua) 2 +u-M+constant(u) max 

u E(U1,U2, ... 'n) (19) 

where M = 

IC2wx ( z , w)p2 ( z , w 1 +wxl ( z ,w )p3 ( z ,w 1 Idw 

then 

H(X*,P*,U*,Z) = -A(u%A~) +MU*+ constant(u1 

( 20 
n 3  

2 

(21) 

The optimal value of u will then be the 
member of (u ,u ,... u ) which is closest 
to Ua + M/2A: ag th1s"choice maximizes the 
Hamiltonian. This maximization will 
usually provide a unique value of u*. 
However, for some values of M (this set 
has measure zero), two admissible u's, say 
uK and u ~ + ~ ,  (ul<u2, ... <un) are equally 
close to ua+M/2~. This condition, l.e., 

H(x*,P*,uK,z) = 

H( X* ,p* ,uK+~ z > H (x* ,p* ,Uj , z )Vj ZK s K+l 
(22) 

will be called the singular condition of 
the modified problem since Eq. 19 does not 
yield a unique u*. Note that if we had 
not use9 the artifice of the small 
A(u-u ) term, whenever the integral term 
of Eq? 20 was zero, we would be faced with - all possible controls ul,u2, ... Un as 
equally good candidates for optimality. 

4. Singular Condition of the Modified 
Problem 

in oraer f o r  the siligiilai. eoi idit ion 
of the modified problem to hold over a 
nonzero interval of 2, it I s  necessary 
that aM ,& I over this interval. 

2 
-. 

az 
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Expansion of  this second term gives an ex- 
plicit solution fo r  the E(Z) or C(z) nec- 
essary to cause singularity. When these 
values do not fall in the set of  admissi- 
ble values, the solution cannot be singu- 
lar; when they do, the ambiguity of the 
singular extrema1 has been resolved. 

ing the cost functional, the singular 
problem no longer presents computational 
difficulties. 

Because of the quadratic term modify- 

5. Numerical Procedure 

The optimal control uw is known 
uniquely over [-d,O] (except f o r  a set of 
z of measure zero) in terms of x(z,w) and 
p(z,w), so u may be eliminated from the 
state and costate differential equations, 
Eq. 15 and 17. We now need to solve this 
set of 8-vector partial differential equa- 
t ions. 

Three boundary functions are available 
at z = 0, Eq. 6. Equation 16 provides 
four boundary functions at z = -d, Eq. 7 
provides one additional function at z = -d. 
We must now solve this split-boundary func- 
tion partial differential equation. The 
procedure used is to guess two functions at 
at z = -d: the real and imaginary parts 
of the impedance presented by the coupler. 
Then use of Eq. 16, Eq. 6, and Eq. 7 re- 
sults in a complete boundary specification 
of x and p at z = 4. Solve Eqs. 15 and 
17 to z = 0. (This doesn't even require 
numerical integration, since 15 and 17 
are piecewise-constant coefficient linear 
differential equations in z; successive 
multiplications by the transition matrix 
accomplishes this forward integration); 
the functions obtained at z = 0, say R ( w )  
and X ( w ) ,  will not be exactly equal to 
R ( w )  and X,(w). The structure generated 
sklves one optimal control problem, spec- 
ifically how to best match between the 
given source and a load = R ( w )  + j X ( w ) .  
However, since that is not the problem of  
interest, we consider this to be just the 
first step of an iterative procedure which 
converges in the limit to the boundary 
condition specified by R ( w )  and X ( w ) .  
For successive steps of khe iteratkon, the 
initial guess functions must be modified 
in some consistent way to obtain the de- 
sired convergence. The method used was to 
approximate the guess functions and the 
desired boundary functions by Tchebycheff 
polynomial expansions, then measure the 
variations In result coefficients with re- 
spect to guess function coefficients. 
These partial derivatives formed a sensi- 
tivity matrix, which was inverted and used 
f o r  a Newton-Raphson iteration on the 
boundary-function coefficients. The con- 
vergence of this procedure was rather slow 

f o r  poor initial guesses, '(a gradient 
method would have been better in such 
cases) but convergence was quadratically 
fast (as expected) near the final solution. 
A complete digital computer program can be 
found in Ref. 7. 

IV. Numerical Results 

One problem of particular practical 
interest was studied extensively: the 
problem of obtaining a good impedance 
match between a narrow slot which forms 
one element of a phased-array receiving 
antenna, and a quartz-loaded waveguide 
having the same cross-section connected to 
the slot. The received power is then con- 
ducted to a stripline receiver (also hav- 
ing the same cross-section) by the quartz- 
loaded waveguide. The mismatch between 
the wave impedance of the free-space wave 
impinging on the slot and the wave imped- 
ance of a wave in the quartz-loaded wave- 
guide is quite severe, resulting in a VSWR 
greater than 20:l and over 7.5 Db of re- 
flection loss  in the example studied. The 
matching problem was further complicated 
by the fact that the receiving slot end of 
the waveguide presented an impedance con- 
siderably more reactive than resistive, 
and the impedance match was required over 
a fairly wide (10 percent) bandwidth from 
5 Gc to 5.5 Gc. 

The problem was run using the follow- 
ing constraints: EM = 3.78 c0 (quartz 
dielectric); EMA = 4.0 ;oa(alumina di- 
electric); lengtff = 1.15 one wavelength 
at center frequency 5.25 Gc in quartz di- 
electric. The available power was assumed 
to be uniform at eleven equally spaced 
frequencies ranging from 5 Gc to 5.5 Gc, 
and normalized to one watt at each fre- 
quency. 

term [length x A(E - E  ) /2, where E = 
( E  + EMI )/2] w!kXse?ected to be .f 
wa%b, or atout 4.5% of the total available 
power of 11 watts. The solution was then 
obtained for 5 equally spaced available 
E(Z) values ranging from EMIN to EMAX. The 
solution required about ten minutes of  run 
time on the IBM-360 because the starting 
guess was considerably different from the 
final impedance obtained. 

The E*(z) solution obtained is shown 
in Fig. 1. We note the successive quarter- 
electrical-wavelength sections of essen- 
tially "bang-bang" nature (between E 
and E ) beginning from the high im@8ance 
sourcB*gt z = - a .  At the right hand end 
of  the waveguide ( z  = O), near the resis- 
tive load having the characteristic imped- 
ance of quartz-loaded waveguide, we see 
quite a different behavior. Here the 

0 

a 

An upper limit on th quadratic cost 5 
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c 

appropriate E*(z) does not behave in "bang- 
bang" fashion, but appears as a quantized 
continuously-varying function taking on 
values of E intermediate between and 
€MAX- 

The performance obtained is as f o l -  
lows: the VSWR has been reduced from 20:l 
to 5.4:1, reducing reflection losses from 
7.5 Db to 2.7 Db, a significant improve- 
ment over the performance without an im- 
pedance-matchin coupler. The total cost 
obtained is 5.5814 watts of which 5.152 
watts is true reflected power and .4294 
watts is due to the quadratic cost term. 
The quadratic cost term took on about 85 
percent of the value we specified as its 
upper limit, because around 3/4 of the 
line length demonstrated bang-bang or 
E ~ ~ ~ ,  behavior. 

Solution of the problem was repeated 
for 2, 3, 10, 15 and 20 (equally spaced) 
admissible values of E, still ranging be- 
tween the previous EMIN, The re- 
sults are shown in Fig. 2?% would be 
expected, permitting more E values de- 
creases the total cost. However, only a 
3% improvement in total cost is obtained 
as the partition is increased from two 
available E values to 20. In fact, most 
of that improvement is obtained in going 
from 2 to 3 allowable E-values because the 
addition of the third (intermediate) value 
permits a significant reduction in the 
quadratic cost term over the right hand 
1/11 of the line. The total cost appears 
to have converged by the time 20 E-values 
were allowed so JMJ-N 2 5.5812 watts. Of 
this cost 5.154 watts is reflected power 
and .4272 watts is due to the quadratic 
cost term. Since the quadratic cost term 
was quite noticeable compared to the true 
reflected power cost (about 8 percent in 
these solutions), it was decided t o  repeat 
the solutions for an upper bound of .1 
watts on the quadratic cost (QCOST). 
(Five times smaller than before). The 
E(Z) solution for 5 E-values, QCOST < .1 
is shown in Fig. 3. Note that the "bang- 
bang" region of the line is unchanged from 
that of Fig. 1, except that the transi- 
tions are five times sharper. (A transi- 
tion between and €MA occurs in 1/5 
as much distancer. The righthand end of 
the line shows a significant change from 
Fig. 1; in particular, E(Z) is farther 
away from its intermediate value for 
points z where E(Z) k This change Is 
reasona le, since the quadratic cost term, 

which tends to keep E ( Z )  near When 
QCOST, and thus A, IS reduced, this cen- 
tralizing effect is also reduced and the 
solution becomes nearer to the "bang-bang" 
or E ( Z )  = E IN or cMAff solution with the 
exception OF points w ere E = (Here 
the quadratic cost term is zero, so the 

c 

c 

9 /2, is a "centralizing" force 

scaling on this term has no effect). 

So far, we have only examined changes 
in the total cost = reflected power + 
QCOST as the number of available E values, 
NVALS, and the upper bound on the quadra- 
tic cost term QCOST are varied. The eng- 
ineer using the solution is only interest- 
ed in the variations of the reflected 
power, so we examine this in Fig. 4. First, 
we note that for every condition examined, 
the reflected power does not vary by more 
than .135%. The reflected power for NVALS 
= 2 is independent of QCOST, as is E ( z ) ,  
so the curves for QCOST < .5 and QCOST < 
.1 meet at this point. For the QCOST < 
.1 curve, there is no measureable change 
in reflected power between NVALS = 2 and 
NVALS = 20, making it obvious that the 
coupler can be constructed using only two 
dielectrics. 

A feature that seems surprising at 
first is that for the QCOST < .5 curve, 
reflected power increases with NVALS, 
meaning that with more available E values 
we do a worse matching job. This behavior 
is possible because we are not really min- 
imizing reflected power, but reflected 
power plus quadratic cost. This function 
is a decreasing function of NVALS. The 
explanation for the increasing reflected 
power is that the intermediate values of 
E permit a noticeable decrease in the 
quadratic term (which was fairly large in 
this problem), and taking on these inter- 
mediate values of E reduces the quadratic 
cost (with increasing NVALS) faster than 
it increases the reflected power cost. 
Thus, the system trades some reflected 
power cost to attain lower cost from the 
quadratic term. When the quadratic term 
is made smaller, as on the QCOST < .1 
curve, the tendency toward a trade-off is 
greatly reduced and we see no change in 
reflected power with increasing NVALS. As 
QCOST + 0, the plot of reflected power 
versus NVALS must become a monotone de- 
creasing curve (or at least a monotone 
nonincreasing curve), so one could repeat 
the solution for NVALS = 5 with success- 
ively smaller upper bounds on QCOST to see 
if a reflected power cost less than 5.147 
watts (that obtained for NVALS = 2) can be 
obtained, or until one is satisfied that 
the reflected power cost has converged. 

Conclusions 

The main conclusion possible from 
these examples is that performance is es- 
sentially independent of the number of 
avaiiabie aieiecirics, s o  corlutructioii  can 
be done by using just two dielectrics. If 
better performance (less reflected power) 
is desired, one must relax the problem con- 
straints by either permitting longer 
structure length or a greater range of E 
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in the dielectric material. I- 

Acknowledgment v) 

This paper is based in part on a V 

M.I.T., in partial fulfillment of the I- 

z 9aQ- a 
I- 
z 
0 

thesis submitted by the first author to 
the Department of Electrical Engineering, 

2 .  Wohlers, Kopp and Moyer, "Computation- 
al Techniques for the Synthesis of Optimum 
Non-uniform Transmission Lines Based on 

€ 1  I I 1 I 
a c o s T s a 5 ;  5 CAPACITIES I 

I I 1 I I 

Variational Principles," Proc. of the Nat. b 5.65  I I I 1 

bctober 1965. pp.m5-140. 5.64 
PCOST 4 0.5 W Elec. Conf., K. XXI, Ch'icago, Illinois, 

0 - 
a 

Network Sythesis f o r  a Class of Intenrated I? 
3 .  Rohrer, Resh and Hoyt, "Distributed 5 . 6 3 1  \ 

Y 

Circuits,i' reprints of 1965 IEEE Intern. 
Con. Record, I- Part 7. 1 
4. Rohrer, R. A . ,  "Synthesis of Arbitrary 
Tapered Lossy Transmission Lines," 1966 
Symposium on Generalized Networks, poly- 
technic Institute of Brooklyn, N. Y. 

5. P. K. C. Wang, "Control of Distributed 
Parameter Systems," Advances in Control 

(ed. C. F. Leondes) Academic Press, 

6. Adler, Chu and Fano, Electromagnetic 
Energy Transmission and Radiation, Wiley 
and Sons, 1960. 

7. Burchfiel, J., "The Design of Trans- 
mission Line and Waveguide Structures 
Using the Maximum Principle," Sc.D Thesis, 
1968, M.I.T. Department of Electrical Eng- 
ineering. 

c 

V w 
J 5 . 6  I 

5 . 6 0  

0 
V 

a 
I- 

J 5 . 5 9  

O e 5.58 

F IG.2 B E H A V I O R  OF T O T A L  C O S T  
V S  N V A L S  F O R  Q C O S T  10.5. 

I 1 I 1 I I 1 I I I a'cosis ai ; 5 CAPACITIES n i 9ao u 
u -  

I I I I I I I I I I I 
1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

DISTANCE 

F I G . 3  S O L U T I O N  F O R  N V A L S  
= 5,  Q C O S T  10.1. 

262 



C 

b 

6 5.16- 

0 
n5.15-  

3 

n 
W I- s 5.14- 
J 
LL 
W 
CC 5.13- 

QCOST<O.5 W - 

QCOST<O.IW 
- 

- 

I I I I 

F l G . 4  V A R I A T I O N  
POWER WITH 

OF REFLECTED 
NVALS A N D  QCOST 

263 


