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Abstract: In the clinic, the wheezing sound is usually considered as an indicator symptom to reflect

the degree of airway obstruction. The auscultation approach is the most common way to diagnose

wheezing sounds, but it subjectively depends on the experience of the physician. Several previous

studies attempted to extract the features of breathing sounds to detect wheezing sounds automatically.

However, there is still a lack of suitable monitoring systems for real-time wheeze detection in

daily life. In this study, a wearable and wireless breathing sound monitoring system for real-time

wheeze detection was proposed. Moreover, a breathing sounds analysis algorithm was designed

to continuously extract and analyze the features of breathing sounds to provide the objectively

quantitative information of breathing sounds to professional physicians. Here, normalized spectral

integration (NSI) was also designed and applied in wheeze detection. The proposed algorithm

required only short-term data of breathing sounds and lower computational complexity to perform

real-time wheeze detection, and is suitable to be implemented in a commercial portable device, which

contains relatively low computing power and memory. From the experimental results, the proposed

system could provide good performance on wheeze detection exactly and might be a useful assisting

tool for analysis of breathing sounds in clinical diagnosis.

Keywords: airway obstruction; wheeze detection; short-term breathing sound; spectral integration

1. Introduction

Abnormal breathing sounds (such as crackles, rhonchus, and wheezing sounds) are usually

considered as indicator symptoms in chronic respiratory diseases [1], such as chronic obstructive

pulmonary disease (COPD), chronic bronchitis, and bronchial asthma, etc. For these diseases,

unnecessary secretions (such as sputum) would be produced in the respiratory tract and then cause

chronic inflammation leading to airway obstruction. When the state of airway obstruction acutely

exacerbates, the inside diameter of airway will be narrowed, and the smooth muscle in the outer

wall of the airway will also be tightened during breathing [2]. Therefore, the airflow velocity will be

changed when the air flows from the normal airway into the narrowing airway, producing abnormal

breathing sounds, such as wheezes [3]. In the clinic, a wheezing sound is a kind of continuously

abnormal breathing sound with a specific tone [4], and it is usually considered as an indicator symptom
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to reflect the degree of airway obstruction [5]. When the wheezing sound occurs, the patient might

have no sufficient amount of air to maintain normal breathing, resulting in dyspnea, asphyxia or other

life-threatening situations [6]. Therefore, it is important to detect wheezing sounds automatically,

and then to provide prompt medical treatment for patients with acute airway obstruction.

Currently, investigation of breathing sounds is mainly based on the auscultation approach by

the experienced physicians. This method is simple, convenient, and non-invasive, but it is also

subjectively dependent on the experience of the physicians, the variability of the human auditory

system and the specifications of stethoscopes [7,8]. In previous studies [9–20], several approaches,

such as a spirometer, vibration response image (VRI), piezoelectric sensor and air-coupled microphone,

had also been used to evaluate the feature of breathing sounds objectively. In 1994, Schreur et al.

determined the parameters of lung sound intensity (LSI), frequency content in quartile point and

peak frequency from the flow-dependent power spectrum of lung sounds to investigate the lung

sound features of patients with bronchial asthma [15]. In 1999, Kiyokawa et al. investigated the

feature pattern of hourly nocturnal wheezing count (NWC), the duration of wheezing sounds, and the

forced expiratory volume in one second (FEV1), which was obtained from a spirometer to evaluate the

severity of bronchoconstriction [16]. In 2002, Gross et al. used the ratio of relative power at maximal

flow (RPMF) between inspiratory and expiratory in the frequency band of 300–600 Hz to investigate

the lung sound features of pneumonia [17]. In 2014, Içer et al. used the ratio of maximum and minimal

frequency in power spectral density (PSD), and the normalized instantaneous frequency of lung

sounds to distinguish different abnormal lung sounds [18]. Most of the above methods just provide

the lung sound information in frequency or time domain, respectively. In 2008, Sello et al. compared

three quartile frequencies in the global wavelet spectrum to investigate the severity of respiratory

insufficiency in patients with COPD [19]. In 2009, Riella et al. used image processing techniques to

extract the spectral projection of lung sound spectrogram to identify wheezing sounds [20]. From the

spectrogram of lung sounds, the information of lung sounds in both time and frequency domains could

be extracted. However, it also requires a relatively long raw data and computational complexity for time

frequency analysis, and this is inconvenient for several commercial portable devices, which contains

relatively low computing ability and memory, to perform real-time wheeze detection. Moreover, most

of the devices used in the above studies were not wearable, and were also not convenient for long-term

monitoring of breathing sounds in daily life.

In order to improve the above issues, a wearable breathing sound monitoring system for real-time

wheeze detection was proposed in this study. In this proposed system, a wearable breathing sound

acquisition module was designed to collect breathing sounds wirelessly in daily life. A breathing

sound analysis algorithm was also proposed in this study. By using this algorithm, the spectral

features of short-term breathing sounds would be real-time and continuously extracted to construct a

characteristic pattern, and from the feature pattern, the information of breathing sounds in both

of time and frequency domains could be effectively obtained and applied in wheeze detection.

This algorithm required only lower computational complexity to perform real-time wheeze detection,

and it is suitable to be implemented in a commercial portable device, which contains relatively low

computing capability. Finally, the difference between features of wheezing and healthy breathing

sounds was also investigated in this study.

2. Methods and Materials

2.1. System Hardware Design and Implementation

Figure 1 shows the basic scheme of the proposed wearable and wireless breathing sound

monitoring system, including a wireless breathing sound acquisition module, a wearable mechanical

design, and a host system. The wireless breathing sound acquisition module is embedded into the

wearable mechanical design, and it is placed on the upper right anterior chest surface of the user

to acquire the breathing sound. The wearable mechanical design aims to not only embed with the
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proposed module, but also provide a suitable pressure on the wireless breathing sound acquisition

module to maintain a good contacting condition between the acoustic sensor and the chest wall.

In this mechanical design, the acoustic sensor could acquire a good signal quality of breathing sound,

and users could be easy to wear and use in daily life. After the breathing sound is acquired, amplified,

and digitized by the proposed module, it will then be transmitted to the host system wirelessly.

Finally, the real-time breathing sound monitoring program built in the host system will receive, display,

record and analyze the acquired breathing sound to provide the information of the breathing sound to

the medical staff.

Figure 1. Basic scheme of proposed wearable and wireless breathing sound monitoring system.

2.1.1. Wireless Breathing Sound Acquisition Module

Figure 2a,b show the block diagram and photograph of the proposed wireless breathing sound

acquisition module, and it mainly contains several parts, including an acoustic sensor, a sensor driving

circuit, a front-end amplifier circuit, a microprocessor, and a wireless transmission circuit. In the

wireless breathing sound acquisition module, the acoustic sensor consists of an omnidirectional

condenser microphone (TS-6022A, TRANSOUND, Dongguan, China) and a stethoscope bell (Harvey™

DLX, Welch Allyn, Skaneateles Falls, New York, NY, USA), as shown in Figure 2c. It is designed

to acquire breathing sound effectively, and transduced sound into an electrical signal. Here,

the sensor driving circuit is intended to provide a stable driving voltage for the omnidirectional

condenser microphone, and eliminate variation from the power source. Next, the signal of the

breathing sound will be amplified and filtered by a front-end amplifier circuit. The total gain of

the front-end amplifier circuit is set to 500 times, and the frequency band is set to > 150 Hz. Next,

the pre-processed breathing sound will be digitized by a 12-bit analog-to-digital converter built in

the microprocessor (MSP430, Texas Instruments, Dallas, TX, USA) with the sampling rate of 2048 Hz,

and then be sent to a wireless transmission circuit, which consists of a printed circuit board (PCB)

antenna and a Bluetooth module (Ct-BT02, Connectec, Taiwan) with the Bluetooth v2.0+ enhanced

data rate (EDR) specification. Here, the power consumption and data rate of the wireless acquisition

module are about 75 mW and 33k bps. Finally, the wireless transmission circuit will transmit the

collected breathing sound to the host system wirelessly. This module is operated at 33 mA with a

commercial 250 m-Ah Li-ion battery, and can continuously operate over seven hours.



Sensors 2017, 17, 171 4 of 15

  

Figure 2. (a) Block diagram and (b) photograph of proposed wireless breathing sound acquisition

module and (c) photograph of acoustic sensor.

2.1.2. Wearable Mechanical Design

Figure 3a,b shows the photograph of the wearable mechanical design and photograph of wearing

the wireless breathing sound monitoring system during experiments, and it mainly consists of a

shoulder brace, an elastic band and an area of Velcro. The structure of the shoulder brace is used to

embed the proposed wireless breathing sound acquisition module and also support the weight of this

module. Moreover, by adjusting the tightness of elastic band, the proposed module can easily fit the

chest contour of the user to maintain a good contacting condition between the acoustic sensor and the

chest surface to reduce the artificial influence of motion. In this wearable mechanical design, the area

of Velcro is used to fix the proposed module on the shoulder brace so that the proposed system can be

easy to wear and use in daily life.

  

Figure 3. (a) Photograph of wearable mechanical design, and (b) photograph of wearing the wireless

breathing sound monitoring system.

2.1.3. Host System

In this study, the platform of the host system is a commercial tablet with the operation system of

Window 10. Moreover, a real-time breathing sound monitoring program, developed using Microsoft

C#, is also built in the host system, and this program also implements the proposed breathing
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sound analysis algorithm to provide the basic function of monitoring, recording, and analyzing

the breathing sound.

2.2. Breathing Sound Analysis Algorithm

Wheezing sound is a continuously abnormal breathing sound, which is commonly disclosed in

patients with COPD or other airways’ obstructive respiratory diseases. Wheezing presented with a

specific characteristic in duration and frequency domain than other breathing sounds. The range of

frequency of normal breathing sound evenly distributes between 100 Hz and 1000 Hz. For a wheezing

sound, the frequency range is mainly between 250 Hz and 800 Hz, and it can be presented as a specific

narrow line pattern, which is maintained over about 250 milliseconds [21], in the spectrogram of

breathing sounds. In this study, the breathing sound analysis algorithm is designed to extract the

features of breathing sound in time and frequency domains, and its flowchart is shown in Figure 4.

	NSI଴ୌ୞ିଶହ଴ୌ୞ NSIଶହ଴ୌ୞ିହ଴଴ୌ୞NSIହ଴଴ୌ୞ିଵ଴଴଴ୌ୞ NSI଴ୌ୞ିଶହ଴ୌ୞ NSIଶହ଴ୌ୞ିହ଴଴ୌ୞NSIହ଴଴ୌ୞ିଵ଴଴଴ୌ୞
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Figure 4. Flowchart of breathing sound analysis algorithm.

Before extracting the features of breathing sounds, the received breathing sound has to be

first pre-processed by a band-pass filter (frequency band: 150 Hz–1000 Hz) to reserve meaningful

components of breathing sounds and also remove heart sound, muscle interference sound and blood

sound [2]. Next, the raw breathing sound will be split into 250-ms breathing sound segments with

200-ms overlapping, and then the power spectrums of these breathing sound segments will be

calculated by using Fast Fourier Transform with a Hanning window. After obtaining the power

spectrum of each breathing sound segment, then the features of breathing sound in frequency domain

can be calculated. Here, the ratios of the spectral integration (SI) features SI0Hz–250Hz (from 0 Hz

to 250 Hz), SI250Hz–500Hz (from 250 Hz to 500 Hz), and SI500Hz–1000Hz (from 500 Hz to 1000 Hz) to

SI0Hz–1000Hz (from 0 Hz to 1000 Hz) are defined as the normalized spectral integration (NSI) features

NSI0Hz–250Hz, NSI250Hz–500Hz, and NSI500Hz–1000Hz, respectively. In this study, Fisher linear discriminant

analysis (LDA) was used to separate wheezing and normal breathing sounds. After experimenting,

the normalized spectral integration NSI0Hz–250Hz, NSI250Hz–500Hz, and NSI500Hz–1000Hz were used as

the frequency-domain features to detect the wheezing sounds, and they have better recognizing

performance than other features. If the feature of breathing sound fits the following criteria:

(i) Score1 = –230.54489 + 402.72499 × NSI0HZ−250HZ + 500.32269 × NSI250HZ−500HZ + 677.28994 ×

NSI500HZ−1000HZ.

Score2 = –266.87228 + 418.88239 × NSI0HZ−250HZ + 554.36286 × NSI250HZ−500HZ + 699.35894 ×

NSI500HZ−1000HZ.

If Score1 < Score 2, then this segment will be recognized as an abnormal breathing sound.

(ii) If the duration of abnormal breathing sound > 250 ms [22].

Then, it will be recognized as a wheezing sound. All the quantitative information of this

wheezing event, as illustrated in Figure 5, such as the peak frequency, median frequency, bandwidth,
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and duration, will then also be extracted and reserved. Here, the peak frequency is defined as

the frequency corresponding to the highest peak in the power spectrum of the breathing sound.

The median frequency is defined as the frequency that is at the center of the power spectrum of

the breathing sounds. The bandwidth is defined as the frequency range between the frequencies

corresponding to 25% and 75% of total integration area in the power spectrum of the breathing sound.

Here, the peak frequency and median frequency are most frequently used to describe the feature of

breathing sounds. Therefore, they are also extracted in this study. The changes of the peak frequency

and the bandwidth will contribute to the change of the spectral integration of breathing sound

directly. Moreover, the peak frequency usually shifts within a breathing cycle. Therefore, in this study,

the spectral integrations of breathing sound are used as the major factors to detect wheezing sounds.
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Figure 5. Illustration for quantitative information of breathing sounds.

2.3. Experimental Design

In this study, the experimental data was collected from 40 adult patients and 11 healthy adults

(males and females are 42 and 9 participants, respectively), at Chang Gung Memorial Hospital,

Taiwan. The mean age of these participants was 61.9 ± 24.7 years old. The Institutional Review Board

has approved this experiment (Institutional review board, No.103-3295A3), Chang Gung Memorial

Hospital, Taiwan, and all participants provided an informed consent before the experiment.

Before patients enrolling to study, physicians had to complete history taking and physical

examination including breathing sounds. When a doctor disclosed wheezing via conventional

stethoscope, this patient was enrolled into the study. The doctor also recorded breathing sounds at the

same time. In this study, every doctor is a qualified Pulmonologist in Taiwan. They have abundant

clinical practice experience. After recording breathing sounds, pulmonologists had to discuss and

confirm the recorded file and voice quality first. Then, engineers analyzed voice according to study

protocol and program. Finally, engineers and pulmonologists discussed final result after analysis

together and made sure the data was correct. The acoustic sensor of the proposed system was placed

on the right upper anterior chest wall (at the first intercostal space on the midclavicular line) to collect

two-minute data of breathing sounds. In this study, every physician was a qualified pulmonologist

in Taiwan. They had abundant clinical practice experiences. After recording breathing sounds,

pulmonologists had to discuss and confirm the recorded file and voice quality first. Then, engineers

analyzed voice according to study protocol and program. Finally, engineers and pulmonologists

discussed final results after analysis together and made sure that the data was correct. Here,

the analysis of variance (ANOVA) method was used to analyze the feature difference between wheezing
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and normal breathing sounds, and the software MATLAB (MATLAB, Math Works, Natick, MA, USA)

was used to perform ANOVA. The difference significance was defined as p < 0.05 in this study.

3. Results

3.1. Feature Patterns of Wheezing and Healthy Breathing Sounds

In this section, the spectral features of wheezing and healthy breathing sounds were investigated.

Figure 6a shows the power spectrum of wheezing and healthy breathing sounds. The spectral

distribution of wheezing sounds was mainly from 250 Hz to 500 Hz, and is relatively narrower

than that of normal breathing sounds. Moreover, the peak intensity in the power spectrum of the

wheezing sounds was also obviously larger than that of the normal breathing sounds. Figure 6b shows

the time frequency feature pattern for wheezing and healthy breathing sounds. Here, the values

of NSI0Hz–250Hz, NSI250Hz–500Hz, and NSI500Hz–1000Hz were used as the frequency-domain feature in

this feature pattern. In the feature pattern of healthy breathing sounds, the values of NSI0Hz–250Hz

were similar to that of NSI250Hz–500Hz, and greater than that of NSI500Hz–1000Hz. However, for the

feature pattern of wheezing sounds, the values of NSI250Hz–500Hz were obviously larger than that of

NSI0Hz–250Hz and NSI500Hz–1000Hz. From the difference of different feature patterns, wheezing sounds

could easily be distinguished from the normal breathing sounds. Moreover, the duration of wheezing

sound was about 736.86 ± 311.40 ms.
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Figure 6. (a) Spectrum of wheezing and healthy breathing sounds, and (b) raw data and feature

patterns for wheezing and healthy breathing sounds.
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3.2. Feature Difference between Wheezing and Healthy Breathing Sounds

In this section, the differences between the features of wheezing and healthy breathing sounds

were investigated. Figure 7a–c shows the means and standard deviations of SI0Hz–250Hz, SI250Hz–500Hz,

and SI500Hz–1000Hz for different groups, respectively. The value of SI250Hz–500Hz for wheezing sounds

was significantly stronger than that of normal breathing sounds. However, the values of SI0Hz–250Hz and

SI500Hz–1000Hz for wheezing sounds were similar to that of normal breathing sounds. Figure 8a–c show

the means and standard deviations of NSI0Hz–250Hz, NSI250Hz–500Hz, and NSI500Hz–1000Hz for different

groups. For wheezing sounds, the value of NSI250Hz–500Hz was obviously larger than the values of

NSI0Hz–250Hz and NSI500Hz–1000Hz. However, for normal breathing sounds, the value of NSI0Hz–250Hz

was similar to the value of NSI250Hz–500Hz, and was larger than the value of NSI500Hz–1000Hz. Figure 9a–c

show the comparison of the peak frequencies, the median frequencies, and the bandwidths for

different groups, respectively. The peak frequency of wheezing sounds was significantly higher

than that of healthy breathing sounds. Moreover, the bandwidth of wheezing sounds was also

significantly narrower than that of healthy breathing sounds. However, the median frequency of

wheezing sounds was similar to that of healthy breathing sounds. The features for different groups

were summarized in Table 1. In this study, the method of Fisher LDA was used to discriminate the

two groups. The performance of using parameters of SI and NSI and the combination of SI and

NSI to discriminate the two groups were compared. We found that using the parameters of NSI to

discriminate the two groups could provide a better performance. Moreover, the criterion of wheezing

detection was defined as the mentioned criterion in Section 2.2.
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different groups. Here, * denotes significant difference.
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(c) bandwidths for different groups. Here, * denotes significant difference.

Table 1. Features in time and frequency domains for wheezing and healthy breathing sound groups.

Wheezing Sound Group Normal Breathing Sound Group p-Value

Peak frequency (Hz) 310.52 ± 40.94 219.13 ± 49.79 * 3.137 × 10−6

Median frequency (Hz) 323.52 ± 36.70 350.88 ± 59.34 0.0752
Bandwidth (Hz) 151.47 ± 48.43 323.44 ± 68.85 * 5.720 × 10−9

SI0–250Hz 161.12 ± 64.64 52.42 ± 55.045 * 8.480 × 10−6

SI250–500Hz 475.38 ± 215.21 60.66 ± 50.43 * 2.200 × 10−9

SI500–1000Hz 101.97 ± 75.31 24.92 ± 18.65 * 8.312 × 10−5

NSI0–250Hz 0.243 ± 0.091 0.315 ± 0.088 * 0.01696
NSI250–500Hz 0.623 ± 0.071 0.417 ± 0.028 * 8.466 × 10−13

NSI500–1000Hz 0.118 ± 0.042 0.190 ± 0.046 * 4.720 × 10−5

Duration of wheezing
sounds (milliseconds)

736.86 ± 311.40 — —

* means significance difference (p < 0.05).
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3.3. Performance of Breathing Sound Analysis Algorithm

In this section, the performance of detecting wheezing events by using the proposed breathing

sound analysis algorithm was investigated. Before evaluating the performance of the proposed

algorithm, several parameters of the binary classification test have to be defined first: true positive

(TP) denotes that a real wheezing sound event was correctly detected as a wheezing sound event.

False positive (FP) denotes that a non-wheezing sound event was incorrectly detected as a wheezing

sound event. True negative (TN) denotes that a non-wheezing sound event was correctly detected

as a non-wheezing sound event. False negative (FN) denotes that a real wheezing sound event was

incorrectly detected as a non-wheezing sound event. The experimental results for the performance

of detecting wheezing sound events are shown in Table 2. Here, a total number of 952 breathing

sound events were used for this test. The sensitivity and positive predictive values (PPVs) of detecting

wheezing sound events were about 91.51% and 100%, respectively. The false detections mainly resulted

from the decayed breathing sound, the spectral shift of wheezing sound (>250 Hz), or the interference

of environmental noise, such as the speech sound of the staff or families.

Table 2. Performance of proposed method on wheeze detection.

Wheezing Sounds Events Detected by Proposed Algorithm

+ – Total

Real breathing sound event

+ 496 (TP) 46 (FN) 542

– 0 (FP) 410 (TN) 410

Total 496 456 952

Here, + denotes wheezing event, and – denotes non-wheezing event.

4. Discussion

For the normal breathing sounds, the value of NSI0Hz–250Hz was similar to NSI250Hz–500Hz,

and larger than NSI500Hz–1000Hz. Therefore, the spectral feature of healthy breathing sounds was

exhibited as the characteristic of the low-pass filter due to the chest surface [23–25]. From the

experimental results, it was shown that the value of NSI250Hz-500Hz for wheezing sounds was larger

than that of NSI0Hz–250Hz and NSI500Hz–1000Hz, and this also indicated that the spectral distribution

of wheezing sounds mainly concentrated at a frequency range from 250 Hz to 500 Hz due to the

phenomenon of bronchoconstriction. In the previous study [26], it indicated that, for wheezing sounds,

the main frequency range in the spectrum was between 200 Hz and 600 Hz, and this also fits our

experimental results.

In the clinic, a wheezing sound is a kind of continuous musical sounds containing a specific

tone and the sinusoidal wave appearance, resulting from the airway wall oscillation and vortex

shedding in central airways [27–32]. Because of the obstructive airways, the given airflow, which

goes through the narrowing bronchus, will result in the change of airflow’s velocity, and this is also

associated with louder breathing sounds, and the larger peak intensity in the power spectrum [33–36].

From the experimental results in this study, the peak frequency and its intensity for wheezing sounds

were higher and larger than that of normal breathing sounds (about 100 Hz–300 Hz [37]). Moreover,

the bandwidth of wheezing sounds was narrower than that of normal breathing sounds. This result

also fits the above-mentioned phenomenon. However, the difference of the median frequency between

different groups was not obvious. The duration of wheezing sounds was about 736.86 ± 311.40 ms,

and this also fits the results in previous studies (over 150 ms) [23,25]. Here, the occurrences of the

FP events are mainly caused by the influence of background noise (speech voice) or artificial motion

(the friction between chest wall and acoustic sensor), and that of FN events are mainly caused from the

weaker amplitude or the shift of the wheezing features in frequency domain.

In previous studies, many methods have been proposed to investigate the features of various

abnormal breathing sounds (such as wheezing sounds) for patients with obstructive pulmonary
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diseases, and the comparison between the proposed system and other methods is summarized in

Table 3. Schreur et al. investigated the power spectrum to analyze the frequency features of breathing

sounds in patients with asthma [15]. They indicated that even though the lung function was within

the normal range, the generation or transmission of breathing sounds for the asthma group was still

different from that of the healthy control group. Moreover, the quartile frequencies in the power

spectrum of asthma group were higher than that of healthy control group, and they considered that

wheezing sounds contained the peak frequency which was above 150 Hz and was at least three times

higher than the baseline level. Uwaoma et al. developed a time frequency threshold-dependent

(TFTD) algorithm to detect wheezing sounds in a smartphone [38]. The peak frequency, the number of

consecutive harmonics, and the duration was used as the wheezing features, but they also indicated

that the peak frequency of breathing sounds, that is highly similar to that of wheezing sounds, would

easily result in the detecting failure. Jin et al. proposed a time frequency decomposition method

to obtain a noise-resistant time frequency contour and detect wheezing sounds under background

noise [39]. Riella et al. proposed an image processing method to extract the time frequency features

of wheezing sounds from the spectral projection pattern of a spectrogram [20]. They indicated that

the wheezing sounds obviously appeared as an isolated higher amplitude feature in the spectrogram.

However, it might be inconvenient for real-time wheeze detection in commercial mobile phones or

tablets, which may contain relatively low computing capability, due to the higher computational

complexity and the requirement of longer raw data. Içer et al. extracted the frequency features from

the power spectral density (PSD) based on the Welch method, and used the technique of support vector

machine (SVM) to classify different abnormal breathing sounds [18]. They indicated that the ratios

of the minimum and maximum frequency in PSD for rhonchus and crackles could be distinguished.

Lin et al. employed the order truncate average (OTA) method to enhance the features of wheezing

sounds in a spectrogram, and used the technique of back-propagation neural network (BPNN) to

detect wheezing sounds [40]. Several parameters extracted from the shape feature of breathing sounds

in spectrogram were used as the features of wheezing sounds. Lin et al. also used Mel frequency

cepstral coefficient (MFCC) and Gaussian mixture model (GMM) to detect wheezing sounds [41].

The above method could provide a good performance of detecting wheezing sounds, but they also

required more computational complexity. In Table 3, studies [20,39,40] processed spectrograms to

obtain the features of wheezes, and their computational complexities are all in O(n2). Refs. [18,38,41]

and our proposed system processed spectra from fast Fourier transform (FFT) to obtain the features

of wheezes, and their computational complexities are all in O(nlogn). Thus, Refs. [18,38,41] and our

proposed system have lower computational complexities than Refs. [20,39,40]. In Refs. [18,38,41],

they have to use classifiers to recognize wheezes, but our proposed system only uses addition

and compares with thresholds, so our proposed system has lower computational complexity than

Refs. [18,38,41].

Most of the above methods only provide the simple information in frequency domain, such as

peak frequency and median frequency, and this could not provide sufficient information to distinguish

wheezing sounds. By using time frequency analysis and the technique of supervised learning classifier

(SVM, BPNN, GMM, etc.), they could provide good performance on detecting wheezing sounds,

but they also required more computational complexity. To improve the above issue, the NSI obtained

from short-term breathing sounds was used to analyze the time frequency feature of breathing sounds

in this study. Different from other methods, which required relatively longer raw data and more

computational complexity, the proposed method could easily extract the time frequency feature

from short-term breathing sounds, and required lower computational complexity. The proposed

method could easily be implemented in commercial mobile phones or tablets, which may contain

relatively low computing capability. Moreover, by using the wearable mechanical design and wireless

communication, the proposed system could be more convenient and more free to collect the breathing

sounds in daily life than other studies in Table 3.
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Table 3. System comparison between proposed system and other systems.

R. J. Riella et al. [20] F. Jin et al. [39] C. Uwaoma et al. [38] S. Içer et al. [18] B. S. Lin et al. [40] B. S. Lin et al. [41] Proposed System

Breathing sounds Wheezing sounds Wheezing sounds
Wheezing and
crackle sounds

Rhonchus and
crackles sounds Wheezing sounds Wheezing sounds Wheezing sounds

Sensing technique – Electrical condenser
microphone Smart-phone Electronic stethoscope Electrical condenser

microphone
Electrical condenser

microphone
Electrical condenser

microphone

Measurement Location – Anterior chest – Six zones on
posterior chest Trachea Trachea Anterior chest

Feature extraction
technique

Spectral projection,
artificial neural

network

Time-frequency
decomposition,

k-nearest neighbor

Time-frequency
threshold dependent

algorithm

PSD based on
welch method, support

vector machine

Order truncate average,
back-propagation
neural network

Mel frequency cepstral
coefficient, Gaussian

mixture model

Normalized spectral
integration

Computational
complexity

High High Low Medium High Medium Low

Wearable device – No No No No No Yes

Wireless transmission No No No No No No Yes

Applications Wheeze detection Wheeze detection Wheeze detection
Analysis of abnormal

breathing sound
Wheeze detection Wheeze detection

Wheeze detection,
breathing sound

analysis
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5. Conclusions

We proposed a wearable and wireless breathing sound monitoring system. Here, a wireless

breathing sound acquisition module and a wearable mechanical design were also designed to

collect breathing sounds wirelessly in daily life. Moreover, a breathing sounds analysis algorithm,

which uses the NSI obtained from short-term breathing sounds, was also proposed to analyze the time

frequency feature of breathing sounds. The proposed algorithm required only short-term breathing

sound data and lower computational complexity. Therefore, it is suitably implemented in commercial

mobile phones or tablets, which may contain relatively low computing capability to perform real-time

wheeze detection. It could also provide the objectively quantitative information of breathing sounds

(peak frequency, median frequency, bandwidth, duration, and NSI) to the professional physicians. From

the experimental results, the features of SI250Hz-500Hz, NSI0Hz-250Hz, NSI250Hz-500Hz, peak frequency,

and bandwidth of wheezing sounds were significantly different from that of normal breathing sounds.

Therefore, the proposed system contains the potential for being developed as a useful monitoring

system for assisting with diagnosis of chronic respiratory diseases in the future.
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