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Design optimization and comparative analysis of silicon-nanowire-based
couplers

Abstract

Three kinds of highly compact 2 x 2 couplers based on silicon nanowire are designed and optimized for the
array waveguide grating (AWG) demodulation integration microsystem in this paper. These couplers are
directional (X) coupler, cross gap coupler (CGC), and multimode interface (MMI) coupler. The couplers are
simulated using the beam propagation method. The distance between the input/output waveguides is set to
10 μm considering the test of a single device in the following work. The total footprint of X coupler is 10 μmx
300 μm. The length of parallel film waveguide is 1 μm. After optimization, the minimum excess loss is 0.73 dB.
CGC has a footprint of 10 μm x 300 μm , a coupling region length of 24 μm, and a minimum excess loss of 0.6
dB. Taper waveguides are used as input/output waveguides for MMI coupler. The footprint of MMI region is
only 6 μm x 57 μm. The excess loss is 0.46 dB after optimization. Uniformity is 0.06 dB with transverse electric
polarization when the center wavelength is 1.55 μm. The maximum excess loss is 1.55 dB in the range of 1.49
μm to 1.59 μm. The simulation results show that a small 2 x 2 MMI coupler exhibits lower excess loss, wider
bandwidth, and better uniformity than X coupler and CGC. MMI coupler is suitable for the requirements of
optoelectronic integration. 2012 IEEE.
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Abstract: Three kinds of highly compact 2 � 2 couplers based on silicon nanowire are
designed and optimized for the array waveguide grating (AWG) demodulation integration
microsystem in this paper. These couplers are directional (X) coupler, cross gap coupler
(CGC), and multimode interface (MMI) coupler. The couplers are simulated using the beam
propagation method. The distance between the input/output waveguides is set to 10 �m
considering the test of a single device in the following work. The total footprint of X coupler is
10 �m� 300 �m. The length of parallel film waveguide is 1 �m. After optimization, the
minimum excess loss is 0.73 dB. CGC has a footprint of 10 �m� 300 �m, a coupling region
length of 24 �m, and a minimum excess loss of 0.6 dB. Taper waveguides are used as input/
output waveguides for MMI coupler. The footprint of MMI region is only 6 �m� 57 �m. The
excess loss is 0.46 dB after optimization. Uniformity is 0.06 dB with transverse electric
polarization when the center wavelength is 1.55 �m. The maximum excess loss is 1.55 dB in
the range of 1.49 �m to 1.59 �m. The simulation results show that a small 2 � 2 MMI coupler
exhibits lower excess loss, wider bandwidth, and better uniformity than X coupler and CGC.
MMI coupler is suitable for the requirements of optoelectronic integration.

Index Terms: Optical devices, silicon nanowire, coupler, loss, optoelectronic integration.

1. Introduction

An optical coupler is a passive optical device in the optical fiber grating demodulation system, with an

irreplaceable and important function. Developing optical couplers with low cost, high performance, and

high-level integration is urgent to meet the demodulation system requirements [1]. A directional (X)

coupler, a two-mode-interference (TMI) coupler, a cross gap coupler (CGC), and a 2 � 2 multimode

interference (MMI) coupler are designed and optimized in this paper. The X coupler depends greatly on

the wavelength and has a large footprint, with a bandwidth of only about 10 nm. The TMI coupler and
CGC have relatively smaller sizes and can be used as alternatives to X coupler. The TMI coupler and

CGC depend greatly on the wavelength and are sensitive to polarization. MMI couplers have

advantages such as compact construction, small size, simple fabrication techniques, large fabrication

tolerance, low loss, and polarization insensitivity. Thus, MMI couplers are widely used in planar

lightwave circuits [2], [3]. With the rapid development of integrated optics, MMI couplers have been

applied in M–Z interferometer, optical switches, modulators, optical multiplexer–demultiplexer devices,

Vol. 4, No. 5, October 2012 Page 2017

IEEE Photonics Journal Analysis of Silicon-Nanowire-Based Couplers



ring oscillators, and filters, among others [4], [5]. In recent years, researchers have worked on

couplers based on silicon-on-insulator (SOI) to produce couplers with smaller size or lower excess

loss [6], [7]. In 2008, Chen et al. introduced a femtosecond fiber laser applied to fabricate broadband X

couplers inside bulk glass for general power splitting application in the 1250- to 1650-nm wavelength

telecom spectrum [8]. In 2010, Tanaka et al. proposed and designed CGC based on SOI [9]. In 2012,

Halir et al. designed a colorless X coupler with dispersion engineered subwavelength structure [10]. In

2006, Solehmainen et al. designed a 2 � 2 MMI coupler based on SOI with a multimode section
footprint of 30:5 �m� 1394 �m and an excess loss of 0.5 dB [11]. In the same year, Xu et al.
designed a 2� 2 MMI coupler based on SOI with a multimode section footprint of 5 �m� 54 �m [12].

In 2011, Zhou et al. designed and fabricated 1 � 2 MMI couplers based on SOI with splitting ratios of

85 : 15 and 72 : 28 [13].

The aforementioned 2 � 2 couplers were applied in different optical devices. In this paper, the X

couplers, CGC, and MMI couplers based on SOI are designed for the array waveguide grating

(AWG) demodulation integration microsystem. The microsystem is a new kind of optical fiber

grating demodulation scheme that is suitable for optoelectronic integration. The feature of our
research subject is that the devices used in fiber grating demodulation system will be integrated on

a single chip. It is a work that is different from Tanaka’s. The couplers are used in the C-band

because the light source for the fiber Bragg grating (FBG) demodulation system is usually in the

C-band. The splitting ratio of the couplers should be 50:50 to obtain the maximum power for AWG.

The couplers are simulated using the beam propagation method (BPM). This paper analyzes how

the input/output waveguides affect the coupling length of X couplers. We also analyze how the

multimode waveguide width affects the coupler properties [14], optimizes input/output waveguide to

reduce loss, and analyzes coupler bandwidth [15]. Compared with previously designed couplers, the
2 � 2 couplers designed in this paper are highly compact, and MMI couplers exhibit low loss and

wide bandwidth.

2. Design and Optimization of 2 � 2 Couplers

2.1. Designing Material

In this paper, SOI is selected as the material during simulation. SOI is a prominent platform for

microelectronics and optoelectronics. As a material used in waveguide devices, SOI displays

superiority in the following aspects: compatibility with silicon processing, convenient for electronic

integration and photonic integration, waveguide characteristics, fast operation in optical circuit, and

radio protection. SOI can be used in optical device interconnection and can be applied in military

devices. Extremely small devices can be fabricated on SOI substrates because of the ultrahigh

refractive index contrast between Si and SiO2. Bent waveguides with smaller radius of curvature
can be realized on SOI substrates. The refractive index contrast can be expressed as

� ¼
n1 � n2

n1
� 100% ¼ 58:1% (1)

where n1 is the refractive index of Si ðn1 ¼ 3:46Þ, and n2 is the refractive index of SiO2 ðn2 ¼ 1:45Þ.

2.2. Design and Optimization of Directional (X) Coupler

X coupler is based on the principle of power exchange between two waveguides approaching

each other. The coupling region of X coupler is composed of two parallel film waveguides. The
splitting ratio can be controlled by adjusting the coupling region length. The schematic of transverse

coupling is shown in Fig. 1.

In weak coupling, the optical field of composite waveguides can be expressed as

Em ¼ A1ðzÞE1 þ A2ðzÞE2

Hm ¼ A1ðzÞH1 þ A2ðzÞH2:

�

(2)
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The coupling length can be expressed as

L ¼
�

ðne � noÞk0
(3)

where ne is the effective refraction index of the even symmetrical mode, no is the effective refraction

index of the odd symmetrical mode, and k0 is the vacuum vector. The coupling length for 3-dB X

coupler is expressed as

L3dB ¼
L

2
¼

�

2ðne � noÞk0
: (4)

X coupler is simulated via BPM. The waveguide width is expressed as w . The distance between

two parallel film waveguides is expressed as s. The optical field and output power of X coupler with

different w and s are shown in Fig. 2.

The best simulation results of X coupler are shown in Fig. 2(e). The excess loss of the device is

about 0.73 dB, and the footprint is 300 �m� 10 �m. The layout and detailed parameters of the

coupler are shown in Fig. 3.

2.3. Design and Optimization of CGC

CGC is a coupler that has an X-junction with an internal cross-sectional mirror. The gap in CGC

between two waveguides functions as a half-mirror. The principle of CGC is similar with X coupler.

The difference between the two couplers is that the input/output waveguides of CGC are linear.

CGC is simulated via BPM in the present paper. The waveguide width is expressed as w . The

gap is expressed as s. The optical field and output power of CGC with different w and s are shown

in Fig. 4.
The best simulation results of CGC are shown in Fig. 4(e). The excess loss of the device is about

0.6 dB, and the footprint is 300 �m� 10 �m. The layout and detailed parameters of the coupler are

shown in Fig. 5.

Table 1 shows the comparison of CGC and X coupler in Figs. 2 and 4. L stands for the input/

output waveguide length, Ls stands for the coupling region length, and EL stands for the excess

loss of the coupler.

As Fig. 2 and Fig. 4 show, the coupling region of X coupler exchanges energy periodically by

coupling between the two parallel film waveguides. The output waveguides are set in the first period
to reduce coupler length. The greater s is, the longer the coupling length. In the same w and s
values, the coupling length of X coupler is relatively short, compared with CGC (see Figs. 2 and 4).

This observation is because bent waveguides with straight lines can also bring the transverse

coupling effect. Thus, after bent waveguides connect, the original coupling region length is longer.

The splitting ratio can be unchanged if the coupling region length is reduced after using bent

waveguides. In the same footprint, CGC coupler has better performance than X coupler.

Fig. 1. Schematic illustration of transverse coupling.
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2.4. Design and Optimization of 2 � 2 MMI Coupler

The MMI coupler based on the self-imaging principle [14] has three kinds of interference

mechanism, namely, general, paired, and symmetrical.

Paired interference is selected in the present paper. Input waveguides are set in the position

�we=6 of the multimode waveguide

we ¼ w þ
�0

�
�

nc
nr

� �2�

n2
r � n2

c

� ��1
2 (5)

Fig. 3. Layout and detailed parameters of X coupler.

Fig. 2. Optical field of X coupler when (a) w ¼ 0:35, s ¼ 0:05; (c) w ¼ 0:35, s ¼ 0:2; and (e) w ¼ 0:55,
s ¼ 0:2 �m. Output power of X coupler when (b) w ¼ 0:35, s ¼ 0:05; (d) w ¼ 0:35, s ¼ 0:2; and
(f) w ¼ 0:55, s ¼ 0:2 �m.
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where w is the multimode waveguide width, �0 is the center wavelength, � ¼ 0 is set for TE mode,

� ¼ 1 is set for TM mode, nc is the effective refractive index of cladding, and nr is the effective

refractive index of core.

The multimode waveguide length can be expressed as follows:

LMMI ¼
L�
2

¼
�

2ð�0 � �1Þ
�

2nw2
e

3�0
(6)

where L� represents the coupling length of the two lowest-order modes. �0 and �1 are the

propagation constants of the lateral mode 0 and mode 1, respectively.

Fig. 5. Layout and detailed parameters of CGC.

Fig. 4. Optical field of CGC when (a) w ¼ 0:35, s ¼ 0:05; (c) w ¼ 0:35, s ¼ 0:2; and (e) w ¼ 0:55,
s ¼ 0:2 �m. Output power of CGC when (b) w ¼ 0:35, s ¼ 0:05; (d) w ¼ 0:35, s ¼ 0:2; and (f) w ¼ 0:55,
s ¼ 0:2 �m.
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According to (5), in the weak restrictive waveguide, we can obtain nc=nr � 1. In either TE or TM

polarization mode, the obtained LMMI values are approximately equal. Thus, MMI coupler has good

polarization properties in the weak restrictive waveguide. However, in strong restrictive waveguide,

e.g., nc ¼ 1:45, nr ¼ 3:46, nc=nr ¼ 0:419, and w ¼ 6 �m, we obtain that LMMI � 56:41 �m in TE

polarization mode and LMMI � 54:07 �m in TM polarization mode according to (5) and (6). The LMMI

values in different polarization mode show relatively larger difference. Thus, the coupler has

relatively poor polarization properties in strong restrictive waveguide.

In this paper, the coupler is simulated via BPM. The multimode waveguide width is expressed as

w . The couplers with w of 48, 24, 15, 12, and 6 �m are simulated in this paper. Fig. 6 shows the

optical field and output power of MMI coupler when w ¼ 48 �m and 12 �m. A greater w value

results in increased model numbers that can be stimulated, clearer image points, and less excess

loss. However, this value also produces a larger device, as shown in Fig. 6. Therefore, the

multimode waveguide width is gradually reduced from w ¼ 48 �m to achieve a smaller 2 � 2 MMI

coupler with good properties.

Fig. 6. Optical field of MMI coupler when w ¼ (a) 48 �m and (c) 12 �m. Output power of MMI coupler
when w ¼ (b) 48 �m and (d) 12 �m.

TABLE 1

Comparison of CGC and X Coupler
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Fig. 7 shows how the multimode waveguide width affects insert loss, excess loss, and splitting

ratio. The insertion and excess losses of the coupler increase with decreasing w when w � 48 �m.

When 6 �m � w � 48 �m during the simulation process, the change is not apparent. Reducing w

from 6 �m to 3 �m results in increased excess loss, poor device uniformity, and vague image

points.

Taking the device footprint and excess loss into account, w ¼ 6 �m is eventually selected. When

w ¼ 6 �m, we can calculate LMMI as 56.41 �m [(5) and (6)]. The image points are observed and

analyzed during the simulation process to reduce excess loss and determine the best image points.

LMMI ¼ 57 �m is eventually selected. The optical field and output power of MMI coupler with a linear

input/output waveguide are shown in Fig. 8.

Input/output waveguides are designed as tapered waveguides during optimization process to

make the image point clearer, improve splitting ratio, and reduce loss. Fig. 9 shows the optical field

and output power of MMI coupler after optimization. Before optimization, the excess loss of the

coupler is 1.09 dB, and the splitting ratio is 0.903. After optimization, the excess loss of the coupler

is 0.46 dB, and the splitting ratio is 1.013.

The center light wavelength � is changed to analyze the coupler performance. Fig. 10 shows how

the center wavelength affects insert loss, excess loss, and splitting ratio. Within a spectral range of

1.49 �m to 1.59 �m, excess loss is less than 1.55 dB. The simulation results show that the designed

coupler has a wide range of wavelength response.

Fig. 8. (a) Optical field and (b) output power of MMI coupler with a linear input/output waveguide when
w ¼ 6 �m.

Fig. 7. Insert loss, excess loss, and splitting ratio versus w .
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Fig. 11 shows the layout of the designed 2 � 2 MMI coupler. The footprint of MMI regions is only

6 �m� 57 �m. The end of the input/output waveguides connected to the multimode waveguide is

set to 1 �m. The other side of the waveguides numbered as 1, 2, and 4 are set to 0.65 �m, whereas

3 is set to 0.35 �m.

The designedMMI coupler in Fig. 11 can be applied directly to themicrosystem. But we also need to

test the coupler separately. The core diameter of single-mode fiber is between 4 �m and 10 �m,

whereas the distance between the two output waveguides is only 2 �m. The coupler needs to be

connected to the single-mode fiber using size spot converter, so the s-bend waveguide at the end of

the output waveguides is used. The distance between output waveguides is set to 10 �m. Fig. 12

shows the optical field and output power of MMI coupler with s-bend waveguides.

Fig. 10. Insert loss, splitting ratio, and excess loss versus �.

Fig. 11. Layout of the 2 � 2 MMI coupler when w ¼ 6 �m.

Fig. 9. (a) Optical field and (b) output power of MMI coupler with a tapered input/output waveguide when
w ¼ 6 �m.
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3. Comparison of the Designed Couplers

As mentioned above, the couplers have better polarization properties in the weak restrictive
waveguide than in strong restrictive waveguide. Moreover, theMMI coupler based onSOI have better

polarization properties than X coupler and CGC. For MMI coupler, when w ¼ 6 �m, we can calculate

that LMMI has a difference of 2.34 �m in TE and TM polarization modes, while the coupling region

length of X coupler and CGC have a difference of more than 3 �m in TE and TM polarization mode.

The simulation results show that X coupler dependsgreatly onwavelengthandhas a large size. In the

same footprint, CGC has relatively smaller loss and can be used as alternatives to X coupler. However,

CGC also depends greatly on wavelength and is sensitive to polarization. MMI couplers have

advantages such as compact construction, small size, simple fabrication techniques, large fabrication
tolerance, low loss, and polarization insensitivity. Thus, MMI couplers are widely used in planar

lightwave circuits. Table 2 shows a comparison of three kinds of couplers designed in this paper.

4. Conclusion

This paper has introduced the design of 2 � 2 coupler with silicon photonic nanowires for AWG

demodulation integration microsystem. Three kinds of 2 � 2 couplers have been simulated through

BPM. Compared with CGC and X coupler, MMI coupler has advantages of smaller footprint, lower

loss, and wider bandwidth. During the simulation process, the best image points are found
according to the self-imaging principle, and the input/output waveguides are optimized. The total

footprint of the designed MMI coupler is 6 �m� 100 �m. The excess loss of the coupler after

optimization can reduce to 0.46 dB, and the uniformity can reduce to 0.06 dB. The coupler has good

properties within 1490 nm to 1590 nm. The designed coupler is highly compact and exhibits low

excess loss, wide bandwidth, and good uniformity. The MMI coupler can meet the optoelectronic

integration requirements.

Fig. 12. (a) Optical field and (b) output power of MMI coupler with s-bend waveguides when w ¼ 6 �m.

TABLE 2

Comparison of 2 � 2 Couplers
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