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Abstract
An optimization algorithm for the design of combinational circuits
that are robust to single-event upsets (SEUs) is described. A sim-
ple, highly accurate model for the SEU robustness of a logic gate
is developed. This model – in posynomial form – is integrated with
performance and power constraints into an optimization framework
based on geometric programming for design space exploration. Sim-
ulation results for design optimization using simultaneous dual-
VDD and gate sizing techniques for the 70 nm process technology
demonstrate the tradeoffs that can be achieved with this approach.

1. Introduction
Technology trends, including smaller feature sizes, lower volt-

age levels, higher operating frequencies, and reduced logic depth
are projected to cause an increase in the soft error failure rate in
sub-100 nm integrated circuits [1–3]. Soft errors occur as a result
of single-event upsets (SEUs) caused by high-energy neutron or
alpha particle strikes in integrated circuits. Although soft errors
cause no permanent damage, they can severely limit the reliability
of electronic systems.

Although several design as well as error detection and correction
solutions for reliability to soft errors in memories, flip-flops, and
latches have been proposed in literature (e.g., [4, 5]), there are rel-
atively few techniques that are cost-effective for use in multi-level
combinational logic circuits. The applicability of these techniques
to combinational circuits is limited owing to (i) the irregular multi-
level structure of combinational circuits that leads to very high de-
sign overhead and (ii) the high cost of error detection, correction,
and recovery required to support such techniques.

Two circuit design techniques that have been used successfully
to harden memories (both static and dynamic) to SEUs are the use
of (i) high supply voltage VDD and (ii) large cells with high drive
strength transistors. By increasing VDD, the charge stored in the
memory cell is increased. By increasing the drive strength of the
transistors, the charge deposited due to a particle strike is dissipated
faster. Both techniques increase SEU robustness by increasing the
particle energy threshold required to cause SEUs. Such design for
SEU robustness techniques are very attractive (i) since they do not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD 2006, November 5–9, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-381-1/06/0011 ...$5.00.

incur any overhead for error detection, correction, and recovery and
(ii) since they can be used to complement other techniques that en-
hance SEU robustness such as the use of silicon-on-insulator sub-
strates, error detection and correction hardware, etc. Recently, tran-
sistor and gate sizing has been shown to be a promising solution
for the design of logic circuits that are robust to SEUs (e.g., [6, 7]).
These state-of-the-art sizing techniques for SEU robustness rely on
rank-and-optimize or sensitivity-driven heuristics to reduce the soft
error failure rate. Such heuristics usually optimize the cost func-
tion in a local neighborhood, and do not guarantee convergence to
the optimum solution. Furthermore, they usually impose a delay
penalty on the hardened design – this may be unacceptable, espe-
cially for high-performance designs.

Better design space exploration and control over design overhead
can be achieved through the use of global optimization approaches
that allow simultaneous tradeoffs between traditional objectives of
area-delay-power and robustness to SEUs. The use of circuit op-
timization techniques based on geometric programming (GP) and
generalized GP (GGP) can be traced back to the TILOS paper on
optimum sizing for delay [8]. Such approaches have since been
used with great success on problems in transistor and gate sizing,
multi-VDD, and multi-VT optimization in literature [9]. In this pa-
per, a simple, highly accurate, and comprehensive model for the
SEU robustness of a logic gate is developed. The model inte-
grates factors such as transistor size W , supply voltage VDD, and
threshold voltage VT that are central to post-mapping transforma-
tions such as gate resizing, fanout optimization, resynthesis and
remapping, etc. [10] ensuring compatibility with global optimiza-
tion flows. This model is integrated with power and performance
constraints into a global optimization framework based on GP for
design optimization for robustness to SEUs.

To the best of our knowledge, this is the first work that inte-
grates a SEU robustness model into GP-based global design op-
timization flows based on simultaneous dual-VDD and gate sizing
techniques. Such SEU robustness driven design techniques will
lessen the investment in SEU analysis and hardening strategies in
the latter stages of the design process. They are advantageous over
rank-and-optimize and sensitivity-driven heuristics that, although
effective, may not provide the best design alternatives to choose
from. Simulation results for several logic circuits in the 70 nm pro-
cess technology are presented to illustrate the tradeoffs that can be
explored with this approach.

The paper is organized as follows. In Sec. 2, we describe the
standard GP-based optimization algorithm for design using simul-
taneous sizing and dual-VDD techniques. In Sec. 3, we describe
the proposed model and derive closed-form size-for-robustness ex-
pressions for use in GP-based design optimization. In Sec. 4, we
present and discuss simulation results. Section 5 is a conclusion.
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2. Circuit optimization background
The use of circuit optimization techniques based on GP and GGP

can be traced back to the TILOS paper on optimum sizing for de-
lay [8]. Such approaches have since been used with success on
problems in transistor and gate sizing, multi-VDD, and multi-VT

optimization in literature [9].

GP for minimum power: It is possible to formulate the problem
of design optimization for minimum power using gate sizing and
dual-VDD techniques – subject to performance constraints on de-
lay Tspec at the primary outputs – as follows. We term this algo-
rithm PD for power-delay optimization.

PD : Minimize design power
Xn

i=1
Pdyn,i + Pstat,i (1)

where



Pdyn,i = αsw,i Cout,iV
2
DD,i

Pstat,i = Wi Ileak,iVDD,i

Subject to the following constraints

Wmin,i ≤ Wi ≤ Wmax

VDD,min ≤ VDD,i ≤ VDD,max

ff

i = 1, 2, ..., n

VDD,i ≥ VDD,j j ∈ fanout(i) and i = 1, 2, ..., n
δi + Tj ≤ Ti j ∈ fanin(i) and i = 1, 2, ..., n
Ti ≤ Tspec i ∈ primary outputs

where

1. Pdyn,i and Pstat,i are the dynamic and static power compo-
nents of the ith gate,

2. αsw,i is the switching activity of the ith gate,
3. Cout,i is the total capacitance (load and parasitic) at the ith

gate given by

Cout,i =

„

WiCint,i +
X

j∈fanout(i)
Cin,jWj + CL

«

,

4. Wi is the size of the ith gate,
5. Cint,i is the output capacitance of the unit-scaled gate,
6. Cin,j is the input capacitance of the unit-scaled gate,
7. CL is the load capacitance if the ith gate is a primary output

and 0 otherwise,
8. VDD,i is the supply voltage of the ith gate,
9. Ileak,i is the leakage current of the unit-scaled gate,

10. δi is the delay of the ith gate given by

δi = RiCint,i + (Ri/Wi)

„

X

j∈fanout(i)
Cin,jWj + CL

«

,

11. Ti is the arrival time at the output of the ith gate,
12. Tspec is a specified circuit delay, and
13. Ri is the resistance of the unit-scaled delay-calibrated gate.

Here, Wi and VDD,i are the variables of algorithm PD. The ar-
rival times Ti are intermediate variables used to express delay con-
straints. The GP formulation requires that dynamic power, static
power, and delay be expressible as posynomial functions in the
variables of the GP [9]. Although we refer to transistor sizes and
use Wi in the formulation, we limit ourselves to symmetric gate
sizing in this paper. Thus, scaling a single transistor through Wi is
equivalent to scaling all transistors (nMOS and pMOS) in the gate
by the same ratio. Also, the solution of the above GP formulation
results in the supply VDD,i assuming continuous values over the
range. Our implementation of PD uses standard branch-and-bou-
nd techniques from literature to solve this GP problem to obtain
discrete values for VDD,i [11, 12].

3. Closed-form circuit-level SEU model
In this section, we use linear gate models to derive closed-form

expressions for the waveform of the SEU-induced transient. We
extend this model to derive closed-form expressions for the gate
size and supply required to limit the magnitude of the SEU-induced
transient to less than a pre-specified value at the site of the strike,
say, ηVDD. These closed-form expressions yield posynomial SEU
robustness constraints as functions of Wi and VDD,i that are the
variables of the GP algorithm PD. The constraints are integrated
into algorithm PD to optimize the design globally for SEU robust-
ness (algorithm PDS , Sec. 3.3).

Consider a gate driving one or more identical gates in its transi-
tive fanout to two (or more) levels of logic that approximate loading
conditions. A SEU-induced transient to logic 1 (logic 0) refers to
the case when the steady-state logic value at the output of the gate
is logic 0 (logic 1) in the fault-free case and a SEU generates a
positive (negative) transition to logic 1 (logic 0). The worst-case
transient occurs when the site for the particle strike is the gate out-
put, since transients at internal nodes are reduced in severity before
they propagate to the output of the gate. Without loss of general-
ity, the analysis in this section discusses only 0 → 1 SEU-induced
transients; 1 → 0 SEU-induced transients can be analyzed in a
similar manner by symmetry.

The charge deposition due to a particle strike at the output of
the gate is modeled by a parameterized, double-exponential current
pulse Iin(t) at the output [13]:

Iin(t) =
Q

(τα − τβ)

“

e−t/τα − e−t/τβ

”

(2)

where Q is the charge (positive or negative) deposited as a result
of the particle strike, τα is the collection time-constant of the junc-
tion, and τβ is the ion-track establishment time-constant. τα and
τβ are constants that depend on process-related factors. Note that
limt→∞

R t

0
Iin(x)dx equals Q for conservation of charge. Note

also that this model can be replaced by the weighted, single-pole
current pulse model for SEUs [14] without loss of generality.

3.1 Motivation
We begin by presenting the results of SPICE simulations to moti-

vate the advantages of using gates with larger size and supply volt-
age to achieve SEU robustness. Consider a fanout-of-2 chain of
2-input nand gates. The output response of the nand gate to SEUs
that deposit 15 fC and 20 fC of charge to produce 0→1 transients
– for combinations of gate size and supply voltage – is presented in
Fig. 1. τα and τβ were 50 ps and 1 ps for the simulations.

Sub-figures 1(a) and 1(b) correspond to 15 fC charge deposition.
Sub-figures 1(c) and 1(d) correspond to 20 fC charge deposition.
In each sub-figure, it is clear that the magnitude and duration of the
SEU-induced transient diminishes as the gate size increases from 4
to 6. Further, for a particular gate size, use of a high supply voltage
of 1.2 V reduces the magnitude and duration of the SEU-induced
transient at the output of the gate. This is observed by comparing
the corresponding waveforms between sub-figures 1(a) and 1(b),
and sub-figures 1(c) and 1(d) respectively. Both sizing and high-
VDD increase the drain current ID through the nMOS transistors
and thus increase the robustness of the gate to SEUs.

Although it is possible to use SPICE simulations to determine
optimum size and VDD assignments to a gate in isolation, such
an approach is not only computationally expensive but also sub-
optimal. This is because sizing as well as VDD assignments affect
both the fanin and the fanout from delay, power, and SEU robust-
ness stand-points. Whereas the standard posynomial models for
delay and power account for these effects and have been widely
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Figure 1: SPICE simulations of particle strikes of 15 fC and
20 fC charge at a nand gate, whose size and VDD are varied.

studied in literature, analogous models for SEU robustness have
never been explored. In the next sub-section, a linear modeling
approach to evaluate the SEU robustness as a function of charge,
gate size, supply voltage, and load capacitance is developed. Such
a model finds direct application in traditional GP-based design op-
timization flows described in Sec. 2.

3.2 Closed-form circuit-level SEU model
The differential equation of the SEU-induced transient at the out-

put of the gate is given by

Cout
dVout

dt
= Iin(t) − ID(t) (3)

where Cout is the total capacitance (load and parasitic) at the output
node, Iin(t) is the model for the SEU, and ID(t) is the current in
the transistor network restoring the output to its fault-free value.

Linear gate modeling techniques are widely used in delay and
power modeling, and can be used to derive closed-form expressions
for the waveform and peak of the SEU-induced voltage transients.
This approach is effective and appropriate when the primary goal
is to determine the minimum gate size that reduces the magnitude
of the SEU-induced transient at the output of the gate to less than a
pre-specified value ηVDD. Note that the nMOS transistor network
of the gate is in the linear region of operation as long as ηVDD is
less than (VDD−VT), where VGS is assumed to be VDD. Hence the
current ID(t) can be approximated by Vout/RSEU, where RSEU

is the equivalent resistance of the nMOS transistor network in the
linear region of operation. Based upon this, the solution to Eqn. (3)
is given by

Vout(t) =
QRSEU

τα − RSEUCout

“

e−t/τα − e−t/RSEUCout
”

. (4)

Note that τβ adds an exponential term to Eqn. (4) that is negligi-
ble, and is ignored from here on for simplicity. The peak value of
the SEU-induced voltage transient Vmax is obtained by differenti-
ating the above solution, solving for tmax, and by resubstitution in
Eqn. (4). Let µ ≡ τα/RSEUCout for ease of notation. Then,

Vmax =
QRSEU

τα
µ

1
1−µ . (5)

Parameterized model for Vmax: Parameterization of this model is
achieved based upon simplification of the µ

1
1−µ term and an equiv-

alent linear model for the resistance RSEU of the nMOS network.
The function µ

1
1−µ is well approximated by kµµγ with a goodness

of fit value of 0.98 when γ = 0.4 and 0.25 ≤ µ ≤ 5. This range
of values for µ corresponds to a gate delay of 10–200 ps, which
is valid for current process technologies. In the linear regime, the
resistance RSEU of the nMOS network is given by

RSEU =
knMOS

(VDD − VT)W
(6)

where W is the gate size, VT is the threshold voltage, and knMOS

is a constant. Resubstitution of these expressions for µ
1

1−µ and
RSEU in Eqn. (5) for the peak value of the SEU-induced voltage
transient at the output gives

Vmax = kµQτγ−1
α

„

knMOS

(VDD − VT)W

«1−γ

C−γ
out. (7)

Conditions for SEU robustness: Without loss of generality, let
Vmax ≤ ηVDD for the SEU-induced transient to be dissipated lo-
cally without sufficient magnitude and duration to propagate through
the fanout gates. Upon simplification of the expression (7) using
this inequality, the condition for SEU robustness is given by

kW−1(VDD − VT)−1

„

Q

VDD

«1+β

C−β
out ≤ 1 (8)

where β = γ
1−γ

and k = knMOSτ−1
α (kµ/η)1+β . Based upon

this, the constraints for SEU robustness that can be integrated into
algorithm PD described in Sec. 2 will be given by Eqn. (8) for all
(or a subset) of the gates in the design. In order to increase the
accuracy of the expressions in Eqn. (8) in comparison to SPICE
simulations, a three-parameter model for Eqn. (8) given by

kW−1V −1
DD

„

Q

VDD

«1+β0

C−β1
out ≤ 1 (9)

is derived using SPICE-based calibration runs. Note that (VDD −
VT)−1 is approximated by V −1

DD to the first order in Eqn. (9). The
parameters k, β0 and β1 are obtained by data fitting the simula-
tion results obtained from SPICE. The parameters β0 and β1 were
found to lie in the interval [0.5 , 0.8] in our simulations. The main
difference between the expressions in Eqn. (8) and Eqn. (9) is that
the parameters in Eqn. (9) are further tuned by SPICE simulations
to increase the accuracy, with a maximum error of 0.5 times the
size of a unit-scaled gate (Sec. 4.1).

Compact robustness model: In order to determine the constraints
for SEU robustness, it is necessary to use a robustness charge Qrob

as a figure-of-merit during design analysis and optimization. Qrob

could be the nominal or the maximum charge deposited by particle
strikes for a process technology, and can be determined using actual
measurements with test structures or by 3-dimensional device sim-
ulations. For a given Qrob, the optimum size W and supply volt-
age VDD can be determined during design-space exploration using
dual-VDD and gate sizing. Thus, for a given Qrob, the compact
model for SEU robustness is given by the following expression:

k′W−1(VDD)−2−β0(Cout)
−β1 ≤ 1 (10)

where k′ equals k(Qrob)1+β0 . This expression is used to derive
robustness constraints for all (or a subset of) the gates in the design
for incorporation into the PD algorithm, as described in Sec. 3.3.
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3.3 Optimization for SEU robustness
The SEU robustness constraints for minimum gate size derived

in the previous section can be incorporated into the PD optimiza-
tion framework to obtain the power-delay-SEU (PDS) optimiza-
tion algorithm as follows. For every gate in the design, consider an
additional constraint of the form

k′
iW

−1
i (VDD,i)

−2−β0(Cout,i)
−β1 ≤ 1 i = 1, 2, ..., n (11)

where k′
i is a constant for each type of gate (inverter, 2-input nand,

etc.), VDD,i is the supply voltage of the ith gate, and Cout,i is the
total capacitance at the output of the ith gate. Cout,i is given by

Cout,i =

„

WiCint,i +
X

j∈fanout(i)
Cin,jWj + CL

«

that is an affine function. Note that CL is non-zero only for primary
outputs and is included here without loss of generality. Since β1 >
0, Eqn. (11) for SEU robustness does not have a posynomial form
for direct integration into the GP-based algorithm PD.

The expression for Cout,i can be bounded using the well-known
inequality that the arithmetic mean (AM) ≥ geometric mean (GM).
Let m be the number of terms in Cout,i. For an internal gate, m is
|fanout|+1 and for a primary output, m is |fanout|+2 since there
is an additional load term CL. Since Cout,i has strictly positive
terms, the AM ≥ GM inequality applied to Cout,i gives

WiCint,i +
P

j∈fanout(i) Cin,jWj + CL

m

≥
„

WiCint,i ·
Y

j∈fanout(i)
Cin,jWj · CL

«1/m

(12)

Rearranging terms to recover Cout,i from Eqn. (12),

Cout,i ≥
 

m

„

WiCint,i ·
Y

j∈fanout(i)
Cin,jWj · CL

«1/m

≡ Mi

!

Since Cout,i ≥ Mi and since k′
i and β1 are positive,

k′
iW

−1
i (VDD,i)

−2−β0C−β1
out,i ≤ k′

iW
−1
i (VDD,i)

−2−β0M−β1
i

(13)

and the SEU robustness conditions in Eqn. (11) can be rewritten in
the form

k′
iW

−1
i (VDD,i)

−2−β0C−β1
out,i ≤ k′

iW
−1
i (VDD,i)

−2−β0M−β1
i ≤ 1

(14)

Since Mi is a monomial, the AM ≥ GM transformation allows
the original SEU robustness constraints in terms of Cout,i to be re-
expressed using the monomial Mi. The SEU robustness constraints
derived from Eqn. (14) in the form k′

iW
−1
i (VDD,i)

−2−β0M−β1
i ≤

1 are posynomial. If these constraints are satisfied, it follows from
Eqn. (14) that the original SEU robustness constraints in Eqn. (11)
are also satisfied. The posynomial constraints can be integrated
into the basic PD algorithm, and we term this algorithm PDS for
power-delay-SEU optimization.

An error is introduced by the AM ≥ GM inequality. The gap
between the AM and the GM depends on the distribution of the
data points in the inequality. In the SEU constraints, the data points
are the Wi and Wj terms in Cout,i. Our simulations indicate that
this approximation is highly accurate in practice since design op-
timization tends to size gates evenly across the design. As a re-
sult, the sizes Wi and Wj are clustered close enough to the average
that over-optimization is minimal. The average over-approximation
across all the benchmark circuits in our simulations was 2.5%.

4. Results
The geometric programming framework for circuit optimization

was implemented using the optimization tool MOSEK [15]. The
SPICE library for the 70 nm technology node was obtained from
the Berkeley predictive technology model [16]. Twelve combina-
tional benchmark circuits were chosen from the ISCAS85 and LG-
Synth91 suite [17]. We used τα = 50 ps and SEU robustness
charges of 15 fC and 20 fC in all our simulations. We built a tech-
nology library that comprised inverters, and 2-input and 3-input
nand and nor gates of different drive strengths for initial synthe-
sis of the benchmarks. The optimization for SEU robustness was
performed on these synthesized netlists. η was set to 0.5, so Vmax

(Vmin) was 0.5VDD for 0 → 1 (1 → 0) SEU-induced transients.

4.1 Model validation
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Figure 2: This figure illustrates the accuracy of the compact
robustness model given by Eqn. (10) for a 2-input nand gate
for a dual-VDD technology. It is clear that the optimum size for
SEU robustness is estimated to within 0.5 times the size of the
unit-scaled gate over the range of circuit configurations.

Fig. 2 presents the results of simulations that were performed to
validate the compact robustness model given by Eqn. (10). Simula-
tions were performed on 2-input nand gates over a range of load ca-
pacitance and two supply voltages (1.0 V and 1.2 V). In all cases,
the gate size required to limit the peak of the SEU-induced volt-
age transient to 0.5VDD was determined using the compact models
as well as using SPICE simulations. The minimum and maximum
load capacitances chosen for model validation include fanout-of-1
to fanout-of-4 circuits with gate sizes ranging from 2 to 10 units.
The maximum error in size for SEU robustness determined using
the model was 0.5 times the size of the unit-scaled 2-input nand
gate. Similar results were observed for the other logic gates that
were used for synthesis of the benchmarks.

4.2 Benchmark cu
Before presenting the results of optimization on all benchmarks,

we present a case study of the power versus delay curves for the
benchmark cu in 70 nm technology in Fig. 3. The results of opti-
mization in both PD and PDS using continuous values for VDD

are in solid lines. The results of optimization for discrete VDD is
presented in dashed lines. The conventional power-delay curve is
labeled the PD curve. The two PDS curves are obtained when cu
is optimized for SEU robustness with charges Qrob of 15 fC and
20 fC respectively.

At large values of delay ∆, the gates in PD are near the mini-
mum size and there is a power overhead to achieving SEU robust-
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Figure 3: This figure illustrates the power versus delay curves
for the benchmark circuit cu in 70 nm technology. The solid
(dashed) curve corresponds to the continuous (discrete) ver-
sion of PD and PDS in each case. For large delay ∆, the
power of the design optimized for SEU robustness by PDS is
greater than that of the design optimized for power-delay by
PD. For the same delay ∆, the overhead for a SEU robustness
charge Qrob of 15 fC is less than that for a Qrob of 20 fC. As ∆
decreases, the delay constraints dominate the SEU robustness
constraints and all the curves converge.

ness with PDS . Both PD and PDS use sizing exclusively, and
only low-VDD assignments are made in this region. Note also that
for the same delay ∆, the power overhead for a Qrob of 15 fC is
less than the power overhead for a Qrob of 20 fC. As delay ∆ is
continuously reduced, the gates start increasing in size and both
PD and PDS begin high-VDD assignments. There are jumps be-
tween the discrete and continuous versions of both PD and PDS
in this range of delay ∆ in all three cases when mixed VDD assign-
ments are made. This is because the continuous algorithm always
returns a lower bound on the power by making VDD assignments
over the available range. As delay ∆ is further reduced, one or
more arrival time constraints in the optimization formulation begin
to dominate the SEU robustness constraints at one or more gates.
Over this range of delay ∆, both PD and PDS prefer high-VDD

assignments. Thereafter, after the flexibility afforded by high-VDD

is exhausted, both use sizing exclusively to meet delay constraints.
As a result, the continuous and discrete versions of both PD and
PDS converge since all supply voltages are set to high-VDD val-
ues. On the far left, i.e., at very low delay ∆, the delay constraints
dominate the SEU robustness constraints at all the gates and the
SEU robustness constraints are trivially satisfied. At this point, the
three curves converge as seen in the figure. Since the overhead for
20 fC Qrob is higher than the overhead for 15 fC Qrob, the curve
for 15 fC Qrob converges with the base PD curve earlier.

4.3 Optimization results
The results for design optimization of twelve logic circuits from

the ISCAS85 and LGSynth91 suite [17] is presented in Fig. 4. Note
that we chose circuits that were purely logic or a mixture of logic
and control for the experiments.

Fig. 4 presents power and area overhead (in %) when the bench-
marks are optimized using PD and PDS to meet a delay constraint
of Tspec, 1.15 Tspec, and 1.3 Tspec on all outputs using simultane-
ous dual-VDD and gate sizing. The value of Tspec for each bench-
mark was set to ∆min + 0.1(∆max − ∆min), where ∆min and
∆max are the minimum and maximum delays for the design [18].
The power and area overhead for SEU robustness for the high per-

formance design that meets Tspec is reported in the first row of the
figure. The Tspec values are then relaxed by 15% and 30% from
this optimum and the power and area overhead for SEU robustness
are reported in the second and third rows of the figure respectively.
In all three cases, the overhead for SEU robustness is reported with
respect to the total power and area of the design optimized using
the PD algorithm for that value of Tspec. At Tspec, 1.15 Tspec, and
1.3 Tspec, the average power overhead for 15 fC Qrob was 5.7 %,
12 %, and 20.6 %; the average area overhead was 7.0 %, 10.6 %,
and 28.2 %. Similarly, the average power overhead for 20 fC Qrob

was 23.8 %, 33.9 %, and 55.0 %; the average area overhead was
26.4 %, 32.5 %, and 53.2 % respectively.

The maximum runtime for i10, the largest circuit with 2950
gates, was 118 minutes (50 seconds) for discrete (continuous) op-
timization on a 2.4 GHz Opteron processor with 4 GB of memory.
The maximum runtime usually occurs when the design is optimized
for 1.15 Tspec, since there is extensive use of dual-VDD optimiza-
tion without saturation to exclusive use of low-VDD or high-VDD

across the design. The discrete optimization algorithm has a longer
runtime since the branch-and-bound technique makes several itera-
tions of the continuous optimization algorithm to discretize all VDD

assignments.
The power and area overhead required for SEU robustness in-

creases from high performance (delay = Tspec) to low performance
(delay = 1.3 Tspec) designs. This is because when the design is
optimized for Tspec, a significant number of gates in the design
have larger sizes and high VDD in the base case. Hence, the over-
head required to satisfy SEU robustness constraints is a smaller
fraction of the power and area of the baseline design. As we re-
lax Tspec, there is a decrease in the average size of the gates and
fewer gates use high VDD to meet delay constraints when PD
is run. In the term k′

iW
−1
i (VDD)−2−β0(Cout,i)

−β1 at a gate in
the design, smaller gates and low-VDD on average implies that
W−1

i (VDD)−2−β0(Cout,i)
−β1 is larger on average across the de-

sign after PD optimization. When PDS is run, it has to increase
the Wi and make more assignments to high-VDD to meet SEU ro-
bustness requirements. This is observed in the larger power and
area overhead with respect to the baseline case for slow designs
(large Tspec).

Note that one constraint on VDD assignment at all gates i in both
PD and PDS is of the form VDD,i ≥ VDD,j where j ∈ fanout(i).
This ensures a clean partitioning of high- and low-VDD gates for
compatibility with standard flows for dual-VDD-based design.

Finally, it is clear that the proposed algorithm provides the de-
signer with several alternatives to choose from. A significant ad-
vantage is that PDS optimization for SEU robustness combines
optimization for delay and power globally across the design, lead-
ing to optimal or near-optimal designs.

Selective optimization: The optimization technique described in
this paper targets all the gates in the design, regardless of their con-
tribution to the overall soft error failure rate of the logic circuit. It is
possible to leverage the asymmetry in the soft error failure rates of
gates – due to masking factors as well as local input vector biasing –
to reduce the impact of the proposed technique. The asymmetry can
be exposed by running complete soft error failure rate estimation,
or by using cheaper fault simulation and analysis techniques. Such
approaches have been explored in literature (e.g., [6,7,19,20]), and
the proposed technique can be guided using these metrics to selec-
tively optimize a subset of the gates for robustness to SEUs.
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Figure 4: This figure presents power and area overhead (in %) when the benchmarks are optimized to meet a delay constraint of
Tspec, 1.15 Tspec, and 1.3 Tspec on all outputs using simultaneous dual-VDD and gate sizing. The power and area overhead required
for SEU robustness increases from high performance (∆ = Tspec) to low performance (∆ = 1.3 Tspec) designs (explained in Sec. 4.3).

5. Conclusion
An efficient global optimization technique that uses gate size and

VDD as design parameters to realize SEU-robust designs was de-
scribed in this paper. The proposed approach incorporates SEU
robustness constraints into a traditional area-delay-power optimiza-
tion framework based on geometric programming. The results mo-
tivate further research into approaches based on (i) selective op-
timization for SEU robustness and (ii) exploration of the synergy
and tradeoffs between the proposed technique and techniques that
explicitly target SEU robustness in latches and flip-flops.
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