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�e optimal design problem of minimizing the total weight of a speed reducer under constraints is a generalized geometric
programming problem. Since themetaheuristic approaches cannot guarantee to nd the global optimumof a generalized geometric
programming problem, this paper applies an e�cient deterministic approach to globally solve speed reducer design problems.�e
original problem is converted by variable transformations and piecewise linearization techniques. �e reformulated problem is
a convex mixed-integer nonlinear programming problem solvable to reach an approximate global solution within an acceptable
error. Experiment results from solving a practical speed reducer design problem indicate that this study obtains a better solution
comparing with the other existing methods.

1. Introduction

Many engineering design problems are formulated as math-
ematical programming models. In last few decades, these
nonlinear engineering problems have been investigated in
much research that solved the formulated problems by

di�erent methods.�e methods can be generally categorized
intometaheuristic and deterministic approaches. To compare
the performance of di�erent optimization algorithms, several
structural engineering applications are o
en solved to vali-
date or test the suitability of the optimization algorithms.�e
speed reducer problem is one of the benchmark problems in
structural optimization.�e problem represents the design of

a simple gear box used in a light airplane between the engine
and propeller to allow each to rotate at itsmost e�cient speed.

A large number of algorithms have been developed to
solve di�erent engineering optimization problems. In order

to overcome the computational drawbacks of existing numer-
ical methods, many metaheuristic algorithms that combine
rules and randomness to imitate natural phenomena [1] have
been developed. �e most general metaheuristic methods
include evolutionary computation (EC), tabu search (TS),
simulated annealing (SA), ant colony optimization (ACO),
and particle swarm (PS) [2]. �e surveys of applications
and algorithmic advances for metaheuristic algorithms are
provided by Glover and Kochenberger [3], Lee and Geem
[1], and Bianchi et al. [4]. Li and Papalambros [5] used the
global optimization knowledge that is incorporated in several
types of rules concerning constraint activity, redundancy, and
dominance to solve the speed reducer problem. Ku et al. [6]
solved the speed reducer problem using the Taguchi method
that emphasizes the design of a robust product insensitive
to disturbances. Akhtar et al. [7] developed an optimization
algorithmbased on a sociobehavioural concept of society and
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civilization to solve the same problem. �e essence of their
methodology is derived from the concept that the behaviour
of an individual changes and improves due to social interac-
tion with the society leaders. Rao and Xiong [8] proposed
a hybrid genetic algorithm that combines the advantages of
random search and deterministic search methods to improve
the convergence speed and computational e�ciency for solv-
ing mixed-discrete nonlinear design optimization problems.
�ey also solved the speed reducer problem to demonstrate
the e�ectiveness and robustness of their approach. Cagnina
et al. [9] developed a particle swarm optimization algorithm
to solve constrained engineering optimization problems and
used four standard engineering design problems including a
speed reducer problem to validate their algorithm. Jaberipour
and Khorram [2] proposed two new harmony search (HS)
metaheuristic algorithms for engineering optimization prob-
lems with continuous design variables and applied their
method to solve the speed reducer problem.

Although the metaheuristic algorithms have the advan-
tages of broad applicability, easy implementation, and robust-
ness, these methods cannot guarantee global optimality of
the solution. Several deterministic approaches based on
mathematical programming techniques have been developed
to solve engineering design problems. Tosserams et al. [10]
proposed a decomposed problem formulation based on the
augmented Lagrangian penalty function and the block coor-
dinate descent algorithm for quasiseparablemultidisciplinary
design optimization problems.�ey solved the speed reducer
design problem by the proposed decomposition algorithms.
Lu and Kim [11] proposed a decomposition algorithm for
the multidisciplinary design optimization problems with
complementarity constraints based on the regularization
technique and inexact penalty decomposition. �ey also
solved the design problem of a speed reducer. One major
deterministic approach to globally solve generalized geomet-
ric programming problems is to reformulate the original
problems into convexmixed-integer nonlinear programming
(MINLP) problems. Some transformation techniques have
been developed to convexify the nonconvex functions. Pörn
et al. [12] introduced di�erent convexication strategies to
deal with posynomial and negative binomial terms. Floudas
and Pardalos [13] and Maranas and Floudas [14] proposed
exponential transformations to treat nonconvex terms. Lun-
dell et al. [15] proposed some transformation techniques to
solve optimization problems including signomial functions
to global optimality. Li and Lu [16] applied convexication
strategies and piecewise linearization techniques to solve
generalized geometric programming problems with free dis-
crete/continuous variables. Tsai and Lin [17] proposed an e�-
cient method to solve a posynomial geometric programming
problem with separable functions by applying an appropriate
variable transformation and an e�cient piecewise lineariza-
tion formulation. Lin et al. [18] used convexication strategies
and piecewise linearization techniques to solve engineering
optimization problems including the speed reducer design
problem. Lu [19] proposed a convexication transformation
method (beta method) based on the concept of 1-convex
functions to improve the e�ciency of solving generalized
geometric programming problems. Huang [20] proposed
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Figure 1: Speed reducer design [24].

a deterministic optimization approach to solve geometric
programming problems including the speed reducer design
problem. His method converts all signomial terms into
convex and concave terms, and then the concave terms are
further treated with a piecewise linearization method. Lin
and Tsai [21] also used convexication strategies and piece-
wise linearization techniques to solve the speed reducer
design problem. �is study applies an e�cient optimization
approach to globally solve speed reducer design problems
based on deterministic techniques. In addition to convexi-
cation strategies and piecewise linearization techniques, this
study applies optimization-based range reduction techniques
[22, 23] to improve computational e�ciency in globally
solving the speed reducer design problem. Compared with
existing methods, the proposed method is capable of obtain-
ing a better solution.

�e rest of the paper is organized as follows. Section 2
describes the process of globally solving a speed reducer
design problem. A practical speed reducer problem is solved
in Section 3 to demonstrate the e�ectiveness of the pro-
posed method. A
er that, conclusion remarks are made in
Section 4.

2. Global Optimization Approach of
a Speed Reducer Design Problem

A speed reducer is part of the gear box of mechanical system,
and it is used in many other types of applications. �e
design of the speed reducer is amore challenging benchmark,
because it involves seven design variables [25]. As shown in
Figure 1, the design of the speed reducer is considered with
the face width (�1), the module of the teeth (�2), the number
of teeth on pinion (�3), the length of the rst sha
 between
bearings (�4), the length of the second sha
 between bearings
(�5), diameter of the rst sha
 (�6), and the diameter of the
second sha
 (�7). Another schematic of the speed reducer is
presented in Figure 2 with its design variables being labeled.

�is problem is taken from Golinski [26]. �e objective
is to minimize the total weight of the speed reducer while
satisfying eleven constraints. �e constraints include the
limits on the bending stress of the gear teeth, surface stress,
transverse de�ections of sha
s 1 and 2 due to transmitted
force, and stresses in sha
s 1 and 2. �e mathematical
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Figure 2: A schematic of the speed reducer [11].

programming model of a speed reducer problem considered
in this study is expressed as follows.

Minimize � (�1, . . . , �7)
= 0.7854�1�22
× (3.3333�23 + 14.9334�3 − 43.0934)
− 1.508�1 (�26 + �27) + 7.4777 (�36 + �37)
+ 0.7854 (�4�26 + �5�27) ,

subject to �1 = 27�1�22�3 − 1 ≤ 0,
�2 = 397.5�1�22�23 − 1 ≤ 0,
�3 = 1.93�34�2�3�46 − 1 ≤ 0,
�4 = 1.93�35�2�3�47 − 1 ≤ 0,
�5 = 1110�36√(

745�4�2�3 )
2 + 16.9 × 106 − 1

≤ 0,
�6 = 185�37√(

745�5�2�3 )
2 + 157.5 × 106 − 1

≤ 0,
�7 = �2�340 − 1 ≤ 0,
�8 = 5�2�1 − 1 ≤ 0,
�9 = �112�2 − 1 ≤ 0,

�10 = 1.5�6 + 1.9�4 − 1 ≤ 0,
�11 = 1.1�7 + 1.9�5 − 1 ≤ 0,
2.6 ≤ �1 ≤ 3.6, 0.7 ≤ �2 ≤ 0.8,
17 ≤ �3 ≤ 28, 7.3 ≤ �4 ≤ 8.3,
7.3 ≤ �5 ≤ 8.3, 2.9 ≤ �6 ≤ 3.9,
5 ≤ �7 ≤ 5.5.

(1)

�e original speed reducer problem described previously
can be simplied as the following generalized geometric pro-
gramming problem.

Minimize � (�1, . . . , �7)= (0.7854 × 3.3333) �1�22�23
+ (0.7854 × 14.9334) �1�22�3
− (0.7854 × 43.0934) �1�22
− 1.508�1�26 − 1.508�1�27 + 7.4777�36
+ 7.4777�37 + 0.7854�4�26 + 0.7854�5�27,

subject to �1 = 27�−11 �−22 �−13 − 1 ≤ 0,�2 = 397.5�−11 �−22 �−23 − 1 ≤ 0,
�3 = 1.93�34�−12 �−13 �−46 − 1 ≤ 0,
�4 = 1.93�35�−12 �−13 �−47 − 1 ≤ 0,
�5 = 7452�24�−22 �−23 − 1102�66 + 16.9 × 106≤ 0,
�6 = 7452�25�−22 �−23 − 852�67 + 157.5 × 106≤ 0,�7 = �2�3 − 40 ≤ 0,
�8 = 5�2 − �1 ≤ 0,
�9 = �1 − 12�2 ≤ 0,
�10 = 1.5�6 − �4 + 1.9 ≤ 0,
�11 = 1.1�7 − �5 + 1.9 ≤ 0,
2.6 ≤ �1 ≤ 3.6, 0.7 ≤ �2 ≤ 0.8,
17 ≤ �3 ≤ 28, 7.3 ≤ �4 ≤ 8.3,
7.3 ≤ �5 ≤ 8.3, 2.9 ≤ �6 ≤ 3.9,
5 ≤ �7 ≤ 5.5.

(2)

�e simplied problem above is a nonconvex program.
Based on the deterministic techniques, this study transforms
the problem into a convex MINLP problem by the convexi-
cation strategies and piecewise linearization methods.�en
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the reformulated problem can be solved by convex MINLP
solvers to obtain a global optimal solution.

First, we determine that certain classes of signomial terms
in the above simplied problem are convex and do not
necessitate any transformations. Consequently, the number
of concave functions requiring to be piecewise linearized
decreases, and the resulting problem is a computationally

e�cient model. �36 and �37 are convex terms. According to

Maranas and Floudas [27], �−11 �−22 �−13 and �−11 �−22 �−23 are
also convex terms. �en, the nonconvex monomials are
transformed. By taking exponential transformation [28, 29]
on the variable with a positive exponent, the positive
monomial terms �1�22�23, �1�22�3, �4�26, �5�27, �34�−12 �−13 �−46 ,�35�−12 �−13 �−47 , �24�−22 �−23 , �25�−22 �−23 , and �2�3 are transformed

into convex terms �1+2�2+2�3 , �1+2�2+�3 , �4+2�6 , �5+2�7 ,3�4�−12 �−13 �−46 , 3�5�−12 �−13 �−47 , 2�4�−22 �−23 , 2�5�−22 �−23 , and�2+�3 , respectively, where �� = ln��, � = 1, 2, . . . , 7. By
taking power transformations [28–32] on the variables to
make the sum of the exponents not greater than one, the

negative monomial terms −�1�22, −�1�26, −�1�27, −�66, and−�67 are transformed into convex terms −�1/31 �2/32 , −�1/31 �1/36 ,−�1/31 �1/37 , −�6, and −�7, respectively, where �� = �3� , � = 1, 2,�� = �6� , � = 6, 7.
�e nonconvex problem can be convexied and under-

estimated by the convexication strategies mentioned pre-
viously if the inverse transformations (�� = ln��, � =1, 2, . . . , 7, �� = �3� , � = 1, 2, and �� = �6� , � = 6, 7) are
approximated by piecewise linear functions. �e e�ciency
of the piecewise linearization technique has a critical impact
on the computational e�ciency in solving the reformulated
problems. Vielma and Nemhauser [33] proposed a lineariza-
tion approach that has favorable tightness properties. �eir
experimental results showed that the Vielma and Nemhauser
[33]method signicantly outperforms othermodels. Tsai and
Lin [17] employed the Vielma and Nemhauser [33] method
to solve posynomial geometric programming problems. �is
study also adopts the Vielma and Nemhauser [33] method to
linearly approximate the inverse transformations. Compared
with the Lin and Tsai [21] method, this study utilizes range
reduction techniques [22, 23] to further improve the compu-
tational e�ciency.

Adding more break points can construct a tighter under-
estimator of the original problem, and the obtained solution
is more closer to the real global solution. If ��(�) < 0 is
the �th constraint and �∗ is the solution derived from the
reformulated model, then the number of break points does
not need to increase until Max�(��(�∗)) ≤ �, where � is the
feasibility tolerance.

3. Computational Experiments

By using the deterministic approach introduced above, this
study reformulates the original speed reducer problem as a
convex MINLP problem as follows.

Minimize � (�1, . . . , �7)
= (0.7854 × 3.3333) �1+2�2+2�3

+ (0.7854 × 14.9334) �1+2�2+�3
− (0.7854 × 43.0934) �1/31 �2/32
− 1.508�1/31 �1/36 − 1.508�1/31 �1/37
+ 7.4777�36 + 7.4777�37
+ 0.7854�4+2�6 + 0.7854�5+2�7 ,

subject to �1 = 27�−11 �−22 �−13 − 1 ≤ 0,
�2 = 397.5�−11 �−22 �−23 − 1 ≤ 0,
�3 = 1.933�4�−12 �−13 �−46 − 1 ≤ 0,
�4 = 1.933�5�−12 �−13 �−47 − 1 ≤ 0,
�5 = 74522�4�−22 �−23 − 1102�6 + 16.9 × 106≤ 0,
�6 = 74522�5�−22 �−23 − 852�7 + 157.5 × 106≤ 0,
�7 = �2+�3 − 40 ≤ 0,
�8 = 5�2 − �1 ≤ 0,
�9 = �1 − 12�2 ≤ 0,
�10 = 1.5�6 − �4 + 1.9 ≤ 0,
�11 = 1.1�7 − �5 + 1.9 ≤ 0,
�� = � (ln��) , � = 1, 2, . . . , 7,
�� = � (�3� ) , � = 1, 2,
�� = � (�6� ) , � = 6, 7,
2.6 ≤ �1 ≤ 3.6, 0.7 ≤ �2 ≤ 0.8,
17 ≤ �3 ≤ 28, 7.3 ≤ �4 ≤ 8.3,
7.3 ≤ �5 ≤ 8.3, 2.9 ≤ �6 ≤ 3.9,
5 ≤ �7 ≤ 5.5.

(3)

In the transformation process, the piecewise linearization
technique introduced by Vielma and Nemhauser [33] is

utilized to approximate ln�� (� = 1, 2, . . . , 7), �3� (� = 1, 2),
and �6� (� = 6, 7). �e Vielma and Nemhauser [33] method
represents a piecewise linear function with� break points by⌈log2�⌉ binary variables. By using 3, 4, . . . , 9 binary variables,
respectively, we convert this program to a convex MINLP
problem with 8, 16, . . . , 512 break points, respectively, used
in linearly approximating the inverse transformations. �e
reformulated problems are solved by LINGO [34]. Table 1
lists the reported solutions from LINGO, objective values on
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Table 1: Experiment results of the speed reducer problem by the proposed method under di�erent numbers of break points.

No. of break
points

No. of binary
variables

Reported solution (�1, �2, �3, �4, �5, �6, �7) CPU time
(mm:ss)

Objective
value

Error in
constraint

8 3 (3.5, 0.7, 17.0, 7.3, 7.714826, 3.347398, 5.286205) 00:07 2993.457535 0.002526473

16 4 (3.5, 0.7, 17.0, 7.3, 7.715248, 3.349748, 5.286589) 00:09 2994.308994 0.000418000

32 5 (3.5, 0.7, 17.0, 7.3, 7.715291, 3.350039, 5.286628) 00:10 2994.408856 0.000157319

64 6 (3.5, 0.7, 17.0, 7.3, 7.715313, 3.350187, 5.286648) 00:42 2994.459757 0.000024774

128 7 (3.5, 0.7, 17.0, 7.3, 7.715318, 3.353125, 5.286653) 01:27 2994.467375 0.000009551

256 8 (3.5, 0.7, 17.0, 7.3, 7.715320, 3.350213, 5.286654) 05:23 2994.470348 0.000001492

512 9 (3.5, 0.7, 17.0, 7.3, 7.715320, 3.350214, 5.286654) 15:09 2994.470603 0.000000596

Table 2: Experiment results of the speed reducer problem by the proposed method with range reduction.

Iteration Variable bound Reported solution (�1, �2, �3, �4, �5, �6, �7) Accumulated CPU
time (mm:ss)

Objective
value

Error in
constraint

1

[2.6, 3.6][0.7, 0.8][17, 28][7.3, 8.3][7.3, 8.3][2.9, 3.9][5, 5.5]

(3.5, 0.7, 17.0, 7.3, 7.715291, 3.350039, 5.286628) 00:10 2994.408856 0.000157319

2

[3.5, 3.500182][0.7, 0.700011][17, 17.000419][7.3, 7.307746][7.715291, 7.718508][3.350039, 3.350290][5.286628, 5.286654]

(3.5, 0.7, 17.0, 7.3, 7.7153190, 3.350282, 5.286654) 07:56 2994.471921 0.000000264
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Figure 3: Objective values of the speed reducer problem under dif-
ferent numbers of break points.

the reported solutions, and errors in constraint Max�(��(�∗))
under di�erent numbers of break points. Using more break
points derives a solution with a lower error in constraint.
Figure 3 indicates the objective value obtained from the
proposed method under di�erent numbers of break points.
We observe that the objective value approximates the real
global objective value better as the number of break points
increases. Figure 4 indicates the CPU time required to solve

the speed reducer problem under di�erent numbers of break
points. �e required CPU time to solve the reformulated
model tends to grow exponentially as the number of break
points becomes large. To enhance computational e�ciency,
this study applies the range reduction techniques to e�ec-
tively tighten variable bounds. Table 2 lists variable bound,
solution, objective value, accumulated CPU time, and error
in constraint in each iteration to solve this problem by the
proposed method with range reduction. �irty-two break
points are used in the piecewise linearization process in each
iteration. �e accumulated CPU time consists of the CPU
time to update variable bounds and solve the reformulated
models iteratively. �e global solution (3.5, 0.7, 17.0, 7.3,
7.7153190, 3.350282, and 5.286654) with objective 2994.471921

and an error in constraint below 10−6 can be obtained within
8 minutes. If no range reduction is adopted and 512 line
segments are used in the piecewise linearization process, the

global solution with an error in constraint below 10−6 is
obtained within 16 minutes as shown in Table 1.

Table 3 displays the comparison of results with existing
methods. �e solutions listed in the table are reported
from their original research, and the objective values
are computed from the objective function �(�1, . . . , �7) =0.7854�1�22(3.3333�23+14.9334�3−43.0934)−1.508�1(�26+�27)
+ 7.4777(�36 + �37) + 0.7854(�4�26 + �5�27) on the reported
solutions. Tosserams et al. [10] and Lu and Kim [11] obtained
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Table 3: Comparisons of optimal solutions of the speed reducer problem by di�erent methods.

Methods Method type
Reported solution

(�1, �2, �3, �4, �5, �6, �7) Objective value
Error in
constraint

Ku et al. [6] Metaheuristic (3.6, 0.7, 17, 7.3, 7.8, 3.4, 5.0) 2876.219475 <100
Akhtar et al. [7] Metaheuristic

(3.506122, 0.700006, 17, 7.549126,
7.859330, 3.365576, 5.289773)

3008.197440 <10−6
Rao and Xiong [8] Metaheuristic (3.5, 0.7, 17, 7.3, 7.8, 3.36, 5.29) 3000.959715 <10−6
Cagnina et al. [9] Metaheuristic (3.5, 0.7, 17, 7.3, 7.8, 3.350214, 5.286683) 2996.347849 <10−6
Jaberipour and Khorram [2] Metaheuristic

(3.5, 0.7, 17, 7.3, 7.71533233833903,
3.35021510925684, 5.28666403545462)

2994.477531 <10−6
Li and Papalambros [5] Metaheuristic

(3.5, 0.7, 17, 7.299999, 7.715317, 3.350541,
5.286654)

2994.553869 <10−6
Tosserams et al. [10] Deterministic (3.5, 0.7, 17, 7.3, 7.72, 3.35, 5.29) 2996.645783 <10−3
Lu and Kim [11] Deterministic

(3.5, 0.7, 17, 7.3, 7.670396, 3.542421,
5.245814)

3019.583365 <10−1
Lin et al. [18] Deterministic (3.5, 0.7, 17, 7.3, 7.715, 3.349, 5.286) 2993.738921 <10−2
Huang [20] Deterministic

(3.495652, 0.7000002, 17, 7.30000007,
7.7120386, 3.343372, 5.285352)

2990.124384 <10−2
Proposed method Deterministic

(3.5, 0.7, 17.0, 7.3, 7.7153190, 3.350282,
5.286654)

2994.471921 <10−6
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Figure 4: CPU time required to solve the speed reducer problem
under di�erent numbers of break points.

optimal solutions with higher errors and higher objective
values than those of the proposedmethod. Although Ku et al.
[6], Lin et al. [18], andHuang [20] obtained optimal solutions
with lower objective values than those of the proposed
method, the errors in constraint in these three methods
are higher than those in the proposed method. Compared
with the solutions of Akhtar et al. [7], Rao and Xiong [8],
Cagnina et al. [9], Jaberipour and Khorram [2], and Li and
Papalambros [5], the proposed method results in a lower
objective value under the same feasibility tolerance 10−6.
4. Conclusions

�e speed reducer problem is used in many other types of
applications and is one of the standard benchmark problems
in structural optimization. Although many metaheuristic

algorithms have been developed to solve this problem, these
methods cannot guarantee global optimality of the solution.
�is study applies a deterministic approach based on con-
vexication strategies and piecewise linearization methods
to globally solve a speed reducer design problem. However,
numerous break points are utilized in the linearization
process for reaching an approximate global solution with
a low error, and much CPU time is required to solve the
reformulated model. �erefore, this study also adopts the
range reduction technique to enhance the computational
e�ciency. Compared with metaheuristic methods, this study
guarantees the global optimality of the solution. Compared
with other deterministic methods, this study obtains a better
solution with a lower error in constraint.

Acknowledgment

�eresearch is supported by theTaiwanNSCGrantsNSC 101-
2410-H-158-002-MY2 and NSC 102-2410-H-027-012-MY3,
and Shih Chien University Grant 102-05-04002.

References

[1] K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for
continuous engineering optimization: harmony search theory
and practice,” Computer Methods in Applied Mechanics and
Engineering, vol. 194, no. 36–38, pp. 3902–3933, 2005.

[2] M. Jaberipour andE.Khorram, “Two improvedharmony search
algorithms for solving engineering optimization problems,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 15, no. 11, pp. 3316–3331, 2010.

[3] F. W. Glover and G. A. Kochenberger, Handbook of Meta-
heuristics, International Series in Operations Research & Man-
agement Science, Kluwer Academic Publishers, Boston, Mass,
USA, 2003.



Mathematical Problems in Engineering 7

[4] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr,
“A survey on metaheuristics for stochastic combinatorial opti-
mization,” Natural Computing, vol. 8, no. 2, pp. 239–287, 2009.

[5] H. L. Li and P. Papalambros, “A production system for use
of global optimization knowledge,” Journal of Mechanisms,
Transmissions, and Automation in Design, vol. 107, no. 2, pp.
277–284, 1985.

[6] K. J. Ku, S. S. Rao, and L. Chen, “Taguchi-aided search method
for design optimization of engineering systems,” Engineering
Optimization, vol. 30, no. 1, pp. 1–23, 1998.

[7] S. Akhtar, K. Tai, and T. Ray, “A socio-behavioral simulation
model for engineering design optimization,” Engineering Opti-
mization, vol. 34, no. 4, pp. 341–354, 2002.

[8] S. S. Rao and Y. Xiong, “A hybrid genetic algorithm for mixed-
discrete design optimization,” Journal ofMechanical Design, vol.
127, no. 6, pp. 1100–1112, 2005.

[9] L. C. Cagnina, S. C. Esquivel, and C. A. Coello Coello, “Solving
engineering optimization problemswith the simple constrained
particle swarm optimizer,” Informatica, vol. 32, no. 3, pp. 319–
326, 2008.

[10] S. Tosserams, L. F. P. Etman, and J. E. Rooda, “An augmented
Lagrangian decomposition method for quasi-separable prob-
lems in MDO,” Structural and Multidisciplinary Optimization,
vol. 34, no. 3, pp. 211–227, 2007.

[11] S. Lu andH.M.Kim, “A regularized inexact penalty decomposi-
tion algorithm for multidisciplinary design optimization prob-
lems with complementarity constraints,” Journal of Mechanical
Design, vol. 132, no. 4, Article ID 041005, 12 pages, 2010.

[12] R. Pörn, I. Harjunkoski, and T.Westerlund, “Convexication of
di�erent classes of non-convex MINLP problems,” Computers
and Chemical Engineering, vol. 23, no. 3, pp. 439–448, 1999.

[13] C. A. Floudas and P. M. Pardalos, State of the Art in Global
Optimization: Computational Methods and Applications, vol.
7 of Nonconvex Optimization and Its Applications, Kluwer
Academic Publishers, Dordrecht, �e Netherlands, 1996.

[14] C. D. Maranas and C. A. Floudas, “Global optimization in
generalized geometric programming,”Computers and Chemical
Engineering, vol. 21, no. 4, pp. 351–369, 1997.

[15] A. Lundell, J. Westerlund, and T. Westerlund, “Some transfor-
mation techniques with applications in global optimization,”
Journal of Global Optimization, vol. 43, no. 2-3, pp. 391–405,
2009.

[16] H.-L. Li and H.-C. Lu, “Global optimization for generalized
geometric programswithmixed free-sign variables,”Operations
Research, vol. 57, no. 3, pp. 701–713, 2009.

[17] J.-F. Tsai andM.-H. Lin, “An e�cient global approach for posyn-
omial geometric programming problems,” INFORMS Journal
on Computing, vol. 23, no. 3, pp. 483–492, 2011.

[18] M.-H. Lin, J.-F. Tsai, and P.-C. Wang, “Solving engineering
optimization problems by a deterministic global optimization
approach,” Applied Mathematics & Information Sciences, vol. 6,
no. 3, supplement, pp. 1101–1107, 2012.

[19] H.-C. Lu, “An e�cient convexication method for solving
generalized geometric problems,” Journal of Industrial and
Management Optimization, vol. 8, no. 2, pp. 429–455, 2012.

[20] C. H.Huang, “Engineering design by geometric programming,”
Mathematical Problems in Engineering, vol. 2013, Article ID
568098, 8 pages, 2013.

[21] M. H. Lin and J. F. Tsai, “Optimal design of a speed reducer,”
Applied Mechanics and Materials, vol. 376, pp. 327–330, 2013.

[22] M.-H. Lin and J.-F. Tsai, “Range reduction techniques for
improving computational e�ciency in global optimization of
signomial geometric programming problems,” European Jour-
nal of Operational Research, vol. 216, no. 1, pp. 17–25, 2012.

[23] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, “Global
optimization ofmixedinteger nonlinear problems,”AIChE Jour-
nal, vol. 46, no. 9, pp. 1769–1797, 2000.

[24] R. Hassan, B. Cohanim, O. de Weck, and G. Venter, “A
comparison of particle swarm optimization and the genetic
algorithm,” in Proceedings of the 1st AIAA Multidisciplinary
DesignOptimization Specialist Conference, pp. 18–21, April 2005.

[25] A. H. Gandomi and X.-S. Yang, “Benchmark problems in struc-
tural optimization,” in Computational Optimization, Methods
andAlgorithms, vol. 356 of Studies inComputational Intelligence,
pp. 259–281, Springer, Berlin, Germany, 2011.

[26] J. Golinski, “Optimal synthesis problems solved by means
of nonlinear programming and random methods,” Journal of
Mechanisms, vol. 5, no. 3, pp. 287–309, 1970.

[27] C. D. Maranas and C. A. Floudas, “Finding all solutions of
nonlinearly constrained systems of equations,” Journal of Global
Optimization, vol. 7, no. 2, pp. 143–182, 1995.

[28] R. Pörn, K.-M. Björk, and T. Westerlund, “Global solution of
optimization problems with signomial parts,” Discrete Opti-
mization, vol. 5, no. 1, pp. 108–120, 2008.

[29] A. Lundell and T.Westerlund, “Convex underestimation strate-
gies for signomial functions,” Optimization Methods and So�-
ware, vol. 24, no. 4-5, pp. 505–522, 2009.

[30] T. Westerlund, “Some transformation techniques in global
optimization,” in Global Optimization: From eory to Imple-
mentation, L. Liberti and N. Maculan, Eds., vol. 84, pp. 45–74,
Springer, New York, NY, USA, 2007.

[31] J.-F. Tsai and M.-H. Lin, “Global optimization of signomial
mixed-integer nonlinear programming problems with free
variables,” Journal of Global Optimization, vol. 42, no. 1, pp. 39–
49, 2008.

[32] A. Lundell, J. Westerlund, and T. Westerlund, “Some transfor-
mation techniques with applications in global optimization,”
Journal of Global Optimization, vol. 43, no. 2-3, pp. 391–405,
2009.

[33] J. P. Vielma and G. L. Nemhauser, “Modeling disjunctive
constraints with a logarithmic number of binary variables and
constraints,” Mathematical Programming, vol. 128, no. 1-2, pp.
49–72, 2011.

[34] LINGO, Release. 11.0, Lindo System Inc., Chicago, Ill, USA,
2004.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


