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ABSTRACT

In this paper an automated procedure is presented
to obtain the minimum weight design of gas turbine
blades with geometry and multiple natural frequency
constraints. The objective is achieved using a
combined finite element-sequential linear
programming, FEM-SLP technique. Thickness of
selected finite elements are used as design
variables. Geometric constraints are imposed on
the thickness variations such that the optimal
design has smooth aerodynamic shape. Based on the
natural frequencies and mode shapes obtained from
finite element analysis an assumed mode reanalysis
technique is used to provide the approximate
derivatives of weight and constraints with respect
to design variables for sequential linear
programming. The results from SLP provide the
initial design for the next FEN-SLP process. An
example is presented to illustrate the interactive
system developed for the optimization procedure.

NOMENCLATURE

A. element area

C blade cross sectional chord length

f. natural frequency

K global stiffness matrix

K. element stiffness matrix
J

K^: element stiffness matrix in modal coor-
dinate

K stiffness matrix of modified system in
modal coordinate

M global mass matrix

M. element mass matrix
J

M^ element mass matrix in modal coordinate
_J
M mass matrix of modified system in modal

coordinate

qi modal coordinate vector

t. element thickness
J

T.. element kinetic energy
1J

T%:. element kinetic energy in modal coor-
dinate

Tmax maximum thickness of each blade cross
section

V.. element strain energy
iJ

WS. element strain energy in modal coordinate
iJ

W total structural weight

W. element structural weight
J

U. element thickness ratio
J

P ratio of Tmax to C

A eigenvalue matrix

X ith mode eigenvalue

p. element mass density

( eigenvector matrix

1p i ith mode eigenvector

Subscripts and superscripts

i mode number

j element number or design variable number

Q constraint lower limit

NP number of design variables

NF number of frequency constraints

o original design

u constraint upper limit

modal coordinate system
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INTRODUCTION
where

In order to avoid resonances of natural frequencies
and external excitation forces, structures must be
designed properly to obtain desired distribution
of natural frequencies. In this paper, an automat-
ed procedure is presented for the optimal design of
gas turbine blades [1-5]. The objective of the
procedure is to achieve the minimum weight design
of gas turbine blades subject to geometry and
multiple natural frequency constraints. The blades
are modeled by thin shell elements. Thickness of
selected elements are used as variables to control
the optimization process. Thickness of each
element may vary independently from others or the
thickness of several elements may vary accordingly
with the same scale to maintain the smoothness of
structural contour shape.

The optimal design problem is treated as one of the
shape optimization and is solved by a combined
finite element method and sequential linear pro-
gramming [5-9], FEM-SLP technique. The general
purpose finite element program MSC/NASTRAN is used
to perform the free vibration model analysis.
Based on the calculated eigenvalues and eigenvec-
tors an assumed mode reanalysis technique [5,10,11]
is used to perform approximate eigenvalue sensitiv-
ity analysis. Using the approximate eigenvalue
sensitivities the SLP iterative procedure is then
applied to redesign the blades. After the SLP
procedure converges finite element analysis is
performed for the updated design to calculate
eigensolutions and to check the validity of the
optimized blades. The FEM-SLP procedure will be
repeated until all design constraints are
satisfied.

FORMULATIONS

The problem of the blade shape optimization can be
stated as minimization of the blade weight, W,
subject to the frequency constraints

fQ < f i	fi	i = 1, ...., NF	(1)

and geometric side constraints

a2 < a. <_ au	j = 1, ...., ND	(2)
J	J	J

with

aj = to	 (3)

J

where NF is the number oi frequency constraints, ND
is the number of design variables, f. is the
natural frequency of the ith mode, t. and a. are
the thickness and the thickness a^agnificJation
factor of element j, the superscript o denotes the
state of original design and the superscripts Q and
u denote the lower and upper limits of the associ-
ated items.

The weight of the blade is

W = F W.a.	 (4)
j 33

W. = p.A.t9	 (5)
J	J J J

p. and A. are density and area of element j.
J	J

Therefore, W is a linear combination of a., the
weight sensitivities with respect to aJ. are
constants J

8W = W.	j = 1, ...., ND	(6)2aj	J

The equation of free vibration for the structure
modeled by finite elements is

K 4i = Ai M 0i	(7)

where K and M are global stiffness and mass matri-
ces, X. and 4. are eigenvalue and eigenvector of
the ithl naturalI mode of the structure.

The eigenvectors are normalized such that

4TK4i	= Ai	(7a)

0T M4i = 1 (7b)

Since A. = (2itf.) 2 , the natural frequency con-
straints l specifiedt in equation (1) can be replaced
by

(8)

Taking derivatives of egition (7) then premulti-
plying the results by +i and applying equations
(7a) and (7b) yield the eigenvalue derivatives
shown in the reference [12].

2A
i=$. ( 2K - Ai aM ) 4i(9)

Da.	2a.	aa.
J	 J	J

Since the bending modes are mostly affected by the
thickness variations, the stiffness and mass
matrices [5] for the jth design variable can be
written as

K. = a3 K?	 (10)
J	J ]

M. = a.MJ°.	 (11)

Therefore, equation (9) can be reduced to

Dxi = 6 u2 V.. - 2 T..	 (12)
2a .	J 13
	13

J

where V. . and T. . are strain and kinetic energies
associated with l he ith mode and the jth design
variable

V.. =½$TK^ ^ i	(13)
13	1

T.. = ½ A. 0T M^ ^ i	(14)

Using the first order Taylor series expansion W and
X. of the current design can be approximated as
i

OA
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W = Wo + I aW Aa	
(15)

J Haj	j

X. =A0 + F C i Am.	 (16)
j HO. J

With equations (6), (12), (15) and (16) the objec-
tive function W and frequency constraints can be
linearized to form a linear programming problem.

It has been shown that assumed mode reanalysis
formulation [10,11] can use results obtained from
finite element analysis and LP problem to calculate
approximate frequency sensitivities for another LP
operation. Therefore, a sequence of LP, SLP, can
be performed after the finite element analysis of
an initial design. When the SLP converges finite
element analysis will be applied to confirm the
results and provide data for the follow up SLP
procedure. The expensive free vibration analysis
for the full structure model thus can be avoided
for each LP procedure.

Using an assumed mode reanalysis method the eigen-
value problem solved for each LP step becomes

K q i  Xi  qi (17)

where

K = An +	(a^-1) K'	 (18)

= I +	(m-1) M^	 (19)

K
3
 = 4)T K^ 4)	 (20)

M .  4)T M^ 4) (21)

where 4) is a truncated orthonormal modal matrix and
Ao is the diagonal eigenvalue matrix of the origi-
nal design and I is an unitary matrix.

From the solution of the reduced eigenproblem, the
eigenvalue derivatives of the updated system can be
approximated as

= 6 a
3
 Vij - 2 T i .	 (22)

au.
J

where

V. = ½ q K. q i	(23)

T... =' X. q M• q•	 (24)
iJ	i i J 1

Equation (22) is used to calculate ax./2a. in the
SLP problem until the iterations conver^e. The
updated design then becomes the initial design of
the next FEN-SLP procedure.

SOFTWARE IMPLEMENTATION

MSC/NASTRAN is used for finite element analysis. A
program, BLADEOPT1 [5], written in FORTRAN has been
developed for the SLP procedure. The system
flowchart is shown in Figure 1. One input file
contains data for both NASTRAN and BLADEOPT1.
NASTRAN provides the structural weight of each
finite element and modal analysis results for
BLADEOPT1 to formulate and solve the SLP problem.
Users can run the whole system interactively to
adjust the input data for BLADEOPT1 and check the
results at the end of NASTRAN or BLADEOPT1 run.
Therefore, constraint limits can be adjusted such
that a feasible solution can be easily obtained for
the SLP problem. As the designs improve from one
FEN-SLP to another, constraints can be moved toward
desired limits to obtain an optimal design.

DESIGN EXAMPLE

A gas turbine blade is used as an example to
illustrate the system developed. Young's modulus,
Poisson's ratio and weight density of the blade are
1.5x10 7 psi, 0.3 and 0.16924 lb/in 3 respectively.
The blade is modeled by 192 quadratic shell ele-
ments, NASTRAN CQUAD8 elements, with 633 nodes.
The finite element model is shown in Figure 2. All
the degrees of freedom along the hub line are fixed
as boundary conditions.

Initially, the total weight of the blade is 0.0634
pounds, and the first three natural frequencies of
the blade are 1524 Hz, 2863 Hz, and 4439 Hz. The
objective is to find a minimum weight design such
that

f i <_ 1400 Hz
f 2 = 2800 Hz
f 3 >_ 4450 Hz

with upper and lower limits imposed on the design
variables.

Since critical speeds may occur at multiples of the
blade rotating speed, according to Figure 4,
natural frequency constraints of this example are
selected so as to increase the margin from critical
speeds at 100 percent blade operational speed.

In order to maintain smooth aerodynamic shape at
each cross section chordwise of the blade, a single
thickness magnification factor for each cross
section is used as an independent design variable.
Thickness variations in the longitudinal direction
are less restrictive. However, these variations
must be kept smooth and monotonic spanwise in the

Tmax (25)
C

longitudinal direction. This ratio is the maximum
thickness, Tmax, to the chord length, C, of each
cross section chordwise.

For an aerodynamically well-designed blade it is
desired that the variations of P for a modified
design do not exceed 10 percent of those of the
initial design. Since chord length of each cross
section is fixed, the variations of Tmax or a
should be less than 10 percent of their initial
values. Therefore, the geometric constraints of
the design variables are
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0.9 ! aj	1.1	j = 1, ...., ND	(26)

For the 192 finite element model shown in Figure 2,
there are 16 elements per cross section chordwise
and 12 sections spanwise. One design variable is
used for each cross section, thus 16 elements in
each cross section vary in the same scale.

Initial values of the 12 design variables used for
the model are all one. The initial and final
values of the maximum thickness at each cross
section and final values of the design variables
are shown in Table 1. The location of the maximum
thickness is measured from the leading edge of each
cross section and is presented as the element
number in Table 1.

Table 2 presents the iteration history of natural
frequencies and blade weight. Data for design
cycle Number 0 are the analytical results for the
original design. Data for cycle Numbers 1, 2, and
3 are the results from the first, second and third
FEM-SLP operations. Using IBM 3090 each FEM-SLP
requires 157.8 CPU seconds of which 141.0 CPU
seconds are for NASTRAN (FEM) and 16.8 CPU seconds
are for BLADEOPTI (SLP). Total blade weight is
reduced by 3.12 percent. All of the three frequency
constraints are satisfied within one percent of
design limits. The first 10 modes are presented to
illustrate the affect of the geometry and frequency
constraints on the overall characteristics of the
blade design.

Finally, a Campbell diagram associated with the
blade and its environment is presented in Figure 4.
Clearly, at engine full speed of 50000 RPM reso-
nance of the natural frequencies and excitation
forces are avoided with the new design.

CONCLUSION

The automated procedure presented in this paper is
very effective to obtain the optimal design of gas
turbine blades with geometry and natural frequency
constraints. Since the use of geometry constraints
and thickness magnification factors can keep the
overall aerodynamic shape within an acceptable
range, the number of design iterations between
structural dynamics and aerodynamics can be greatly
reduced. In the future aerodynamic performance
optimization ought to be included in the automated
procedure to further reduce the design effort.

In order to reduce the effort of selecting frequen-
cy constraints to obtain feasible solutions from
SLP procedure, adaptive constraint algorithms
should be developed. With the adaptive constraint
algorithms SLP may even be able to provide better
designs for the next FEM-SLP procedure and further
reduce the computation effort.

At present shell elements are used to model thin
blades. Further research is required for the
optimal design of thick blades with other types of
elements.

Figure 3 indicates that 0 of the optimal design is
distributed spanwise as a smooth and monotonically
decreasing function of air flow rate.

Table 1. Distribution Of Maximum Thickness And
Design Variables.

Section
No.

Element
No.

Maximum	Thickness
Initial	Final

a
Final

1 9 0.21308	0.22800 1.07002
2 9 0.20767	0.22013 1.06000
3 9 0.20058	0.20585 1.02627
4 9 0.19128	0.18489 0.96659
5 9 0.18038	0.16415 0.91002
6 9 0.16923	0.15400 0.91000
7 9 0.15586	0.14105 0.90498
8 9 0.13276	0.11949 0.90005
9 9 0.10443	0.09959 0.95365

10 9 0.08435	0.08857 1.05003
11 10 0.07501	0.08101 1.08000
12 10 0.07116	0.06930 0.97386
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Table 2. Iteration History Of Natural Frequencies And Weight.

Design
Cycle No. f1 f2 f3

Natural Frequencies
f4	f5	f6

(Hz)
f7 f8 f9 flo

Weight
(lbs)

0 1524 2863 4439 5023 6403 6473 8467 9552 10200 11251 0.06340

1 1424 2808 4462 4972 6404 6457 8306 9503 10218 11230 0.06118

2 1410 2800 4449 4965 6412 6440 8322 9528 10208 11191 0.06105

3 1400 2795 4447 4959 6420 6458 8393 9627 10231 11184 0.06142

INPUT DATA

MSC/NASTRAN (FEM)

BLADEOPT1 (SLP)

YES
CONVERGE	STOP

NO

UPDATE INPUT DATA

Figure 1. Blade Optimal Design System Flow Chart.	Figure 2. Blade Modeled by Shell Finite Elements.
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Figure 3. Distribution of Tmax/C in Longitudinal Direction.
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Figure 4. Campbell Diagram.
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