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Design Optimization of Radially Magnetized,
Iron-Cored, Tubular Permanent-Magnet

Machines and Drive Systems
Jiabin Wang, Senior Member, IEEE, and David Howe

Abstract—In this paper we deduce, from analytical field
solutions, the influence of leading design parameters on the
performance of a radially magnetized, iron-cored, tubular perma-
nent-magnet machine and its drive system. We derive analytical
formulas for predicting the open-circuit electromotive force,
the thrust force, the iron loss, and the winding resistance and
inductances, as well as the converter losses. The force density,
the machine and drive system efficiencies, and the power factor
and converter volt–ampere (VA) rating are established as func-
tions of a set of machine dimensional ratios, with due account of
magnetic saturation and subject to a specified thermal constraint.
We validate the utility and accuracy of the analytically derived
formulas by finite-element calculations. Finally, we show that the
design optimization of such a linear drive system must account
for the losses and VA rating of the converter as well as the design
parameters of the tubular machine.

Index Terms—Design optimization, electric drive, linear ma-
chine, permanent-magnet machine.

I. INTRODUCTION

L
INEAR electromagnetic machines, which either convert

thrust force directly from a prime mover into electrical

energy (e.g., free-piston combustion engine) or provide thrust

force directly to a payload (e.g., reciprocating actuator),

offer numerous advantages over rotary-to-linear counterparts,

notably the absence of mechanical gears and transmission

systems, which results in a higher efficiency, higher dynamic

performance, and improved reliability. Of the various linear

machine topologies, tubular permanent-magnet machines

have the highest efficiency, and offer a high power/force

density and excellent servo characteristics [1]. Hence, linear

permanent-magnet machines are being used increasingly in ap-

plications as varied as manufacturing automation [2], electrical

power generation [3], transportation [4], healthcare [5], [6], and

household appliances [7], [8].

In order to facilitate the design optimization and dynamic

modeling of linear permanent-magnet machines, a lumped cir-

cuit model is often employed to predict the magnetic field dis-

tribution [9], [10]. However, while this allows the relationship

between critical design parameters and machine performance to

be established analytically, it suffers from problems associated

with model inaccuracy, particularly when the leakage flux is sig-
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nificant and the flux paths are complex. Therefore, numerical

analysis of the field distribution to facilitate evaluation of perfor-

mance is also employed [11]–[13]. However, while numerical

techniques, such as finite-element analysis, provide an accurate

means of determining the field distribution, with due account of

saturation, etc., they remain relatively time-consuming and do

not provide as much insight as analytical solutions into the influ-

ence of the design parameters on the machine behavior. To over-

come the aforementioned problems, analytical solutions for the

magnetic field distribution in various topologies of linear ma-

chine have been established. For example, a single-sided, planar

linear permanent-magnet motor has been analyzed using both

the magnetic charge image technique [14] and a magnetic vector

potential formulation [15], [16].

A general framework and comprehensive analysis and de-

sign techniques for slotless tubular permanent-magnet machines

have also been reported [17], [18]. However, the force capa-

bility of tubular permanent-magnet machines can be improved

significantly by employing a slotted armature. Furthermore, the

majority of tubular permanent-magnet machines, whether op-

erating as a motor or a generator, are interfaced to an electrical

power source via a power electronic converter, whose VA rating,

cost, and efficiency are closely related to the performance of

the electrical machine. Thus, conventional design techniques,

which do not take account of the converter, may lead to a less op-

timal machine design, and, therefore, a less cost-effective drive

system solution. This paper describes analysis and design tech-

niques that have been developed specifically for radially mag-

netized tubular permanent-magnet machines equipped with a

slotted armature. Various performance indicators that are per-

tinent to their design, such as the open-circuit flux linkage, the

thrust force and force ripple, the iron loss, the armature reac-

tion field and the winding inductances, and the demagnetization

withstand, etc., are treated within a unified analytical frame-

work. These allow design optimization at a system level, taking

account of both the machine and its power electronic converter.

II. ARMATURE WINDING ARRANGEMENT

The armature of a three-phase tubular permanent-magnet ma-

chine can be wound to facilitate either brushless dc or brushless

ac operation, as illustrated in Fig. 1.

A. Brushless DC

A brushless dc machine has two coils per pole-pair per phase,

displaced 120 electrical degrees apart, as shown in Fig. 1(a).

0018-9464/04$20.00 © 2004 IEEE
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Fig. 1. Winding arrangements for three-phase tubular permanent-magnet machines. (a) Brushless dc winding (two coils per pole-pair per phase). (b) Brushless
ac winding (full-pitched, one slot per pole per phase). (c) Brushless ac winding (short-pitched, two slots per pole per phase). (d) Brushless ac winding (one slot
per pole-pair per phase).

Thus, the armature tooth-pitch is two thirds of a pole-pitch,

and the ratio of the slot number to the pole number is 1.5.

However, while the stator winding of a rotary brushless dc

machine winding has a short coil-pitch, and, hence, a short

end-winding, which is conducive to a high efficiency and a high

power/force density, in a tubular brushless dc machine which

has no end-windings this advantage no longer exists, and in-

deed the short coil-pitch leads to a lower winding factor for the

fundamental electromotive force (EMF). Hence, a brushless dc

winding is less favorable compared with conventional brushless

ac windings.

B. Brushless AC

A conventional three-phase brushless ac winding has a

60 phase-spread and can be either full-pitched [Fig. 1(b)] or

short-pitched [Fig. 1(c)]. A short-pitched winding is often used
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Fig. 2. Schematic of no-load flux distribution over N teeth.

to reduce EMF harmonics and force ripple while providing a

greater degree of freedom in selecting an appropriate ratio of

slot number to pole number, primarily to minimize the cogging

force. However, in order to eliminate low-order EMF harmonics

(e.g., fifth and seventh) without a significant reduction in the

winding factor, a short-pitched winding requires a minimum of

two slots per pole per phase [Fig. 1(c)], which results in a rela-

tively large number of slots. This may be a disadvantage from

the manufacturing point of view, since it is then more difficult

to laminate a tubular stator. Thus, a full-pitched winding, with

one slot per pole per phase [Fig. 1(b)], is often used. In both

cases, however, a conventional brushless ac winding results in

an integer ratio of slot number to pole number, which results

in a relatively large cogging force. For tubular machines, a

further winding variant exists with one slot per pole-pair per

phase, as shown in Fig. 1(d). This has the same slot number

to pole number ratio as the brushless dc winding, but requires

only one coil per pole-pair per phase. It is, therefore, easier

to manufacture. However, it can be shown that this winding

arrangement gives rise to a dc component in its magnetomotive

force (MMF) distribution and has a slightly larger winding

inductance, which leads to a lower power factor.

III. FLUX-LINKAGE, EMF, AND THRUST FORCE

For permanent-magnet machines with a slotted stator, the ef-

fect of slotting may be accounted for by introducing a Carter

coefficient , given by [19], [20]

(1)

where , is the stator slot-pitch, is the

air-gap length, is the relative recoil permeability of the per-

manent magnets and is their radial thickness, and the slotting

factor is given by

(2)

where is the width of the stator slot openings. Therefore, the

effective air gap and the equivalent armature bore radius

are given, respectively, by

(3)

(4)

where is the outer radius of the magnets. It has been shown

in [17] that the flux-linkage of a phase winding is given by

(5)

where

(6)

and

(7)

where is the number of pole-pairs, is the pole-pitch, is

the number of series turns per pole, and is the coil-pitch. For

a brushless ac machine with one slot per pole-pair [Fig. 1(d)],

. is defined as the winding factor of the

th harmonic, and is dependent on the winding type. is a

coefficient related to the th harmonic in the radial air

gap field distribution, and is given by

(8)

where and are modified Bessel functions of the

first and second kind, respectively, of order one. and are

the coefficients of the th harmonic associated with the

radial magnetization in the air-gap region, and are dependent

on the permanent-magnet material properties and geometric pa-

rameters [17].

The induced EMF in each phase winding is given by

(9)
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where is the linear velocity of the armature, and is the

EMF constant of the th harmonic, and is given by

(10)

The winding factor comprises of the pitch factor and

the distribution factor . The pitch factor can be calculated

from

For a bipolar winding

Fig. 1 a – c

For a homopolar winding

Fig. 1 d

(11)

For a brushless dc machine [Fig. 1(a)], is equal to

. Thus, for the fundamental component of EMF,

, which is 13% lower than

that for a nonchorded, brushless ac winding [Fig. 1(b)]. The

distribution factor is given by

For a brushless dc machine

For a brushless ac machine

(12)

where is the number of coils per pole per phase, and is

the axial displacement between two adjacent coils. For windings

with one slot per pole per phase or one slot per pole-pair per

phase, as shown Fig. 1(b) and (d), respectively, , and

is the same as that for the brushless dc winding.

The instantaneous power of each phase when excited with

current is given by

(13)

and the instantaneous force is

(14)

However, the current is related to the total slot area per pole

per phase , the coil packing factor , the current density

, and the number of turns per coil by

(15)

thus

(16)

where . For a three-phase machine

carrying balanced sinusoidally time-varying currents, the cur-

rent density in the phase windings is given by

(17)

where is the rms current density and is the electrical

angular frequency, which is related to the armature velocity

by . The total thrust force is obtained from

(18)

This may be simplified to

(19)

where , , and are given by

(20)

As will be evident from (20), the force ripple due to triple har-

monics in the radial field distribution is zero. The normalized

total force ripple is, therefore, given by

TFR

(21)
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Fig. 3. Typical tooth section.

IV. NO-LOAD FLUX

A. No-Load Flux in Stator Teeth

The flux that passes through a stator tooth can be calcu-

lated by integrating the radial flux density component at

over the tooth tip width . Thus

(22)

This expression can be used to determine the required tooth

width for a given maximum open-circuit flux density level.

B. No-Load Flux in Stator Yoke

Assuming that the magnetic field distribution repeats every

teeth, as illustrated in Fig. 2, then, if the reluctance of the th

yoke segment is denoted by , the fluxes in the teeth and the

yoke segments are related by

...

...

(23)

Summing all the equations in (23) yields

(24)

Due to the periodicity of the flux distribution over the teeth,

. Thus

(25)

Several observations may be made from (25), viz.

1) The fluxes in the yoke segments are related to all the fluxes

in the teeth and the reluctance of each yoke segment.

When segments of the yoke are driven into saturation, (25)

has to be used in an iterative manner in order to determine

the yoke fluxes.

2) If the yoke is not saturated, the reluctance of each yoke

segment is identical, and (25) reduces to

(26)

Thus, the yoke fluxes can be calculated from the tooth

fluxes.

3) For a brushless ac machine with an integer number of slots

per pole, (26) can be further simplified to

(27)

where is the number of slots per pole.

4) For a brushless dc machine, the flux distribution repeats

every pole-pair (or three tooth-pitches), and (26) becomes

(28)

Application of (26), (27), or (28) allows the fluxes in the yoke

to be evaluated, and consequently enables it to be dimensioned

for a specified maximum flux density.

C. No-Load Flux in Armature Yoke

The flux which passes through the ferromagnetic yoke

at a given axial position can be calculated by integrating the

expression for , the vector magnetic potential, which is

given in [17], around the circumference at . Thus

(29)

where and are the coefficients of the th har-

monic associated with the radial magnetization in the magnet
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Fig. 4. Current distribution due to one phase winding of a brushless machine with one slot per pole per phase. (a) Actual current distribution. (b) Equivalent
current sheet distribution.

region, and are given in [17]. This expression can be used to de-

termine the required radial thickness of the tubular yoke for a

specified maximum flux density level.

V. OPEN-CIRCUIT IRON LOSS

Once the dimensions of the stator teeth and yoke have been

specified, the no-load flux density in the teeth and yoke can

be obtained, by dividing (22) and (25) by the corresponding

cross-sectional areas. For parallel-sided teeth, the tooth area in-

creases linearly with the radius. Thus, a tooth can be divided

into a number of sections along its radial length, and within

each section the flux density can be assumed to be constant. The

open-circuit iron loss density (i.e., with no account of the arma-

ture reaction field) in the yoke and each section of the teeth can

then be estimated using (30), which has been validated exten-

sively [21]

(30)

where is the iron loss density, and and are constants

related to the hysteresis iron loss component. is the excess

eddy-current loss constant, and are the fundamental fre-

quency and period, is the peak flux density, and are

the electrical conductivity and mass density of the lamination

material, is the thickness of the lamination. , , and

are determined experimentally for the particular grade of stator

lamination material.

However, when calculating the total open-circuit iron loss of

a region, the tubular geometry of the stator must be taken into

account. For example, if the average radius of a stator tooth sec-

tion is , then, from (22), the average flux density and its time

derivative are given by

(31)

(32)

Thus, the loss density in the tooth section can be calculated

analytically and the total iron loss obtained by integrating

over the region

(33)

where is the tooth width, and and are the inner and

outer radii of the tooth section, as shown in Fig. 3. The total

open-circuit iron loss is then obtained by summing the losses in

all the regions of the stator.
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Fig. 5. Armature reaction field model.

VI. ARMATURE REACTION FIELD

A. Current Distribution in Conventional Brushless

Permanent-Magnet Machines

The current distribution in the conventional slotted stators

[Fig. (1a)–(c)] may be represented using a current sheet model

[22], as illustrated in Fig. 4. Assuming the yoke and teeth to be

infinitely permeable, then, according to Ampere’s law, the am-

pere-conductors in a slot may be represented by an equiv-

alent current sheet distributed over the width of the slot

opening . The current distribution in Fig. 4(b) may be ex-

panded into a Fourier series over a period of , viz.

(34)

where

(35)

B. Armature Reaction Field

The effect of stator slotting can be taken into account by as-

suming the equivalent stator bore radius in (4). If, for sim-

plicity, the relative recoil permeability of the magnets is as-

sumed to be 1, i.e., , the armature reaction field may be

deduced from the model shown in Fig. 5. The governing field

equation, in terms of the vector magnetic potential , is given

by

(36)

The boundary conditions to be satisfied by (36) are

(37)

Solving (36) subject to the boundary conditions of (37)

yields the following expressions for and the flux density

components:

(38)

(39)

where the harmonic field coefficients and are given in

the Appendix. Equation (39) provides a basis for evaluating the

extent of any partial irreversible demagnetization of the magnets

which may occur under any specified operating condition.

C. Self and Mutual Inductances

The flux-linkage of a phase winding having pole-pairs due

to its own armature reaction field may be obtained by integration

of , and is given by

(40)

which yields

(41)

The air-gap component of the winding self-inductance is, there-

fore, given by

(42)

where , and are given in the Appendix. The mutual

inductance between phases and separated by an

axial distance can be similarly deduced, and is given by

(43)

It should be noted that the MMF distribution of a homopolar

winding with one slot per pole-pair per phase, as shown in

Fig. 1(d), contains a dc component, and its field solution needs

to be analyzed separately. However, this is beyond the scope of

the paper. The foregoing equations for the armature reaction

field and inductances are applicable to the winding configura-

tions shown in Fig. (1a)–(c).

For a slotted stator, however, slot leakage will also contribute

to the self and mutual inductances, and may be analyzed by the

model shown in Fig. 6. Assuming that the stator core is infinitely

permeable and that the cross-slot leakage flux is parallel to the

axis, the flux density at a distance from the bottom of the

slots is given by

(44)
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Fig. 6. Slot leakage model.

The flux which passes through an area of length of and

depth is, therefore, given by

(45)

This flux links with turns, and, hence, the partial flux-

linkage is given by

(46)

The total flux-linkage over the current carrying region of the slot

is, therefore

(47)

The total slot leakage inductance, including components asso-

ciated with the tooth tip height and the taper angle , is given

by

(48)

where is the number of slots per pole per phase. A similar

expression can be derived for the slot leakage component of the

mutual inductance . Thus, the total self and mutual induc-

tances are given by

(49)

D. Effect of Saturation

The analytical field solutions for the no-load and armature re-

action magnetic field distributions have been derived assuming

that the armature and stator cores are highly permeable. In many

practical designs, however, this may not be the case. In order to

account for the effect of core saturation, a fictitious radial air gap

is introduced between the inner bore of the stator and the outer

Fig. 7. Schematic of radially magnetized tubular permanent magnet machine.

surface of the magnets. As has been described in Section IV, the

no-load fluxes in the stator teeth and yoke, and in the armature

yoke, can be evaluated analytically, while the peak flux density

in these regions, taking account of the armature reaction field,

can be obtained from

(50)

where and are the no-load and resultant peak flux

densities in the th region, respectively, is the power

factor at a specified load condition, and denotes one of the

three regions: viz., the stator teeth, the stator yoke, or the arma-

ture yoke, where saturation is of concern. The total MMF drop

due to saturation can be written as

(51)

where is the resultant magnetic field strength in the th

region, which can be deduced from the calculated flux density

and the – characteristic of the core material, and is the

average length of the flux path in the th region. The length of

the fictitious air gap may then be determined from

(52)

where is the peak no-load flux density at the stator bore,

viz., at . The winding flux-linkage due to the perma-

nent magnets, the thrust force, the armature reaction field, and

the winding inductances, can therefore all be calculated analyt-

ically using the equivalent air-gap . The effectiveness

of this procedure has been confirmed by finite-element analysis,

as will be shown in the next section, and it could be employed

to account for the effect of saturation under any load condition

from a knowledge of the power factor for that condition.

VII. VALIDATION BY FINITE-ELEMENT ANALYSIS

The main design parameters of the radially magnetized, three-

phase, one slot per pole per phase tubular machine shown in

Fig. 7, for which analytical field solutions have been obtained,

are given in Table I. The stator extends over four active pole-

pairs, and the magnets are sintered NdFeB with a remanence

T and . The derived analytical expres-

sions for the field distribution have been validated by finite-el-

ement calculations of the radial and axial flux density compo-

nents in various regions of the machine.
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TABLE I
LEADING DESIGN PARAMETERS OF TUBULAR MACHINE (M)

Fig. 8. Finite-element model.

The finite-element solutions were obtained using the model

shown in Fig. 8 by applying a periodic boundary condition at the

axial boundaries and imposing the natural Dirichlet

boundary condition at the other bounding surfaces. Saturation of

thestatorandarmaturecoreswasaccountedforbyusing the –

curves for the respective ferromagnetic materials. The finite-ele-

ment model thus takes into account all key effects, such as non-

linearity and slotting, which a practical machine may exhibit.

Fig. 9 compares analytically predicted and finite-element-cal-

culated open-circuit distributions of the axial and radial flux den-

sitycomponents and asfunctionsoftheaxialposition at

the center of the air gap, viz., at radius m , and with

zero axial displacement between the stator and armature, while

Fig. 10 shows the flux distributions for two displacements, viz.,

and . It will be seen that the analytical pre-

diction agrees well with the finite-element solution, the main dis-

crepancies being in regions close to the slot openings, which are,

of course, not taken into account in the analytical model.

Fig. 11 compares the analytically predicted and finite-ele-

ment-calculated EMF waveform per turn for a constant armature

velocity of 1 (m/s). As will be seen, excellent agreement is again

achieved. A comparison of the analytically predicted and fi-

nite-element-calculated thrust force which results with the rated

three-phase sinusoidal current excitation is given in Fig. 12.

Again, good agreement is achieved in both the amplitude and

the waveform. It will be noted that both models predict a sig-

nificant force ripple, due mainly to the presence of the fifth har-

monic in the EMF waveforms.

It should also be noted that the finite-element predicted force

waveform contains the tooth ripple cogging force component,

which is also shown separately in Fig. 12, and that the average

force is slightly lower than that predicted from the analytical

model, due mainly to the effect of localized saturation, which

Fig. 9. Comparison of flux density in air gap as a function of z at r = 0:0473,
for z = 0. (a) Radial component. (b) Axial component.

may not be fully accounted for using the technique described in

Section VI-D.

Fig. 13 shows a comparison of the analytically predicted and

finite-element-calculated distribution of the radial component of

thearmaturereactionfieldinthecenteroftheairgapwhenphaseA

isexcitedwithratedcurrent. InFig.13(a), theeffectofcoresatura-

tion, which is significant at full load, is neglected in the analytical

model, and consequently it predicts a flux density which is 20%

higherthanthefinite-elementcalculation.Whencoresaturationis

accounted for, by using the procedure described in Section VI-D,

thedifferencebetweentheanalyticalpredictionandfinite-element

calculation is significantly reduced [Fig. 13(b)].

Table II compares analytically and finite-element-predicted

self and mutual inductances, where good agreement is again

achieved, the difference being less than 5%.

VIII. DESIGN OPTIMIZATION

A. Thermal Constraints

As can be seen from (20), the thrust force capability is pro-

portional to the rms current density, which, in turn, is limited by



WANG AND HOWE: DESIGN OPTIMIZATION OF RADIALLY MAGNETIZED PERMANENT-MAGNET MACHINES 3271

Fig. 10. Open-circuit flux distributions for two axial displacements. (a) z =
0. (b) z = � =2.

the allowable temperature rise, for a specific cooling arrange-

ment. Hence, the permissible winding copper loss and iron loss

are governed by the dissipation capability of the machine, i.e.,

(53)

where is the current-carrying volume of a slot, is the total

number of slots, is the resistivity of copper at a specified op-

erating temperature, is the stator surface thermal dissipation

Fig. 11. Comparison of EMF per turn at v = 1:0 (m/s).

Fig. 12. Comparison of thrust force and tooth ripple cogging force as a
function of armature position at rated current.

coefficient, is the stator surface dissipation area, and is

the allowable temperature rise of the windings. The iron loss

can be predicted using the formula given in Section V from

the flux density derived from the analytical field solution. With

reference to Fig. 6, the volume of a slot can be calculated from

(54)

The permissible current density is, therefore, given by

(55)

Thus, (20) and (55) relate the force capability to the design pa-

rameters under a given thermal condition.

B. Winding Design

In permanent-magnet brushless machines, the rms current

density and, hence, the force capability is limited by the thermal

constraint. For a given dc link voltage, the stator phase current
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Fig. 13. Comparison of radial flux density component of armature reaction
field. (a) Core saturation neglected. (b) Core saturation taken into account.

TABLE II
COMPARISON OF ANALYTICALLY PREDICTED AND

FINITE-ELEMENT-CALCULATED INDUCTANCES (mH)

will be dependent on the maximum phase voltage, the phase

back-EMF, and the synchronous impedance. Hence, in order to

optimize the force capability of a given machine, specifically in

terms of establishing the preferred pole number and “split-ratio”

(i.e., the ratio of to the outer stator radius ), it is necessary

to calculate the synchronous impedance of the stator winding.

The coil resistance can be calculated using

(56)

where is the number of slots per phase,

is the average radius of a coil, and

is the slot area. The peak phase current is related to the rms

current density by

(57)

Thus, the resistive voltage drop is given by

(58)

As has been shown in Section VI-C, the self and mutual in-

ductances are proportional to the square of the number of turns

per coil, . Hence, the synchronous inductance can be related

to by

(59)

where the synchronous inductance coefficient is constant

for a given machine design

(60)

Thus, the reactance voltage at an armature velocity is obtained

from

(61)

where

From (9) and (10), the peak fundamental back-EMF is related

to the number of turns per coil by

(62)

Thus, if the stator current is controlled to be in phase with the

induced EMF for maximum force per ampere operation, ac-

cording to the phasor diagram in the d-q reference frame, the

peak phase current is related to the peak applied voltage by

(63)

Substituting (58), (61), and (62) into (63) and solving for

yields

(64)

The power factor can be evaluated from

(65)

where the plus and minus signs correspond to motoring and gen-

erating modes of operation, respectively. If the machine is sup-
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Fig. 14. Design parameters of radially magnetised, slotted tubular permanent-magnet machine.

plied from a converter with a dc link voltage of , the max-

imum peak phase voltage is dependent on the PWM scheme,

viz.

for sinusoidal pulsewidth modulation

for space vector pulsewidth modulation.

(66)

C. Converter Losses

Since the VA rating and conduction loss of a converter are re-

lated to its rmscurrent, a lowerpower factor machine impliesboth

a higher VA rating and a higher rms current for the same output

power.Hence, the converter VA ratingand converter loss increase

as the machine power factor decreases. Further, currently the cost

of the power electronic converter usually dominates the overall

cost of a drive system. Thus, the power factor as an output param-

eter of a machine design has a significant influence on both the

drive system efficiency and cost. Therefore, a design optimiza-

tion process for the machine should take the overall system per-

formance and cost into account, rather than just considering the

machine performance and cost independently.

The total converter loss of a voltage source converter com-

prises of the conduction loss, , of both the switches and

diodes, the switching loss , and the reverse recovery loss

, which can be calculated using the following equations

[23], [24]:

(67)

(68)

(69)

(70)

where

on-state voltage drop of power switch;

on-state resistance of power switch;

on-state voltage drop of diode;

on-state resistance of diode;

peak line current of machine;

switching frequency;

modulation ratio of converter;

rated device current;

rated recovery charge;

rated reverse recovery time;

rated rise time;

rated fall time.

The device parameters for use in the foregoing equations can

be obtained from the manufacturer’s data sheets for the power

semiconductors that are used in the converter.

D. Influence of Leading Design Parameters on Machine and

Drive System Performance

The main design parameters that influence the electromag-

netic performance of a slotted tubular machine are shown in

Fig. 14, where is the active armature length, is the air-gap

length, and is the outer radius of the stator. It should be noted

that the tooth width and the stator and armature yoke dimen-

sions are dependent on the air-gap flux density and the max-



3274 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 5, SEPTEMBER 2004

Fig. 15. Variation of force density with R =R and � =R . (a) 3-D view.
(b) 2-D view.

TABLE III
FIXED DESIGN PARAMETERS OF TUBULAR PERMANENT-MAGNET MACHINE

imum permissible flux density in the cores. In order that the find-

ings are independent of machine size, the thrust force due to the

fundamental component of the radial air-gap field is divided by

the volume of the stator, , to give the force density (i.e.,

force per unit volume). In many applications, multiple design

objectives are often sought, for example, to maximize the force

density or efficiency for minimum cost, and the criteria that are

used to judge an optimal design may vary from one applica-

tion to another. In order that the findings are generic, therefore,

the subsequent study focuses on the influence of leading de-

sign parameters on key cost and performance indicators, such as

force/power density, specific force/power, efficiency, and power

factor, rather than on a specific objective.

For a given outer radius , the design parameters that have

a significant influence on the performance are the dimensional

ratios , , , the magnet thickness , and

the air-gap length . In general, the performance improves

Fig. 16. Variation of specific force with R =R and � =R . (a) 3-D view.
(b) 2-D view.

as is increased. However, an increase in the volume of

rare-earth magnet material will increase the cost and result

in a heavier armature, which is usually undesirable for a

moving-magnet machine. In this study, therefore, the magnet

thickness is fixed (at 5 mm) to produce an acceptable air-gap

flux density and force density, while providing the required

demagnetization withstand capability. The air-gap length is

also assumed to be constant (at 1 mm), since although a smaller

air-gap length would also improve the performance, it is limited

by manufacturing tolerances, and the stiffness and static and

dynamic radial run-out of the moving armature. The influence

of on the performance and cost is also straightforward.

Both the force density and efficiency increase as the ratio

is increased, but the volume of rare-earth magnet material and,

hence, the cost will also increase. However, there is an optimal

ratio of for minimum harmonic distortion in the air-gap

field distribution and force ripple [18]. This optimal ratio is

around 0.8, although it may vary slightly with different machine

designs.

Fig. 15 shows the variation of the force density as a func-

tion of and assuming that the magnets have a

remanence T and a relative recoil permeability

for the calculation of the open-circuit magnetic field,
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Fig. 17. Variation of machine efficiency with R =R and � =R . (a) 3-D
view. (b) 2-D view.

and a value for the calculation of the armature re-

action field, and that the coils have a packing factor .

The other design parameters and thermal constraints are given in

Table III. As will be seen, for a given , there is an optimal

ratio of which yields the maximum force density. This

ratio represents an optimal balance between the electric loading

and the magnetic loading of the machine for a given thermal

performance. Similarly, for a given , an optimum value

of exists, which results in the maximum force density.

As the ratio of is reduced below the optimum value, the

air-gap field that is produced by the permanent magnets decays

more rapidly with radius and interpole flux leakage increases.

Hence, the force capability reduces. However, if the ratio of

is too large, the flux per pole increases and this results

in increased saturation of both the stator and armature cores if

their radii are maintained constant, or requires thicker cores if

their flux density is to be maintained constant. In both cases, the

force density again reduces. The optimal dimensional ratios for

the maximum force density of 696.3 kN/m are

and .

Fig. 16 shows the variation of the specific force (i.e., force

per unit mass) as a function of the dimensional ratios

and . A similar trend is observed, in that for a given ratio

Fig. 18. Variation of power factor with R =R and � =R . (a) 3-D view.
(b) 2-D view.

there exists an optimal value of , which yields the

maximum specific force. However, this optimal ratio increases

as decreases. This is due to the fact that, for a given outer

radius and pole-pitch , the total weight of the machine

reduces as the ratio is increased.

Figs. 17 and 18, respectively, show the variation of the ma-

chine efficiency and power factor as functions of the two-dimen-

sional ratios and . As will be seen, optimal ratios

of and exist, which yield the

maximum machine efficiency of 0.942. This trend is similar to

that which was observed in Fig. 15, although the optima occur at

slightly different dimensional ratios. It should be noted that the

power factor increases as both ratios are increased. This is due

to the fact that the slot leakage accounts for a large portion of

the machine inductance, and it decreases as the slot depth is re-

duced with an increase in and as the slot width is increased

with an increase in .

In order to illustrate how the power factor might affect the

outcome of the design optimization, Fig. 19 shows the varia-

tion of the machine efficiency, the drive system efficiency, the

power factor, and the VA rating of the converter as a function of

for a fixed ratio of 0.25 and a constant power

output of 44 kW. The parameters for evaluation of converter
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Fig. 19. Variation of machine and drive efficiency, converter VA rating and
power factor with R =R . (a) Efficiency and power factor. (b) VA rating and
power factor.

TABLE IV
PARAMETERS FOR EVALUATION OF CONVERTER LOSSES

losses are given in Table IV. As will be seen, the optimal

ratio of 0.59 for the maximum machine efficiency is much lower

than the ratio of 0.66 for maximum drive system efficiency. This

is because at the optimal ratio for maximum machine efficiency,

the power factor is much lower, and, hence, the converter loss

is higher. As the ratio is increased, the converter effi-

ciency initially increases faster than the decrease in the machine

efficiency and the drive system efficiency improves until a point

is reached where this trend reverses. It should also be noted that

the required converter VA rating at is signifi-

cantly higher than that which is required for the maximum drive

system efficiency. Thus, machine design optimization without

taking account of the converter loss and VA rating may not only

lead to a less efficient system but also a higher cost.

Fig. 20. Variation of drive system efficiency withR =R and � =R . (a) 3-D
view. (b) 2-D view.

Fig. 20 shows the variation of the drive system efficiency as a

function of the two-dimensional ratios and . As

will be seen, optimal ratios of and

also exist, which yield the maximum drive system effi-

ciency of 0.9127. However, these are quite different from those

in Fig. 17 in which only the machine efficiency is considered.

As has been shown in Fig. 18, the power factor of the machine

improves as increases. As a result, the optimal ratio

of for different values of and maximum drive

system efficiency tends to be greater than 0.58. As can be seen

in Fig. 17(b), in the region where is greater than 0.58,

the machine efficiency increases as the ratio decreases.

Thus, although a decrease in results in a reduction in

power factor, which tends to reduce the drive system efficiency,

this reduction is outweighed by the increases in the machine effi-

ciency. Consequently, the optimal ratio of for maximum

drive system efficiency is much lower than that for maximum

machine efficiency.

IX. CONCLUSION

Analytical formulas for predicting the parameters and perfor-

mance of radially magnetized, iron-cored, tubular permanent-
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magnet machines and drive systems, with due account of mag-

netic saturation and subject to a specific thermal constraints,

have been established. Their utility and accuracy have been val-

idated by finite-element analysis. The derived formulas provide

an effective means of optimizing the design of machines and

drive systems, and will aid the design process when addressing

a given performance specification. It has been shown that for

a converter-fed drive system, the power factor has a signifi-

cant influence on the system efficiency and cost, and, as such,

it is essential that the converter losses and its VA rating are

taken into account during the design optimization of the per-

manent-magnet machine.

APPENDIX

Definition of and

Let:
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