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Abstract

Research and development activities in the field of renewable energy have been
considerably increased in many countries recently, due to the worldwide energy crisis.
Wind energy is becoming particularly important. Although considerable progress
have already been achieved, the available technical design is not yet adequate to
develop reliable wind energy converters for conditions corresponding to low wind
speeds and urban areas. The Savonius turbine appears to be particularly promising
for such conditions, but suffers from a poor efficiency. The present study considers
improved designs in order to increase the output power of a classical Savonius turbine.
It aims at improving the output power of the Savonius turbine as well as its static
torque, which measures the self-starting capability of the turbine. In order to achieve
both objectives, many designs have been investigated and optimized by placing in
an optimal manner an obstacle plate shielding the returning blade. The geometry
of the blade shape (skeleton line) has been optimized in presence of the obstacle
plate. Finally, frontal guiding plates have been considered and lead to a superior
performance of Savonius turbines. The optimization process is realized by coupling
an in-house optimization library (OPAL, relying in the present case on Evolutionary
Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target
function is the output power coefficient. Compared to a standard Savonius turbine, a
relative increase of the power output coefficient by 58% is finally obtained at design
point. The performance increases throughout the useful operating range. The static
torque is found to be positive at any angle, high enough to obtain self-starting conditions.

Considering now ocean’s and sea’s energy, the Wells turbine is one of the technical
systems allowing an efficient use of the power contained in waves with a relatively low
investment level. It consists of a self-rectifying air flow turbine employed to convert
the pneumatic power of the air stream induced by an Oscillating Water Column into
mechanical energy. On the other hand, standard Wells turbines show several well-known
disadvantages: a low tangential force, leading to a low power output from the turbine;
a high undesired axial force; usually a low aerodynamic efficiency and a limited range
of operation due to stall. In the present work an optimization process is employed
in order to increase the tangential force induced by a monoplane and two-stage Wells
turbine using symmetric airfoil blades as well as by a two-stage Wells turbine using
non-symmetric airfoil blades. The automatic optimization procedure in this part of
the work is again carried out by coupling the in-house optimization library OPAL with
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the industrial CFD code ANSYS-Fluent. This multi-objective optimization relying on
Evolutionary Algorithms takes into account both tangential force coefficient and turbine
efficiency. Detailed comparisons are finally presented between the optimal designs and
the classical Wells turbine using symmetric airfoils, demonstrating the superiority of the
proposed solutions. The optimization of the airfoil shape lead to a considerably increased
power output (+12%) and simultaneously to an increase of efficiency throughout the
full operating range.



Zusammenfassung

Aufgrund der weltweiten Energiekrise wurden die Anstrengungen in Forschung und En-
twicklung im Bereich der erneuerbaren Energien in den letzten Jahren in vielen Ländern
erheblich erhöht. Dabei nimmt die Windenergie eine zunehmend wichtige Rolle ein.
Obwohl bereits erhebliche Fortschritte erzielt wurden, ist das zur Verfügung stehende
technische Design noch nicht ausreichend angepasst, um zuverlässige Windenergieanla-
gen für Bedingungen mit vergleichbar geringen Windgeschwindigkeiten und städtischen
Gebieten zu entwickeln. Die Savonius-Turbine scheint besonders vielversprechend für
solche Bedingungen zu sein, leidet aber unter einem schlechten Wirkungsgrad. Die vor-
liegende Studie betrachtet verbesserte Designs, um die Ausgangsleistung einer klassis-
chen Savonius Turbine zu erhöhen. Diese zielt sowohl auf die Verbesserung der Leistung
der Savonius-Turbine als auch auf die Steigerung des statischen Drehmoments, welches
für die Selbst-Startfähigkeit der Turbine bestimmend ist. Um beide Ziele zu erreichen,
wurde eine Vielzahl von Entwürfen untersucht und optimiert, wobei in optimaler Weise
ein Leitblech zur Abschirmung des rückkehrenden Turbinenblattes positioniert wurde.
Die Geometrie des Turbinenblattes (Skelett-Linie) wurde in Anwesenheit des Leitblechs
optimiert. Dies führte schließlich zu einer gesteigerten Leistung der Savonius Turbine.
Die Optimierung wurde durch die Kopplung einer hauseigenen Optimierungsbibliothek
(OPAL im vorliegenden Fall auf Evolutionären Algorithmen basierend) mit einem in-
dustriellen Strömungssimulations Code (ANSYS-Fluent) realisiert. Hierbei ist der Aus-
gangsleistungskoeffizient die Zielfunktion. Im Vergleich zu einer Standard-Savonius Tur-
bine ist eine relative Erhöhung des Ausgangsleistungskoeffizienten um 58% am Ausle-
gungspunkt erreicht worden. Die Leistung steigt im gesamten Betriebsbereich. Das
statische Drehmoment erweist sich in jedem beliebigen Winkel positiv und ist hoch
genug, um die Selbst-Startbedingung der Turbine zu erfüllen.

Betrachtet man nun die Wasserkraft, so ist die Wells-Turbine eines der technis-
chen Systeme, welches eine effiziente Nutzung der Energie in Wellen unter Aufwendung
relativ geringer Investitionskosten ermöglicht. Diese besteht aus einer sich selbst richt-
enden Luftstrom Turbine, welche die durch eine oszillierende Wassersäule eingebrachte
pneumatische Energie des Luftstroms in mechanische Energie in Form von Rotation
umwandelt. Auf der anderen Seite zeigen Standard Wells-Turbinen mehrere bekan-
nte Nachteile: eine geringe Tangentialkraft, was zu einer geringen Leistung der Tur-
bine führt, eine hohe unerwünschte axiale Kraft, eine geringe aerodynamische Effizienz
und einen begrenzten Betriebsbereich durch Strömungsabriss. In der vorliegenden Ar-
beit wurde ein Optimierungsprozess eingesetzt, um die Tangentialkraft zu erhöhen,
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welche durch eine zweistufige Wells-Turbine mit symmetrisch profilierten Schaufeln,
sowie durch eine zweistufige Wells-Turbine mit nicht-symmetrisch profilierten Schaufeln
induziert wird. Das automatische Optimierungsverfahren in diesem Teil der Arbeit wird
wiederum durch die Kopplung der hauseigenen Optimierungsbibliothek OPAL mit dem
industriellen CFD-Code ANSYS-Fluent durchgeführt. Diese Mehrzieloptimierung unter
Berufung auf Evolutionäre Algorithmen berücksichtigt sowohl den Tangentialkraftko-
effizienten als auch den Wirkungsgrad der Turbine. Abschließend werden detaillierte
Vergleiche zwischen den optimalen Designs und der klassischen Wells-Turbine mit sym-
metrischen Profilen präsentiert, welche die Überlegenheit der vorgeschlagenen Lösungen
veranschaulichen. Die Optimierung der Tragflächenform führte zu einer beachtlich
gesteigerten Leistung (+12%) und gleichzeitig zu einer Erhöhung der Effizienz über
den gesamten Betriebsbereich.
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Nomenclature

Roman symbols

A Projected area of rotor (DH), m2

B Rotor pitch of Wells turbine, m
b Blade span of Wells turbine, m
c Airfoil blade chord, m
CA Total pressure difference coefficient
Cp Power coefficient (P/[1/2ρAU3])
Cm Torque coefficient (T/[ρR2HU2])
Cms Static torque coefficient (Ts/[ρR2HU2])
CT Tangential force coefficient
D Turbine diameter of Savonius turbine (2R), m
Dt Turbine diameter of Wells turbine, m
d Blade chord (2r) of Savonius turbine, m
∆p0 Total pressure difference, Pa
FD Drag force, N
FL Lift force, N
FT Tangential force, N
FX Axial force, N
f∗ Wave frequency, Hz
H Blade height, m
h Hub to tip ratio for Wells turbine
G Gap ratio
gw Gap width for the three-blade Savonius turbine, m
Ld Deflector length, m
Lo Obstacle length, m
N Rotational speed of rotor, rpm
P Output power (2πNT/60), W
Q Volumetric flow-rate, m3/s

XIV



CONTENTS XV

R Tip radius of Savonius turbine, m
rt Tip blade radius, m
rh Hub blade radius, m
r Blade radius of semi-cylindrical Savonius blade, m
s Blade solidity
T Output torque, Nm
Ts Static torque quantifying self-starting capability, Nm
t Airfoil max. half thickness, m
U Mean wind velocity in axial direction, m/s
ut Tip blade speed of Wells turbine, m/s
vA Axial air velocity, m/s
w Relative velocity, m/s
z Number of blades of Wells turbine

Greek symbols

α Angle of incidence, (◦)
β Obstacle angle, (◦)
η Aerodynamic efficieny
γ Deflector angle, (◦)
γb Setting blade angle, (◦)
φ Flow coefficient
ρ Density, kg/m3

θ Rotor angle, (◦)
ω Angular speed, 1/s
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Chapter 1

Introduction

Life is nothing but a continuous process of energy conversion and transformation. The
accomplishments of civilization have largely been achieved through the increasingly ef-
ficient and extensive harnessing of various forms of energy to extend human capabilities
and ingenuity. Energy is similarly indispensable for continued human development and
economic growth. Providing adequate, affordable energy is essential for eradicating
poverty, improving human welfare, and raising living standards world-wide. And with-
out economic growth, it will be difficult to address environmental challenges, especially
those associated with poverty. But energy production, conversion, and use always gener-
ate undesirable by-products and emissions at least in the form of dissipated heat. Energy
cannot be created or destroyed, but it can be converted from one form to another. Al-
though it is common to discuss energy consumption, energy is actually transformed
rather than consumed. What is consumed is the ability of oil, gas, coal, biomass, or
wind to produce useful work. In this thesis, only conversion of selected renewable energy
sources has been investigated.

1.1 Renewable energy

Unlike fossil fuels, which are exhaustible, renewable energy sources regenerate and can
be sustained indefinitely. The five renewable sources used most often are: Biomass
(including wood and wood waste, municipal solid waste, landfill gas, biogas, ethanol,
and biodiesel), Hydropower (including tidal, water potential and ocean wave energy),
Geothermal, Wind and Solar energy.

The use of renewable energy is not new. More than 150 years ago, wood, which is
one form of biomass, supplied up to 90% of our energy needs. Today, we are looking
again at renewable sources to find new ways to use them to help meet our energy needs
(see Fig. 1.1).

In 2006, about 18% of global final energy consumption came from renewable energies,
with 13% coming from traditional biomass, which is mainly used for heating, and 3%
from hydroelectricity. New renewables (small hydropower installations, modern biomass,
wind, solar, geothermal, and biofuels) accounted for another 2.4% and are growing very
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Figure 1.1: 2008 worldwide renewable energy sources. Source: [12].

rapidly [11]. The share of renewables in electricity generation is around 18%, with 15%
of global electricity coming from hydroelectricity and 3.4% from new renewables.

The European policy concerning the use of electricity from renewable energy sources
aims at a 20% share of renewable energy in the European energy system. In summer
2010, the governments of the member states are to submit national plans to the European
Commission. Some countries have already developed national targets. In Denmark, the
governments long-term policy aims at achieving a 30% share of energy from renewable
energy sources in 2020 [79].

While most renewable energy projects and production is large-scale, renewable tech-
nologies are also suited to small off-grid applications, sometimes in rural and remote
areas, where energy is often crucial in human development.

Some renewable energy technologies are criticized for being intermittent or unsightly,
yet the renewable energy market continues to grow. Climate change concerns, coupled
with high oil prices, peak oil, and increasing government support, are driving increas-
ing renewable energy legislation, incentives and commercialization. New government
spending, regulation and policies helped the renewable energy industry weather the
2009 economic crisis better than many other sectors [65].

In the past, renewable energy has generally been more expensive to produce and
use than fossil fuels. Renewable resources are often located in remote areas, and it is
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expensive to build power lines to the cities where the electricity they produce is needed.
The use of renewable sources is also limited by the fact that they are not always available;
cloudy days reduce solar power; calm days reduce wind power; and droughts reduce the
water available for hydropower.

1.1.1 Some properties of renewable energy

Renewable energy is in principle a clean, emission free power generation technology.
Some important properties of renewable energy conversion can be summarized as follows:

• Greenhouse effect

First, renewable energy conversion produces no carbon dioxide (the main potential
greenhouse gas) during operation, and only minimal quantities during the manu-
facture of its equipment and construction. By contrast, fossil fuels such as coal,
gas and oil are major emitters of carbon dioxide.

• Air pollution

Renewable energy also has a positive effect on the quality of the air we breathe.
The combustion of fossil fuels produces sulphur dioxide and nitrogen oxide, both
serious sources of pollution. These gases are the main components of the ”acid
rain” effect - killing forests, polluting water courses and corroding the stone facades
of buildings; not to mention the human health effects.

• Water

Another consideration of renewable energy deployment concerns water. In an in-
creasingly water-stressed world, renewable energy conversion uses virtually none
of this most precious of commodities in its operation. Most conventional tech-
nologies, from mining and extraction to fuel processing and plant cooling measure
their water use in millions of liters per day. Other environmental effects resulting
from the range of fuels currently used to generate electricity include the landscape
degradation and dangers of fossil fuel exploration and mining, the pollution caused
by accidental oil spills and the health risks associated with radiation produced by
the routine operation and waste management of the nuclear fuel cycle. Exploiting
renewable sources of energy, reduces these risks and hazards.

• Environmental impact

Renewable energy is arguably the cleanest electricity generation technology, but,
like any other industry, does have environmental impacts. The construction and
operation, often in rural areas, raises issues of visual impact, noise and the poten-
tial effects on local ecology and wildlife. Most of these issues are addressed during
consultation with local authorities. Since the early days of this relatively young
industry, significant improvements have been made with regards to the siting of
wind farms and the design of turbines, for instance.
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1.1.2 A few numbers

Renewable energy resources include solar energy, geothermal energy, energy from the
wind or waves, energy from tides and energy from biomass [42]. Only these relevant for
the present thesis are now discussed.

• Solar energy

Every year the Earth receives about 300,000,000,000,000,000,000,000 kJ of energy
from the sun. Some energy is absorbed by green plants and used to make food
by photosynthesis. So ultimately, the sun is the source of most energy resources
available to us, including fossil fuels. The two energy sources considered in the
present work (wind and waves) are indirectly a result of sun radiation: solar energy
drives processes in the atmosphere that cause the wind and waves [42].

• Wind energy

When the earth is irradiated by the sun the ground absorbs some of this radiation.
This heated ground warms the air above it. Hot air rises in what are called
convection currents. The uneven heating of the earth’s surface causes winds.

For example, if the sun’s rays fall on land and sea, the land heats up more quickly.
This results in the air above the land moving upwards more quickly than that over
the sea (hot air rises). As a result the colder air over the sea will rush in to fill
the gap left by the rising air. It is processes like these that give rise to high and
low pressure areas, and thus to winds.

Wind energy is non-polluting and is freely available in many areas. Wind turbines
are becoming more efficient. The cost of the electricity they generate is falling.
Large balancing areas and aggregation benefits of large areas help in reducing
the variability and forecast errors of wind power as well as in pooling more cost
effective balancing resources [41]. There are already several power systems and
control areas coping with large amounts of wind power [115], like in Denmark,
Germany, Spain, Portugal and Ireland that have integrated 9-20 % of wind energy
(of yearly electricity demand).

However, the disadvantages of wind energy exist as well. To be efficient, wind
turbines need to be linked together in wind farms, often with 20 turbines or
more. This looks unsightly, and can be noisy. The wind farms also need to
be sited reasonably close to populations so that the electricity generated can be
distributed. Another disadvantage is that winds are intermittent and do not blow
all the time [42].

In this thesis, one turbine used to convert wind energy is extensively optimized in
order to improve the output power.

• Wave energy

Waves are caused by the action of winds on the sea. Waves can be many meters
in height and contain a great deal of energy. This energy can be harnessed to
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drive turbines that generate electricity. Wave energy collectors are of two main
types. The first type directs waves into man-made channels, where the water
passes through a turbine that generates electricity. The second type uses the up
and down movement of a wave to push air.

For example, the Limpet shoreline wave energy concept has been commissioned in
December 2000 on the Island of Islay, off the west coast of Scotland. It is intended
to enable Islay to replace fossil fuels and become self-sufficient through renewable
energy. The waves feed indirectly a pair of counter-rotating Wells turbines, each of
which drives a 250 kW generator, giving a theoretical peak power of 500 kW [24].

Waves’ energy is non-polluting, wave turbines are relatively quiet to operate and
do not affect wildlife. However, some disadvantages exist: the turbines can be
unsightly; wave heights vary considerably, so they would not produce a constant
supply of energy. In this work, the Wells turbine used to convert wave energy into
mechanical energy is investigated and optimized to increase its efficiency.

1.1.3 Future of renewable energy

The worldwide energy demand is continuously growing and, according to the forecasts
of the International Energy Agency, it is expected to rise by approx. 50% until 2030.
Currently, over 80% of the primary energy demand is covered by fossil fuels. Although
their reserves will last for the next decades, they will not be able to cover the worldwide
energy consumption in the long run. In view of possible climatic changes due to the
increase in the atmospheric CO2-content as well as the conceivable scarcity of fossil fuels,
it becomes clear that future energy supply can only be guaranteed through increased
use of renewable energy sources. With energy recovery through renewable sources like
sun, wind, water, tides, geothermal or biomass the global energy demand could be met
many times over; currently, however, it is still inefficient and too expensive in many
cases to take over significant parts of the energy supply.

Renewable energies have long since emerged from their much ridiculed niche existence
and established a firm place in the energy mix. Their further expansion is certain now
that the European Union has laid down ambitious and binding targets. These state
that by 2020 renewable energies are to account for as much as 20% of Europe’s energy
consumption. These targets focus attention not only on the electricity sector, but also on
the use of renewable energy sources in heat production and in the transport sector [67].

Due to the usual adaptation reactions on the markets, it is foreseeable that prices for
fossil fuels will rise, while significantly reduced prices are expected for renewable ener-
gies. Already today, wind, water and sun are economically competitive in some regions.
However, to solve energy and climate problems, it is not only necessary to economically
utilize renewable alternatives to fossil fuels, but also to optimize the whole value added
chain of energy, i.e., from development and conversion, transport and storage up to the
consumers’ utilization.

Innovation and increases in efficiency in conjunction with a general reduction of
energy consumption are urgently needed in all fields to reach the targets within the
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given time since the world population is growing and striving for more prosperity [26]
(see Fig. 1.2).

Figure 1.2: 2008 worldwide renewable energy sources [26].

1.2 Scope of the Thesis

The optimization of renewable energy turbomachines is a completely new topic. While
gas turbine have been for instance considered extensively, turbomachines used for wind
and wave energy conversion are still at a very basic stage. The aim of this thesis is
to investigate and optimize two such devices. Therefore, the specific objectives of this
work are:

1. Savonius turbines (wind energy conversion)

• Study the impact of an obstacle shielding partially the returning blade(s) and
optimize the position and angle of this obstacle as well as the shape of the
blades under the effect of this obstacle.

• Investigate the impact of a deflector installed simultaneously with the obsta-
cle (frontal guiding plates) to redirect the flow toward the advancing blade(s)
and optimize the position and angle of these guiding plates as well as the
shape of the blades under the effect of these plates.

• Optimize the performance of the full turbine considering either two or three
three blades.

• At the end, a considerably improved design must be available.
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2. Wells turbine (wave energy conversion)

• Study a modified Wells turbine consisting of non-symmetric airfoils, taking
into account the mutual interaction between the blades.

• Optimize the blade shape of monoplane Wells turbine and obtain new, non-
standard airfoils with a higher performance.

• Optimize the shape of the airfoil for a two-stage, modified Wells turbine using
non-symmetric airfoils.

• Obtain the optimal shape of the airfoil for a two-stage Wells turbine using
symmetric airfoils.

• At the end, a considerably improved design must be available.

1.2.1 Conclusions and outline

This chapter provides a brief introduction to renewable energy conversion and its im-
portance for human life. In chapter 2, wind and wave energy conversion are discussed
in details, followed by a discussion of the Savonius turbine and Wells turbine, which are
the main topic of this work. Chapter 3 illustrates the employed optimization technique.
A literature review of the performance of Savonius and Wells turbines is presented in
chapter 4 including previous attempts to improve the performance of both turbines.
The numerical methods are introduced in chapter 5, including the coupling between the
flow solver and the optimizer (OPAL). All the results of the optimization are presented
in chapter 6 for Savonius turbine and chapter 7 for Wells turbine, comparing the new
designs with the classical ones. The thesis ends with conclusions and suggestions for
future work in chapter 8.





Chapter 2

Basic concepts

2.1 Introduction

The utilization of renewable energy sources is not at all new; in the history of mankind
renewable energies have for a long time been the primary possibility of generating en-
ergy. This only changed with industrial revolution when lignite and hard coal became
increasingly important. Later on, also crude oil gained importance. Offering the ad-
vantages of easy transportation and processing, crude oil has become one of the prime
energy carriers applied today. As fossil energy carriers were increasingly used for en-
ergy generation, at least by the industrialized countries, the application of renewable
energies decreased in absolute and relative terms; besides a few exceptions, renewable
energies are of secondary importance with regard to overall energy generation. Yet,
the utilization of fossil energy carriers involves a series of undesirable side effects which
are less and less tolerated by industrialized societies increasingly sensitized to possible
environmental and climate effects at the beginning of the 21st century. This is why the
search for environmental, climate-friendly and socially acceptable, alternatives suitable
to cover the energy demand has become increasingly important. Also with regard to the
considerable price increase for fossil fuel energy on the global energy markets in the last
few years, not only in Europe, high hopes and expectations are placed on the multiple
possibilities of utilizing renewable sources of energy. Considering this background, the
present chapter aims at presenting the physical and technical principles for using wind
and wave energy.

2.2 Wind energy conversion

Solar radiation induces the movement of the air masses within the atmosphere of the
earth. Of the total solar radiation incident on the outer layer of the atmosphere, ap-
proximately 2.5% are utilized for the atmospheric movement. This leads to a theoretical
overall wind power of approximately 4.3 1015 W. The energy contained in the moving
air masses, which for example can be converted into mechanical and electrical energy
by wind mills and turbines, is therefore a secondary form of solar energy. The aim of

10



CHAPTER 2. BASIC CONCEPTS 11

the following discourse is to show the main basic principles of the supply in wind energy
and to discuss its supply characteristics [53].

Wind power is growing at the rate of 30% annually, with a worldwide installed
capacity of 157,900 megawatts (MW) in 2009 [12]. It is widely used in Europe, Asia,
and the United States. The measured wind speeds can be analyzed and the annual
mean value can be calculated. If the yearly mean wind velocity is averaged over various
years, areas of similar wind speeds can be identified. Figure 2.1 shows these values on
a worldwide scale referring to 10 m above ground.

Figure 2.1: Distribution of yearly annual mean values of the wind speed for 10 m above
ground worldwide [53].

Wind energy converters harness the kinetic energy contained in flowing air masses.
In the following, the fundamental physical principles of this type of energy conversion
are explained. Most modern wind energy converters are equipped with rotors to ex-
tract wind power, and consist of one or several rotor blades. The extracted wind power
generates rotation and is thereby converted into mechanical power at the rotor shaft.
Mechanical power is taken up at the shaft in the form of a moment at a certain rotation
and is transfered to a machine (such as a generator). The entire wind power station
thus consists of a wind energy converter (rotor), a mechanical gear and a generator. It
is physically impossible to technically exploit the entire wind energy, as in this case air
flow would come to a standstill; air would fail to enter the swept rotor area, and wind
power would no longer be available. There are two different physical principles to extract
power from wind. The airfoil drag method is based on the wind drag force incident on
a wind-blown surface. The second principle, also referred to as aerodynamic or airfoil
lift principle, which is based on flow deviation inside the rotor is at present predomi-
nantly applied for wind energy conversion. Both principles are outlined throughout the
following sections to explain the main differences. The implementation of an innovative
aerodynamic control technique in wind turbines is a point under extensive investigation
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since the conventional wind turbine blade technology is reaching its limits. Almost all
the effort of the wind turbine industry in the field of aerodynamics is related to the
development of blades which offer better performance, increased reliability and faster
control of larger wind turbines [78]. A discussion on the maximum achievable wind
power output by means of an ideal wind energy converter follows.

2.2.1 Horizontal axis turbines

These are the standard turbines used at present. According to the lift principle, wind is
deviated to generate peripheral force inside the rotor (Fig. 2.2). For high-speed propeller-
type converters, rotor blades are mostly designed according to the wing theory.

Figure 2.2: Horizontal axis wind turbine.

The airfoil cross-section at radius r is set at a local blade pitch angle ϑ with respect
to the rotor plane of rotation (Fig. 2.3). The axial free stream velocity va in the rotor
plane and the tangential speed u = rω at the radius of the blade cross-section combine
to form a resultant flow velocity vr. Together with the airfoil chord line, it forms the
local aerodynamic angle of attack α. For the benefit of those readers unfamiliar with
aerodynamics, the difference between the aerodynamic angle of attack α and the blade
pitch angle ϑ should be noted: the angle of attack is an aerodynamic parameter and the
blade pitch angle is a design parameter. The two angles are often confused, making it
more difficult to understand the aerodynamic relationships. Linking the relationships of
fluid mechanics for the momentum of the axial flow and of the radial flow components
of the rotating wake with the formulations for the aerodynamic forces at the blade
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element allows the flow conditions at the blade element to be determined so that the
local aerodynamic lift and drag coefficients can be calculated.

The calculation of the balance of forces includes not only the pure airfoil drag but
also other drag components which derive from the spatial flow around the rotor blade.
In particular, the flow around the blade tip, a result of the pressure difference between
the top and the underside of the blade, produces the so-called free tip vortices. The
resultant drag is called induced drag, a function of the local lift coefficient and the
aspect ratio (slenderness) of the blades. The higher the aspect ratio, i.e., the more
slender the blades, the lower the induced drag. These blade tip losses are introduced
as additional drag components, as are the hub losses which are the result of vortices
in the wake of the flow around the hub. They are derived from a complex vortex
model of the rotor flow [37]. With several semi-empirical approaches for these vortex
losses, the blade element theory provides the distribution of aerodynamic forces over the
length of the blade. This is usually divided into two components: one in the plane of
rotation of the rotor, the tangential force distribution; and one at right angles to it, the
thrust distribution. Integrating the tangential force distribution over the rotor radius
provides the driving torque of the rotor and, with the rotational speed of the rotor, the
rotor power or power coefficient, respectively. Integrating the thrust distribution yields
the total rotor thrust for instance to the tower. Referred to the power rating of the air
stream, the simple momentum theory by Betz provides the ideal peak power coefficient of
0.593 which is independent of the tip speed ratio. Taking into consideration the angular
momentum in the rotor wake shows that the power coefficient becomes a function of
the tip speed ratio (see later section 2.2.3). It is only when the tip speed ratios become
infinitely high that the power coefficient approaches Betz’s ideal value. Introducing the
aerodynamic forces acting on the rotor blades, and particularly the aerodynamic drag,
further reduces the power coefficient; in addition, the power coefficient now exhibits an
optimum value at a certain tip speed ratio. The aerodynamic rotor theory based on the
momentum theory and on the blade element theory, yields the real rotor power curve
with good approximation. Nevertheless, it should be kept in mind that the momentum
theory as well as the blade element model include several simplifications, which limit
their validity to a disc-shaped wind energy converter. Sometimes, the momentum theory
is therefore called ”disc actuator theory” [37].

2.2.2 Vertical axis turbines

The oldest design of wind rotors features rotors with a vertical axis of rotation. At the
beginning, however, vertical-axis rotors could only be built as pure drag-type rotors (see
the idea of drag turbines in Fig. 2.4).

The Savonius rotor, which can be found as simple ventilator on some railroad car-
riages or delivery vans, and the cup anemometer used to measure wind velocity are
well-known examples of rotors with a vertical axis of rotation. It was only recently
that engineers succeeded in developing vertical-axis designs, which could also effectively
utilize aerodynamic lift. The design proposed in 1925 by the French engineer Darrieus,
in particular, has been considered as a promising concept for modern wind turbines. As
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Figure 2.3: Flow velocities and aerodynamic forces at the airfoil cross-section of a blade
element [53].

is the case with horizontal-axis rotors, Darrieus rotors are preferably built with two or
three rotor blades. The specific advantages of vertical axis turbine concepts are that
their basically simple design includes the possibility of housing mechanical and electrical
components, gearbox and generator at ground level, and that there is no yaw system.
This is countered by disadvantages such as low tip-speed ratio, inability to self-start
and not being able to control power output or speed by pitching the rotor blades. A
variation of the Darrieus rotor is the so-called H-rotor. Instead of curved rotor blades,
straight blades connected to the rotor shaft by struts are used. Attempts were made
particularly in the UK, in the US and in Germany to develop this design to commercial
maturity. H-rotors of a particularly simple structure, with the permanently excited gen-
erator integrated directly into the rotor structure without intermediary gear-box, were
developed by a German manufacturer up until the beginning of the nineties but the
development was stopped then since there was no economic success in sight. Occasion-
ally, the Savonius design is still used for small, simple wind rotors, especially for driving
small water pumps. It is not suitable for electricity-generating wind turbines due to its
low tip-speed ratio and its comparatively low power coefficient.

Altogether, it can be said that wind rotors with vertical axes and among these pri-
marily the Darrieus rotor and Savonius rotor, might still have a large potential for de-
velopment and optimization. Whether the basic advantages of these designs can prevail
over their disadvantages and whether it will become a serious rival to the horizontal-axis
rotors cannot be foreseen for the long-term. In any case, this will still require a relatively
long period of development. In half of this thesis, the development and optimization of
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Figure 2.4: Flow conditions and drag force for vertical axis turbines [53].

a new concept based on a Savonius turbine is the target.

2.2.3 Betz limit

The main component of a wind turbine is the energy converter, which transforms the
kinetic energy contained in the moving air into mechanical energy. For an initial dis-
cussions of basic principles, the exact nature of the energy converter is irrelevant. The
extraction of mechanical energy from a stream of moving air with the help of a disk-
shaped, rotating wind energy converter follows its own basic rules. The credit for having
recognized this principle is owed to Albert Betz. Between 1922 and 1925, Betz published
writings in which he was able to show that, by applying elementary physical laws, the
mechanical energy extractable from an air stream passing through a given cross-sectional
area is restricted to a certain fixed proportion of the energy or power contained in the
air stream. Moreover, he found that optimal power extraction could only be realized
at a certain ratio between the flow velocity of air in front of the energy converter and
the flow velocity behind the converter. Although Betz’s ”momentum theory”, which
assumes an energy converter working without losses in a frictionless airflow, contains
simplifications, its results are still used for performing first calculations in practical en-
gineering. But its true significance is founded in the fact that it provides a common
physical basis for the understanding and operation of wind energy converters of various
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designs. For this reason, the following pages will provide a summarized mathematical
derivation of the elementary momentum theory by Betz.

2.2.3.1 Betz’s momentum theory

The kinetic energy of an air mass m moving at a velocity U can be expressed as:

E =
mU2

2
(2.1)

Considering a certain cross-sectional area A, through which the air passes at velocity
U, the volume flow rate Q (m/s3) flowing through during a time unit, the so-called
volume flow rate, is:

Q = AU (2.2)

and the mass flow rate with the air density ρ is:

ṁ = ρAU (2.3)

The equations expressing the kinetic energy of the moving air and the mass flow
yield the amount of energy passing through cross-section A per unit time. This energy
is physically identical to the power P in (W):

P =
ρAU3

2
(2.4)

The question is how much mechanical energy can be extracted from the free-stream
airflow by an energy converter? As mechanical energy can only be extracted at the cost
of the kinetic energy contained in the wind stream, this means that, with an unchanged
mass flow, the flow velocity behind the wind energy converter must decrease. Reduced
velocity, however, means at the same time a widening of the cross-section, as the same
mass flow must pass through it. It is thus necessary to consider the conditions in front
of and behind the converter (Fig. 2.5). Here, U1 is the undelayed free-stream velocity,
the wind velocity before it reaches the converter, whereas U2 is the flow velocity behind
the converter. Neglecting any losses, the mechanical energy, which the disk-shaped
converter extracts from the airflow corresponds to the power difference of the air stream
before and after the converter:

P =
ρAU3

1 − ρAU3
2

2
(2.5)

Maintaining the mass flow (continuity equation) requires that:

ρA1U1 = ρA2U2 (2.6)

Thus,

P =
ṁ

2
(U2

1 − U2
2 ) (2.7)
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Figure 2.5: Flow conditions due to the extraction of mechanical energy from a free-stream
air flow, according to the elementary momentum theory.

From this equation it follows that, in purely formal terms, power would have to
be at its maximum when U2 is zero, namely when the air is brought to a complete
standstill by the converter. However, this result does not make sense physically. If
the outflow velocity U2 behind the converter is zero, then the inflow velocity before the
converter must also become zero, implying that there would be no more flow through
the converter at all. As could be expected, a physically meaningful result consists in
a certain numerical ratio of U2/U1 where the extractable power reaches its maximum.
This requires another equation expressing the mechanical power of the converter. Using
the law of conservation of momentum, the force which the air exerts on the converter
can be expressed as:

F = ṁ(U1 − U2) (2.8)

According to the principle of ”action equals reaction”, this force, the thrust, must be
counteracted by an equal force exerted by the converter on the airflow. The thrust,
so to speak, pushes the air mass at air velocity U ′, present in the plane of flow of the
converter. The power required for this is:

P = FU ′ = ṁ(U1 − U2)U
′ (2.9)

Thus, the mechanical power extracted from the air flow can be derived from the energy
or power difference before and after the converter, on the one hand, and, on the other
hand, from the thrust and the flow velocity. Equating these two expressions yields the
relationship for the flow velocity U ′:

ṁ

2
(U2

1 − U2
2 ) = ṁ(U1 − U2)U

′ (2.10)

Thus, the flow velocity in the converter plane is equal to the arithmetic mean of U1 and
U2.

U ′ =
(U1 + U2)

2
(2.11)
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The mass flow thus becomes:

ṁ = ρAU ′ =
ρA(U1 + U2)

2
(2.12)

The mechanical power output of the converter can be expressed as:

P =
ρA(U2

1 − U2
2 )(U1 + U2)

4
(2.13)

In order to provide a reference for this power output, it is compared with the power
of the free-air stream which flows through the same cross-sectional area A, without
mechanical power being extracted from it. This power was:

Po =
ρAU3

1

2
(2.14)

The ratio between the mechanical power extracted by the converter and that of the
undisturbed air stream is called the ”power coefficient” Cp:

Cp =
P

Po

=

ρA(U2

1
−U2

2
)(U1+U2)

4
ρAU3

1

2

(2.15)

After some re-arrangement, the power coefficient can be specified directly as a function
of the velocity ratio U2/U1:

Cp =
P

Po

=
1

2

[

1 −
(

U1

U2

)2
]

[

1 +

(

U1

U2

)]

(2.16)

The power coefficient, i.e., the ratio of the extractable mechanical power to the power
contained in the air stream, therefore, now only depends on the ratio of the air veloci-
ties before and after the converter. If this interrelationship is differentiated to get the
maximum value of the power coefficient it can be obtained that the power coefficient
reaches a maximum at a certain velocity ratio with U2/U1 = 1/3. The maximum ”ideal
power coefficient” Cp becomes

Cp(max) =
16

27
= 0.593 (2.17)

Betz was the first to derive this important value and it is, therefore, frequently
called the ”Betz factor”. Knowing that the maximum, ideal power coefficient is reached
at U2/U1 = 1/3, the flow velocity U ′ in the rotor plane becomes:

U ′ =

(

2

3

)

U1 (2.18)

It is worthwhile to recall that these basic relationships were derived for an ideal,
frictionless flow (for the effect of the friction, see for instance [77]), and that the result
was obviously derived without having a close look at the wind energy converter. In real
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Figure 2.6: Power coefficients of wind rotors of different designs [37].

cases, the power coefficient will always be smaller than the ideal Betz value, as shown in
Fig. 2.6. The essential findings derived from the momentum theory can be summarized
in words as follows:

• The mechanical power which can be extracted from a free-stream airflow by an
energy converter increases with the third power of the wind velocity.

• The power increases linearly with the cross-sectional area of the converter tra-
versed; it thus increases with the square of its diameter.

• Even with an ideal airflow and lossless conversion, the ratio of extractable me-
chanical work to the power contained in the wind is limited to a maximum value
of 0.593. Hence, only less than 60% of the wind energy of a certain cross-section
can be converted into mechanical power.

• When the ideal power coefficient achieves its maximum value (Cp = 0.593), the
wind velocity in the plane of flow of the converter amounts to two thirds of the
undisturbed wind velocity and is reduced to one third behind the converter.

2.2.4 Principle operation of standard Savonius turbines

In half of this thesis, optimizing of a Savonius wind turbine will be considered.
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The choice of a wind turbine is obviously based on its performance in connection
with the local wind conditions. To support the discussion, a comparison between the
characteristics of the main conventional wind turbines is shown in Fig. 2.6.

Figure 2.6 gives the power coefficient Cp, ratio of the aerodynamic power of the
turbine to the power of the incident wind, as a function of the speed ratio λ. This speed
ratio λ is also called velocity coefficient and is equal to the ratio of the tip peripheral
speed to the wind velocity. The power coefficient is directly linked to the global efficiency
of a wind machine. The curves in Fig. 2.6 show that the fast running horizontal axis
wind machines (two- or three-bladed airscrew) have incontestably the best efficiencies.
Consequently, theses machines are nowadays systematically chosen for the equipment of
large-area wind sites. On the other hand, the Savonius rotor, which is a slow-running
vertical axis wind machine (λ ≃ 1.0) has a rather poor efficiency: Cp ≃ 0.15 to 0.2
at best [68]. Nevertheless, it can present some advantages for specific applications, in
particular due its simplicity, and resulting robustness and low cost. And there is room
for improvement!

S.J. Savonius initially developed the vertical axis Savonius rotor in the late 1920s.
The concept of the Savonius rotor is based on cutting a cylinder into two halves along
the central plane and then moving the two half cylinders sideways along the cutting
plane, so that the cross-section resembles the letter S [36] (Fig. 2.7).

Figure 2.7: Conventional Savonius rotor.

2.2.5 Performance of a Savonius turbine

Using the notations of Fig. 2.8, the velocity coefficient is defined as:

λ = ωR/U (2.19)

For a Savonius rotor of height H, a wind of incoming velocity U , the mechanical
power P and the mechanical torque on the axis of a Savonius turbine can respectively
be written as follows:

Cp =
P

ρRHU3
(2.20)
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Figure 2.8: Schematic description and main parameters characterizing a Savonius rotor.

and

Cm =
T

ρR2HU2
(2.21)

where Cp and Cm are respectively the power coefficient and the torque coefficient. In
the following sections, a rotor is called a conventional Savonius rotor if the geometrical
parameters a and e Fig. 2.8 are respectively equal to 0 and d/6. This reference configu-
ration of the rotor has been extensively studied by many groups (see citations in [70] and
next chapter). This conventional design will be the starting point for the optimization
process described in later chapters.

2.3 Wave energy conversion

Let us switch to the second focus of this document: wave energy conversion with opti-
mized Wells turbines. Very large energy fluxes can be found in deep water sea waves.
The power in the wave is proportional to the square of the amplitude and to the period
of the motion. Therefore, the long period (≈10 s) and large amplitude (≈2 m) waves
have considerable interest for power generation, with energy fluxes commonly averaging
between 50 and 70 kW per meter width of oncoming wave.

The possibility of generating electrical power from these deep water waves has been
realized for many years, and there are countless ideas for machines to extract the power.

The utilization of the sea wave was rarely considered on a practical scale prior to
1973. However, a great deal of research has been conducted since 1973, the year of
so-called oil crisis [5].

In recent years interest has revived, particularly in Japan, Britain and Scandinavia,
so the research and small-scale development has progressed to the stage of commercial
construction for power extraction. As with all renewable energy supplies, the scale of
operation has to be determined and present trends support moderate power generation
levels at about 1 MW from modular devices about 50 m wide across the wavefront.
Such devices should be economic to replace diesel-generated electricity, especially on
islands [134].
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2.3.1 Wave energy potential

There is a large amount of ongoing work on wave energy due to a broad availability
(Fig. 2.9), which cannot be done justice in a brief overview. For ease of presentation,
the activities will be divided between the technologies suitable for deployment on the
shoreline, near the shore and offshore [133].

Figure 2.9: Approximate global distribution of wave power levels in kW/m of wave
front [133].

• Shoreline devices

These devices are fixed to or embedded in the shoreline itself, which has the
advantage of easier maintenance and/or installation. In addition these would
not require deep water moorings or long lengths of underwater electrical cable.
However, they would experience a less powerful wave regime.

• Near shore devices

The main prototype device for moderate water depths (i.e., < 20 m depth) is
the OSPREY developed by Wavegen. This is a 2 MW system, with provision for
addition of a 1.5 MW wind turbine. Since there could be environmental objections
to large farms of wind or wave energy devices close to the shore, this system aims
to maximize the amount of energy produced from a given amount of near shore
area.

• Offshore devices

This class of device exploits the more powerful wave regimes available in deep water
(> 40 m depth) before energy dissipation mechanisms have had a significant effect.
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However, it is important to appreciate the many difficulties facing wave power de-
velopments. It was summarized by Twidell and Weir [134] as follows:

1. Wave patterns are irregular in amplitude, phase and direction. It is difficult to
design devices to extract power efficiently over this wide range of variables.

2. There is always probability of extreme gales or hurricanes producing waves of freak
intensity. The structure of the power devices must be able to withstand this.

3. Wave periods are commonly from 5 up to 10 sec (frequency ∼=0.1 Hz). It is
extremely difficult to couple this irregular slow motion to electrical generators
requiring about 500 times greater frequency.

Many attempts have been made to construct such devices and efficiently match
variable natural conditions, extract the wave power and withstand the listed difficulties.
Some of these devices being developed are placed underwater, anchored to the ocean
floor, while others ride on top of the waves. The following section gives an idea of
the most famous mechanism to convert the wave energy to mechanical energy, called
Oscillating Water Column mechanism (OWC).

2.3.2 Oscillating Water Column (OWC) principle

One of the many extraction systems proposed in recent years, the oscillating water
column device, provides the simplest and possibly the most reliable means of converting
slow irregular wave motion into high speed rotational movement required for electrical
power generation.

The device is essentially a caisson rested on sea bottom with a large submerged
opening at the front and a small nozzle at the ceiling (Fig. 2.10). An air turbine coupled
to an electric generator is connected to the nozzle. The water column within the lower
half of the caisson is caused to oscillate vertically by incident waves through the opening,
and it induces the compression and expansion of air mass within the upper half of the
caisson as shown in Fig. 2.10. The air motion generates a high-velocity flow through the
nozzle, which activates the air turbine and generates electricity [73]. The wave power is
thus converted into air power in the air chamber of the wave power-extracting caisson.

OWC wave power extractors can be quite easily fitted to a vertical breakwater,
because the latter is mostly built with a large concrete caisson rested on the foundation.
A combination of OWC wave power extractor and breakwater is also attractive from the
viewpoint of economical feasibility of wave power extraction, because the construction
cost of the total system can be jointly born by the accounts for power generation and
harbor protection.

2.3.3 Wells turbines

Serious research on wave-energy extraction methods began in several countries during
the 1970’s. Dr. Wells, a former professor of civil engineering at Queen’s university of
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Figure 2.10: The wave motion in the OWC device [73].

Belfast, proposed in 1976 a form of self-rectifying axial flow air turbine as a device suit-
able for wave energy conversion using the oscillating water column. In its simplest form
the air turbine rotor consists of several symmetrical airfoil blades positioned around a
hub. Because of its simple and efficient operation, the Wells turbine has been widely
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applied for ocean waves energy absorption. Therefore, it has been subjected to a con-
siderable amount of research and development in many counties. In the next chapter,
the state of the art of Wells turbines used as converter for wave energy will be proposed.

2.3.4 Operation of Wells turbines

Most research programs attempting to gain energy from waves depend on the OWC
as converter mechanism [7, 22, 25, 75, 137]. The water wave energy is converted to
pneumatic energy in the air, which passes periodically across a self-rectifying, axial air
flow turbine. The first prototype was constructed in UK in 1988. This device is located
on the Isle of Islay, one of the southern islands in the Inner Hebrides and depends on a
Wells turbine as final converter [15, 16, 84, 138].

The turbine itself consists in a number of symmetric airfoils set around the hub radi-
ally at 90◦ stagger angle, with the chord plane normal to the axis of rotation (Fig. 2.11).
According to the standard airfoil concept, if the airfoil is set at an angle of attack α in a
fluid flow, it will generate a lift force FL normal to the free stream and a drag force FD

in the direction of the free stream. These lift and drag forces can be combined to get the
tangential force FT and the axial force as shown in Fig. 2.12. For a symmetrical airfoil
as considered in [84, 86, 88, 90, 92, 97], the direction of tangential force, FT is the same
for both positive and negative values of angle of attack (±α) as shown in Fig. 2.12.

Oscillating airflow

Air turbine

Figure 2.11: Wells turbine in state of upward and downward air flow.

2.3.5 Wells turbine performance

If such symmetric airfoil blades are positioned around an axis of rotation, they will
rotate in the tangential force direction regardless of the direction of airflow, as shown in
Fig. 2.12. The force FT is responsible for the torque and consequently the blade power,
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while the axial force FA results in an axial thrust along the axis of the rotor, which has
to be absorbed by the bearings. This leads to a unidirectional device rotation for an
alternating airflow without the need for non-return valve. The tangential force FT and
the axial force FA shown in Fig. 2.12 can be obtained from:

FT

FA
R

ut

wvA

Rotation

Flow

FT

FA R

ut

w
vA Rotation

Flow

Figure 2.12: Axial and tangential forces acting on a Wells turbine.

FT = FL sin(α) − FD cos(α) (2.22)

FA = FL cos(α) + FD sin(α) (2.23)

The running characteristics under steady flow conditions are usually characterized
by the tangential force coefficient CT , axial force coefficient CA and efficiency η with
flow coefficient φ. The tangential force coefficient CT and the axial force coefficient CA

are calculated as :
CT = FT /

[

(1/2)ρ
(

v2
A + u2

t

)

zbc
]

(2.24)

CA = ∆p0πr2
t /

[

(1/2)ρ
(

v2
A + u2

t

)

zbc
]

(2.25)

where ut = ωrt is the peripheral velocity, ω is the rotor angular velocity and rt is the tip
radius (Fig. 2.13). Furthermore, vA is the axial velocity normal to the plane of rotation,
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Figure 2.13: Main geometrical parameters of a Wells turbine.

z is the number of blades, b is the blade span, c is the blade chord (see Fig. 2.13) and
∆p0 is the total pressure difference across the rotor.

The non-dimensional variables expressing the performance of a Wells turbine are
function of the aerodynamic force coefficients that are in turn function of several pa-
rameters, as given by [84, 92]:

(CT , CA) = f(φ, s, h, AR, τ, τc, Tu, f
∗, Re, blade profile shape) (2.26)

where, φ = vA/ut is the flow coefficient, s is the rotor solidity, h is the hub to tip ratio
(rh/rt), AR is the aspect ratio (b/c), c is blade chord, b is blade span, τ is the blade
thickness, τc is the tip clearance ratio, Tu is the turbulence level, f∗ the frequency of
wave motion and the Reynolds number Re.

2.4 Conclusions

After having introduced all needed concepts and notations, its is now time to analyze
the state of the art for both systems considered in this thesis: Savonius turbine (wind
energy) and Wells turbine (wave energy).



Chapter 3

Literature Review

Due to the growing significance of wind and wave energy conversion, a wealth of pub-
lications can be found for the systems considered in this thesis. The present chapter is
again divided in two parts. The present state of Savonius turbines is first considered,
before reviewing the literature on Wells turbines.

3.1 Savonius turbine

Savonius turbines show inherent drawbacks compared to conventional wind turbines:
mainly a low efficiency and poor starting characteristics. Therefore, many authors have
tried to identify the best principles of operation and to improve the characteristics of
Savonius turbines.

3.1.1 Experimental investigations of Savonius turbines

Some studies have been carried out in wind tunnels, using controlled conditions. Other
consider free-space experiments. Generally, the global performance of a rotor, identical
to or derived from the conventional Savonius rotor, is presented in such studies, but
without realizing any detailed, quantitative parametric study. Sometimes, some visual-
izations of the flow in and around the rotor are proposed, but with a poor description of
the physical phenomena. Such publications are of very limited scientific or technological
interest and are therefore not included here.

Beyond issues associated with intellectual properties, this lack of quantitative in-
formation is sometimes associated to the complexity of the flow in and around wind
turbines. In particular for Savonius turbines, the resulting flow conditions are highly
unsteady. Furthermore, boundary layer separation is an essential aspect for the effi-
ciency of the system. As a consequence, detailed aerodynamic studies are rare and
often do not allow the prediction of the energetic behavior of the rotor. However, some
publications [10, 27, 31, 51] are of higher quality and give a precise description of the
aerodynamics of the conventional Savonius rotor, mainly obtained by pressure measure-
ments on the paddles.

28
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Further articles describe an extensive experimental study in a wind-tunnel to evaluate
the importance of geometrical parameters on the Savonius rotor performance. Through
the corresponding rotor power output coefficient versus the tip speed ratio, the influence
of each blade geometry parameter is investigated. Such parametric studies already
lead to geometrical configurations with a considerable increase in the rotor performance
efficiency [30, 39, 54, 128, 142].

The flow in and around a Savonius rotor has also been studied using flow visualiza-
tion experiments in combination with the measured pressure distributions on the blade
surfaces. It is observed that the flow separation regions on the blade surfaces are fairly
reduced by the rotation effect (compare Fig. 3.1 and 3.2). Similarly, the flow through
the overlap is weakened by the appearance of resisting flow. The former contributes to
the torque production of the rotating rotor while the latter acts as a resistance. These
phenomena, together with the flow stagnation region on the front side of the rotor,
contribute to the power producing mechanism of the Savonius rotor [4, 29].

Figure 3.1: Flow in and around a non-rotating Savonius rotor (λ = 0); a: visualized
flow field; b: flow inside the rotor; c: flow model; d: surface pressure distribution [29].
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Figure 3.2: Flow in and around a Savonius rotor in rotation (λ = 0.9); a: visualized
flow field; b: flow inside the rotor; c: flow model; d: surface pressure distribution [29].

Significant features observed here are the downward movement of the separation
point (Fig. 3.2c) and the relative decrease in the pressure coefficient on the convex side
of the advancing blade (Fig. 3.2d). These phenomena can be caused by the occurrence of
a Coanda-like flow pattern (Fig. 3.2a) on the convex side, which appears clearly at small
rotor angles of θ = 0◦ to 45◦. The attached flow on the convex side tends to separate at
large rotor angles (θ = 90◦ to 135◦), which is due to the outward flow motion at the tip of
the advancing blade. This flow is induced by the pressure gradient distributed over the
concave side of the advancing blade. The injected flow grows into a vortex circulating in
the rotating direction of the rotor, which increases in size downstream. It is considered
that the attached flow patterns of the rotating rotor contribute to the rotating torque of
the rotor, as is expected from the pressure distributions (Fig. 3.2d). On the other hand,
a relative decrease in the stagnation torque is expected here in comparison with the non-
rotating rotor (Fig. 3.1), since the relative velocity is decreased on the advancing blade
and is increased on the returning one. In addition, the stagnation point moves to the
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center of the blade due to the rotation effect. It can be seen that the pressure coefficients
are decreased overall by the effect of circulation produced by the rotor rotation. Such
a circulation is a steady phenomenon. In comparison with the non-rotating rotor, the
flow through the overlap is reduced here by the production of resisting flow. This flow is
expected to reduce the pressure recovery effect on the back side of the returning blade,
which is supported by the measured pressure distributions near the overlap.

3.1.2 Numerical investigations of Savonius turbines

Numerical simulations have also been carried out on this kind of rotors. These studies
include static or dynamic modelling. Nevertheless, most results suffer from a too crude
description of the rotor. A few of these papers [23, 28, 49] used the discrete vortex
method to predict the flow around a pair of coupled Savonius rotors. They suggested that
the reason why so few numerical studies had been successful was due to the complexity
of the flow pattern about the rotor and to the separation of the flow from the blade
surfaces.

Usually, wind sites are equipped today with fast-running horizontal axis wind tur-
bines of the airscrew type, associated to a high efficiency. Some articles point out that
the choice of a wind turbine must not be based only on high efficiency and proposed
a comparative criterion adapted to the comparison of a horizontal axis wind turbine
with a vertical axis wind turbine: the L-σ criterion. This criterion consists in compar-
ing wind turbines which intercept the same front width of wind, by allocating them a
same reference value of the maximal mechanical stress on the blades or the paddles. On
the basis of this criterion, a quantitative comparison points to a clear advantage of the
Savonius rotors, because of their lower angular velocity, and provides some elements for
the improvement of their rotor [71]. The results show that the power per unit length
provided by the considered Savonius rotor is about four times as high as that provided
by a fast-running two bladed airscrew. The American windmill and the Savonius rotor
have comparable values of their associated power per unit length. A favorable factor to
obtain a high power per unit length is consequently a low angular velocity. In terms
of the ease of setting up, and the potential for improvement in efficiency, the Savonius
rotor should be preferred to all other considered configurations following [71].

Flow fields around rotating Savonius rotors have been also simulated by solving the
two-dimensional incompressible Navier-Stokes equations [95]. The results show a good
agreement with experimental performance for the following points: the torque grows
weaker in inverse proportion to the tip speed ratio; a gap between the rotor buckets is
effective in increasing maximum power. These calculations have been realized using a
static approximation (the rotor is supposed to be fixed whatever the wind direction) and
also a dynamic calculation; in this second case, the velocity coefficient was equal to 1.0
(nominal working point in accordance with Fig. 2.6). These calculations are continued
until the residual values (variations in certain chosen parameters, e.g., velocity in the
wind direction), have all dropped below 10−3 (criterion for convergence). From our
experience, this is a relatively weak and perhaps insufficient criterion.

A separate study has been carried out to verify the model accuracy, comparing a
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static simulation and a dynamic one. To do so, a static simulation of the flow around
the conventional Savonius rotor (e/d = 1/6; a = 0; no central shaft) has allowed to
determine the pressure distribution on the paddles. Then the static torque has been
calculated as a function of the wind velocity angle θ (Fig. 2.8). These numerical results
were compared to experimental data. The simulations give satisfactory results since
the differences between the experimental data and the numerical simulations are always
below 10%, except for angles θ around 0◦ and 180◦ where an instability of the torque is
observed (Fig. 3.3, [68]).

Figure 3.3: Static torque coefficient of a Savonius rotor (Re = 1.56 105) [68].

Figure 3.4: Dynamic torque coefficient of a Savonius rotor (Re = 1.56 105, λ = 1) [68].

In a second step, a dynamic calculation (rotating turbine) has been carried out for
the same value of the Reynolds number: Re= 1.56 105, setting the velocity coefficient
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equal to 1.0. The torque coefficient Cm has been evaluated by calculating the average
value of the torque on a whole revolution of the rotor. The results are compared to the
ones given with the static calculation. The difference between the two curves generally
does not exceed 2% whatever the angle θ (Fig. 3.4). This is clearly in contradiction
with the experimental studies discussed previously (see again Fig. 3.1 and 3.2), and
must therefore be considered with caution. The simulated flows have been analyzed by
visualizing relative velocity, vorticity, pressure, etc. The behavior of the shed vortices
has been observed carefully, and it has been clarified that the shed vortices have a large
effect on the resulting flow fields and on the global performance [49, 50, 70].

3.1.3 Methods to improve Savonius turbine performance

Several propositions can be found in the literature to improve the performance of con-
ventional Savonius rotors.

3.1.3.1 Deflector plate

Attempts to improve the performance of a S-shaped Savonius rotor by using a deflecting
plate placed in front of the rotor have been documented. Using a deflecting plate placed
on the retreating side of the blade it has been observed that the power coefficient can
be increased relatively by about 20% [27, 43].

3.1.3.2 Double and three steps Savonius rotor

When considering only the starting torque, it can be seen that, for some directions of
the wind velocity, the starting torque of the standard Savonius configuration would be
so low that the rotor could not start alone. It is the reason why many authors have
chosen to use a double-step (see Fig. 3.6) and three-step Savonius rotor, where the
upper and the lower paddle pairs are set at 90◦ to each other (double step), respectively
at 120◦ for the three step rotor. The double-step and three-step rotors are said to be
slightly superior to the corresponding single-step turbine (conventional Savonius rotor)
in self-starting, but lower for both torque and power characteristics [38, 68].

3.1.3.3 Guide vanes

In order to decrease the torque variation of the standard Savonius rotor and to improve
its starting capability, a new type of Savonius turbine, using three stages with 120 degree
bucket phase shift between the adjacent stages with and without guide vanes, has also
been investigated [39].

The results indicate that the static torque coefficient of the one stage turbine without
guide vanes is periodic with a cycle of 180 degrees (depending on the number of stages)
and that its variation is very large. The lower values of static torque are observed in
the ranges of θ = 140◦ − 170◦ and 320◦ − 350◦. Guide vanes can be used to increase
the static torque and decrease its fluctuation. But, unlike the static characteristic, the
dynamic effect depends on the wind speed, so that the maximum values of Cm and Cp
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Figure 3.5: Double-step Savonius rotor [68].

of the three-stage rotor are much smaller than those of the one-stage rotor. The guide
vanes increase the dynamic torque coefficient for small λ values (0 < λ < 0.3), but lead
to a decrease in the torque for larger values (λ > 0.3).

Recently, one study was published concerning the three bucket Savonius rotor [36].
Unfortunately, the authors rely on an erroneous formulation to compute the rotor power
and torque. They consider:

Protor = (1/2ρAV 2
1 )u (3.1)

and
T = 60Protor/2πN (3.2)

where V1 is the test-section inlet air velocity and u is the tip peripheral blade velocity.
As a consequence the computed power is the power available in the incoming wind and
not the mechanical power of the turbine. Consequently, the results are not analyzed
further.

3.1.3.4 Twisted-blade Savonius rotor

Another investigation aims at exploring the feasibility of a twisted-bladed Savonius
rotor for power generation (Fig. 3.6). A twisted blade integrated within a three-bladed
rotor system has been tested in a low speed wind-tunnel, and its performance has
been compared with conventional semi-circular blades (corresponding to a twist angle
of 0◦). Performance analysis has been made on the basis of starting characteristics, static
torque and rotational speed. Experimental evidence shows the potential of the twisted
blade rotor in terms of smooth running, higher efficiency and self-starting capability
as compared to that of the conventional rotor [94, 98]. Semicircular blades correspond
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to zero twist angle. By increasing this angle, the performance of the Savonius rotor is
increased in its performance as shown in Fig. 3.7. It is also shown that a larger twist
angle is preferable for a lower wind velocity in order to produce maximum power and
better starting characteristics. A twist angle α = 15◦ gives optimum performance at
low airspeeds of U = 6.5 m/s in terms of starting acceleration and maximum no-load
speed. Such blades shows a maximum of Cp = 13.99 at tip speed ratio of λ = 0.65 (i.e.,
at U = 8.23 m/s), whereas the semicircular blade α = 0◦ shows a Cp = 11.04 at λ = 1.

Figure 3.6: Twisted-blade Savonius Rotor [98].

Figure 3.7: Power coefficient for twisted-blade Savonius rotor [98].

3.1.3.5 Savonius rotor using a guide-box tunnel

This publication aims at improving and adjusting the output power of a Savonius rotor
under various wind power. A guide-box tunnel is employed as the appropriate device
to achieve this purpose. The guide-box tunnel is like a rectangular box used as wind
passage, in which a test rotor is included as shown in Fig. 3.8. The area ratio between
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the inlet and exit of the guide-box is variable in order to adjust the inlet mass flow rate
or input power. At first, experiments have been conducted to find the configuration
that would provide the best relative performance. The experiments measure the static
torque of the fixed rotor at any phase angle and the dynamic torque under rotation.

Figure 3.9 shows that the maximum rotor rotational speed is obtained for a guide-box
area ratio between 0.3 and 0.7. The resulting value of the output power coefficient of the
rotor with guide-box tunnel using an area ratio of 0.43 increases considerably (by a factor
1.5 using three blades; by a factor 1.23 using two blades) compared to the conventional
design without guide-box (Fig. 3.9). The optimum spacing ratio between the rotor tip
and the side walls of the guide-box tunnel is around 1.4. The resulting increase in
performance seems promising, but the guide-box of course increases considerably the
system complexity [48].

Figure 3.8: Savonius rotor using a guide-box tunnel [48].

3.1.3.6 Modified Savonius rotor

The conventional Savonius rotor is made from two vertical half-cylinders running around
a vertical axis. A modified rotor (Fig. 3.10) has also been proposed, which is just a modi-
fication of the Savonius rotor, using now three geometrical parameters: the main overlap
e, the secondary overlap e′, and the angle β between the paddles. The characteristic
curve of such a rotor (values of the static torque coefficient Cm vs. wind angle) are
presented in Fig. 3.11.

The results are relatively encouraging, since the new rotor induces maximal values
of the static torque much higher than those obtained with the conventional rotor. Nev-
ertheless, it also introduces low and negative values of the torque, with a large angular
variation. Overall, the mean value of the torque is increased: Cm = 0.48, i.e., 60% more
than for the conventional rotor. Further studies are necessary to refine the analysis.
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Figure 3.9: Power coefficient of Savonius rotor using a guide-box tunnel [48].

Table 3.1: Summary of Savonius turbine main modifications
Design Gain Description Comments
Deflector Plate 20% Not verificated No details since 1992
Multi-Steps Good self-starting For same aspect ratio Lower Cp by 30%
Guide Vanes Depends on wind speed Bad for large λ Good stability
Twisted-blade ≃ 27% High cost Good self-starting capability
Guide-Box Tunnel 50% (3 blades) Complex design Not practical
Modified Savonius 60% Large vibrations Not practical

3.1.4 Summary of Savonius turbine review

All the research projects discussed in the present review have tried to understand and
improve the performance (torque and efficiency) of the Savonius turbine, considering
either the conventional geometry or slight modifications. All the improvements have
been tested manually, by means of a tedious trial-and-error analysis. Such studies are
going on. All proposed modifications have been summarized and discussed in Table 3.1.
It can be finally concluded that:

• There is a renewed interest for Savonius turbines in recent years, as shown in
Fig. 3.12;

• Depending on the retained definition, their efficiency can be indeed considered as
quite high [71];
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Figure 3.10: Modified Savonius Rotor [69].

Figure 3.11: Static torque for the modified Savonius rotor (θ = 90◦, β = 45◦, e/d =
1/6) [69].

• Contradictory observations can be found in the literature, both qualitatively and
quantitatively. Therefore, the results presented in this review must all be consid-
ered with great caution;

• Many small modifications and improvements have been proposed in the litera-
ture to improve global efficiency or some specific characteristics (e.g., self-starting
conditions) as summarized in Table 3.1 ;

• Nevertheless, a real optimization of the system has not been realized up to now
and would therefore be very interesting. This will be the subject considered in
later chapters of this thesis.
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Figure 3.12: Savonius turbine publication statistics in international journals and con-
ferences.

3.2 Wells Turbine

Let us switch now to the second configuration discussed in this work.

3.2.1 Performance parameters of Wells turbine

Many papers cited in the literature [9, 21, 63, 141] concern the principle of operation
and factors controlling the performance of Wells turbines both experimentally and the-
oretically. The performance of Wells turbine includes the power output, the pressure
drop across the rotor, the turbine efficiency and the operating range of the turbine.

Here, we should note that the performance of the wave power converter depends on
the energy absorption efficiency of the OWC, which is closely related to the pressure
difference across the turbine, as well as to the turbine efficiency. An unidirectional airflow
test rig [82] constructed to investigate experimentally the effect of the flow coefficient φ,
on both the pressure drop coefficient and the efficiency of a monoplane turbine and in
same time a theoretical investigation was made, at h = 0.62 for two values of rotor
solidity (s = 0.5 and s = 0.75). The results indicated that, a linear relationship between
the pressure drop across the turbine and the flow coefficient φ, exists, for both low or
high rotor solidity. It also indicated that the blade efficiency for blade profile NACA
0021 increases with the flow coefficient up to a certain value, and then decreases. This
is due to separation of the flow around the turbine blades. In the next sections we will
discuss in details the different parameters affecting the performance of Wells turbines.
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3.2.1.1 Solidity

The solidity of the turbine, s = zc/πrt(1 + h) (see Fig. 3.13) is a measure of airflow
blockage within the turbine. It is also a measure of the mutual interaction between the
blades and is an important design variable that affects the self-starting of the turbine [82,
90, 97, 93, 118, 140]. In Fig. 3.14 the efficiency, η is normalized with respect to the
corresponding two dimensional single airfoil efficiency, ηo. The results indicate that at
small values of solidity, its impact is small. To obtain self-starting capability of the
turbine at hub to tip h = 0.6, s > 0.51 is needed in [89] but only s > 0.45 in [73]. The
reduction in efficiency for a Wells turbine at high solidity is due to increased kinetic
energy losses at the exit associated with swirl. In addition, there could be significant
three dimensional effects near the hub where, at high solidity, the blades are close to
each other and may interact with the boundary layer on the hub. These interactions
lead to endwall losses on the surface of the hub and also on the blade surfaces near the
hub. These effects are compounded by the fact that the blades near the hub are always
at a larger incidence that at the tip. In this work, solidity is constant and equal to
0.67, which corresponds to a number of blades equal to 8. This solidity value has been
retained since it has been proved in a number of studies to be highly suitable for Wells
turbines (for instance [106, 110]).
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Figure 3.13: Axial and tangential forces acting on a Wells turbine.

3.2.1.2 Hub-to-tip ratio

The effect of the hub to tip ratio (h = dh/dt or rh/rt, see Fig. 3.13) was studied in
several papers [82, 90, 97]. The results indicated that the efficiency for different profiles
decreases with increasing the hub to tip ratio. From our personal experience the effect
of hub to tip ratio on the turbine efficiency is rather complex. This is due to the inter-
action between the blades in hub region, which leads to higher incident angles locally.
Therefore, the stall occurs earlier in hub region than in the tip region. Admittedly based
on small-scale tests, publications suggest that values of h ≈ 0.6 are recommended for
optimal design.
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Figure 3.14: Solidity effect on the efficiency [82, 92, 97].

3.2.1.3 Aspect ratio

The aspect ratio, AR = span(b)/chord(c), influences the turbine efficiency and flow
ratio at which the turbine stalls, as can be seen in Fig. 3.15. The data shown here
are from experiments conducted at a fixed hub to tip ratio and fixed solidity where the
variation in the aspect ratio was obtained by varying the chord length. This means
that Re= wc/ν changed during the test. Therefore, there is a certain influence of the
Reynolds number on this data. These results, again limited to small-scale tests, suggest
that aspect ratio and Reynolds number play a dominating effect on the efficiency. The
primary effect of reducing the aspect ratio is to increase the efficiency by delaying stall,
associated with the positive effect obtained on the blades due to increased mass flow
through the tip [82, 97]. The effect of aspect ratio is however not clear in this study due
to varying Reynolds number.

3.2.1.4 Reynolds number

A Wells turbine is very sensitive to the Reynolds number (Re= wc/ν) like all con-
ventional turbomachines, due to the impact of Reynolds number on the aerodynamic
around the airfoils of the turbine and to its contribution to stall [97].

3.2.1.5 Tip clearance

The tip clearance ratio (τ = tip clearance/chord(c)) is a very important parameter for
the performance of turbomachines. Several groups studied the effect of tip clearance
on stall and efficiency of the Wells turbine.The results indicated that decreasing the tip
clearance advances the stall point but increases the efficiency of the turbine, due to the
reduced leakage losses. On the other hand, if the turbine has a large tip clearance, it
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Figure 3.15: Aspect ratio effect on the efficiency [82, 92, 97].

operates without stall. There is no significant advantages to increase tip clearance above
2%. Therefore, the recommended tip clearance is τ ≤ 2% [45, 46, 82, 97].

3.2.1.6 Inlet turbulence

Turbomachines are sensitive to the inlet flow conditions, such as distortion of velocity
profile and turbulence levels. Increase in turbulence levels can alter boundary layer
development by advancing transition of the boundary layer and delaying stall. The
performance of turbomachines can be improved by increasing the turbulence level at
the inlet up to 3% [82, 97]. Experimental results indicate that the performance of
the Wells turbine improves with an increase in turbulence but a significant increase in
turbulence levels is required to produce any appreciable improvement in performance.
As a whole the Wells turbine is less sensitive to inlet turbulence compared to most
conventional turbomachines.

3.2.1.7 Blade shape

The airfoil thickness is very important because it determines the aerodynamics around
the airfoil, the stall point and the turbine weight. The effect of airfoil thickness on
the aerodynamic performance can not be separated from the effect of the Reynolds
number, since they contribute together to separation on the airfoil. The published results
indicated that NACA 0021 airfoil profiles (21% thickness) lead to the best performance
for conventional Wells turbines [93]. Thick airfoil blades are advantages to improve self
starting characteristics of the turbine [46, 91, 129, 130, 135].
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3.2.2 Unsteady flow effect on the performance of Wells turbine

It is generally accepted that the airflow frequency in a wave energy device is so small
(f∗ < 1 Hz) that dynamic effects are negligible. All the results shown above are based
on quasi-steady assumptions or experiments conducted in unidirectional airflow test
rigs. Some groups studied Wells turbine under oscillating flow (unsteady considers).
The results indicated a hysteretic effect on the force coefficients (Fig. 3.16). The hys-
teretic effects are caused by asymmetry in the boundary layer development on the blade
surfaces and oscillating motion of the wake, the extent of which can be appreciable at
low Reynolds numbers [82, 85, 97] (Fig. 3.17).

Dynamic stall is a process resulting from a series of events, which involves a hysteresis
loop in the airfoil lift curve and account for a higher maximum lift force than that
achieved in the static curve, during a cycle of pitching motion. Helicopter, turbine and
windmill blades may all be affected by this phenomenon, which increases forces and
moments applied to the blade and its root, and reduces fatigue life. But the loop of
hysteretic curve of the dynamic stall is different from the one of Wells turbine. So, the
mechanism of the hysteretic characteristics of Wells turbine is still unclear [47, 57].

The flow structure around the blade of Wells turbines has been checked by some
researchers. Figure 3.18 shows the illustration of the flow structure obtained by nu-
merical simulation [61, 62]. At high angles of attack, a separation vortex (2) appears
on the blade suction surface on the hub side and reduces blade circulation, because
of the excessive angle of attack near the hub. A strong downward flow (4) is induced
by the separation vortex near the trailing edge. It brings about the clockwise vortical
wake flow (3a), which enlarges the flow separation on the adjacent blade suction surface
(3b) [58, 59, 104, 103].

The intensity of the vortical flow varies in the accelerating and the decelerating
flow process. In the accelerating flow stroke, as the blade circulation increases, vortices
opposite to the blade circulation are shed from the trailing edge. The stronger vortices
are shed at a larger radius because the blade circulation increases more than at a smaller
radius.

Then, the clockwise trailing vortices are generated. Therefore, the clockwise vortical
flow is intensified by these vortices. In the decelerating flow process where the blade
circulation decreases, the shed vortices are in the same direction of the blade circulation.
They form counterclockwise trailing vortices, which suppress the vortical wake flow.
Since the stronger vortical wake flow enlarges the separation on the suction surface of
the adjacent blade, the performance in the accelerating flow process becomes lower than
in the decelerating flow process [103]. This effect can be reduced by decreasing the
solidity (Fig. 3.18). This observation can be explained, since the vortical wake flow
enlarging flow separation becomes more distant from the blade suction surface for the
case of low solidity [103].
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Figure 3.16: Effect of unsteady flow on Wells turbine performance [103].

3.2.3 Methods to improve Wells turbine performance

Due to the drawbacks of Wells turbine, like low efficiency, bad starting capability at low
solidity and low output power, many researchers tried to suggest some ideas to improve
the performance, like installing guide vanes [87, 111, 117], or improving profiles [127],
as discussed in the next section.
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Figure 3.17: Effect of solidity on the hysteretic behavior [103].

Figure 3.18: Illustration of the flow structure in blade suction side [103].

3.2.3.1 Guide vanes installation

Many papers [13, 33, 105, 109, 110, 112, 116, 121, 122] have demonstrated the useful-
ness of 2D and 3D (twisted) guide vanes. The effect of guide vanes (Fig. 3.19) has
been investigated experimentally and theoretically by testing a model under steady flow
conditions. It is found that the running and starting characteristics of the Wells turbine
with guide vanes are superior to those without guide vanes (Fig. 3.20).

The results indicated in particular that the three dimensional guide vanes (variable
angles along the vane span) providing a constant rotor blade angle of attack with radius
lead to the best characteristics and are therefore recommended.

3.2.3.2 Self-pitch-controlled blades

Experimental investigations were performed by model testing of the rotor with fixed
blades under steady flow conditions [32, 44, 56, 60, 99, 100, 101, 106, 120]. The turbine
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Figure 3.19: Installation of guide vanes [106].

Figure 3.20: Guide vanes effect on the turbine performance [105].

blade is set on the hub by a pivot located near the leading edge that enables it to oscillate
between two prescribed setting angles of ±γb (Fig. 3.21). As an airfoil set at a certain
angle of incidence experiences a pitching moment M about the pivot, the turbine blades
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can flip by themselves between +γb and −γb according to the flow direction. Therefore,
higher torque and efficiency are obtained for high flow coefficients, while performance
decreases for lower flow coefficient. The results indicated that the operating range
improved when increasing setting angle. since the incidence angle (θ = α−γb) decreased.
On the other hand, the torque improved only in the high operating range compared with
conventional Wells turbine (γb = 0).

Wells

Turbine

Air Chamber

M

Pivot

u b

b

Figure 3.21: Principle of using self-pitch-controlled blades [106].

3.2.3.3 Lean blade (blade swept)

Experimental research on different types of rotor blades has been conducted recently
to improve the aerodynamic performance of the Wells turbine, using lean blade (swept
blade) as shown in Fig. 3.22 for two different airfoils (NACA 0015 and HSIM-15-262123-
1576, Fig. 3.23), which can operate with wider operating range [108] and acceptable
power output and efficiency. A numerical study indicated that the comparison between
standard NACA 0015 unswept blade turbine rotor and the swept one by 30◦ is very
difficult for small flow coefficients. For high flow coefficients, however, the swept one is
better in term of efficiency. However, the results are poor concerning power output. On
the other hand, the airfoil HSIM-15-262123-1576 is better than both unswept and swept
standard NACA 0015. Therefore, the rotor blade geometry has a remarkable influence
on the turbine performance. Some rotor geometries give a considerably wider range of
flow rates for high efficiency and acceptable power output. Others have higher peak
efficiency but a narrower range of flow rates [8, 102, 126, 136].

3.2.3.4 End plate

The effect of end plate (Fig. 3.24) on the turbine characteristics has been investigated
experimentally for different plate sizes (a/c) by model testing under steady flow condi-
tions and compared with the classical Wells turbine [119, 123, 124, 125], without end
plate. Experiments indicate that the best geometry corresponds to a/c = 0.033. The
effectiveness of the end plate has been checked by using CFD to get the optimal position
of the plate.
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Figure 3.22: Swept blade (lean blade) [8].

Figure 3.23: NACA 0015 and HSIM 15-262123-1576 blades [8].

The forward type case shows the highest tangential force coefficient, while the back-
ward type has the lowest value. On the other hand, the values of forward type and
middle type are almost the same concerning axial force coefficient, CA. Globally, the
highest efficiency was for the forward type position, leading to wider operating range
and higher turbine performance.

3.2.4 Multi-plane Wells turbine

In wave energy devices, where the available pressure drop is higher than a monoplane
could accommodate, multi-plane turbine must be used. Several investigations studied
the performance of multi-plane Wells turbine and are reviewed in this section [14, 55, 80].

3.2.4.1 Two-stage Wells turbine (biplane turbine)

All the previous theoretical and experimental results for the flow field around a Wells
turbine rotor indicate that a considerable amount of exit kinetic energy is lost with
the swirl component of the flow velocity, at least in the absence of guide vanes. This
kinetic energy can be partly recovered by using a second stage of blades. Two-stage
Wells turbine have been already investigated experimentally and theoretically [34], but
considering only symmetric airfoils, as shown in Fig. 3.25.
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Figure 3.24: Rotor blade with end plate: (a) Middle type; (b) Forward type; (c) Backward
type [124].

3.2.4.2 Two-stage contra-rotating Wells turbine

The first commercial wave power station (capacity of 500 kW), called LIMPET (Land
Installed Marine Pneumatic Energy Transmitter) in UK is constructed with a two-stage
contra-rotating Wells turbine [6]. In this configuration, the two rotors are installed as
in Fig. 3.26.

Some researchers studied this configuration and made a comparison with the con-
ventional biplane Wells turbine [17, 18, 24, 83]. Small-scale experiments on the contra-
rotating Wells turbine have been conducted using constant flow wind-tunnels. The
turbine tip diameters for these tests were 0.2 and 0.59 m, respectively, with nominal
Mach numbers of 0.2 and 0.23 and Reynolds numbers of 3 105 and 6.5 105, respectively.
The results indicated that a contra-rotating Wells turbine is aerodynamically more effi-
cient than the biplane Wells turbine and operate without stalling over wider flow rates
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Figure 3.25: Two stage (biplane) Wells turbine.

Figure 3.26: Contra-rotating Wells turbine [107].

than the biplane turbine. They concluded also that the downstream rotor must rotate
at higher speed than the upstream to achieve some improvement. The performance
of the contra-rotating Wells turbine installed in the LIMPET wave power station was
compared to the predicted performance from theoretical analysis and model tests [24].
Figure 3.27 gives the non-dimensional turbine torque against flow coefficient for both
rotors during both the intake and exhaust strokes. During exhaust, the results indi-
cate that the LIMPET turbine stalls at approximately the same flow coefficient as the
constant-flow model, but that the torque at stall is reduced by approximately 25% for
the exhaust stroke and 46% for the intake stroke. In addition to comparing exhaust and
intake it is also interesting to consider the relative performance of either rotor shown in
Fig. 3.27. During exhaust there is no measurable difference in stall between the rotors.
However, on intake, the downstream rotor has a noticeably higher torque coefficient at
stall condition.

Figure 3.28 shows a plot of the LIMPET turbine efficiency with flow coefficient
during the intake and exhaust, together with turbine efficiency derived from constant
flow model tests. During exhaust, at low flow coefficients, the LIMPET turbine appears
to have a higher efficiency than in constant flow model tests. This is possibly due to
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Figure 3.27: Torque coefficients for both LIMPET Rotors during intake and exhaust [24].

a lower drag coefficient at higher Reynolds numbers. However, measurement errors
are magnified at low torques and flow coefficients, so the data in this region should be
viewed cautiously. However, the early onset of stall experienced by the LIMPET turbine
reduces the peak efficiency of the turbine to approximately 52%, whilst simultaneously
reducing its effective operating range. During intake, a higher flow coefficient is required
for the turbine lift force to overcome the drag force due to relatively smaller torques
being generated for the same flow coefficients. Smaller turbine torques during intake
cause a smaller increase in turbine efficiency with flow coefficient, resulting in a peak
efficiency of only approximately 42%.

Figure 3.28: Comparison of LIMPET and constant flow model turbine efficiencies [24].

This study concluded that the contra-rotating Wells turbine finally has a lower ef-
ficiency than a biplane or monoplane Wells turbine with guide vanes. In addition,
a contra-rotating Wells turbine requires an additional generator (or a gearbox to re-
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verse the direction of rotation of one rotor), making it more complex and expensive to
implement than biplane and monoplane Wells turbines. Consequently, unless the per-
formance of contra-rotating Wells turbines can be significantly improved, they are not
recommended over other Wells turbine variants. Obviously, contradictory information
are found in the literature concerning contra-rotating configurations highlighting the
need for further studies.

3.2.5 Summary of Wells turbine review

All the studies discussed in the present review have tried to understand and improve
the performance of the Wells turbine, considering either the conventional geometry or
slight modifications. All the improvements have been tested manually, by means of a
tedious trial-and-error analysis. Such studies are going on. All proposed modifications
have been summarized and discussed in Table 3.2. It can be finally concluded that:

Table 3.2: Main modifications allowing to improve the performance of Wells turbines
Design Gain Description and Comments
Contra-rotating [14] Improve efficiency by ≃ 5% Double shaft, complex
Pitch setting [106] Improve efficiency by ≃ 7% For positive small angles, complex
Guide vanes [33] Improve efficiency by ≃ 5% Smaller operating range
End plate [124] Improve efficiency by ≃ 5% Only for 0.2 ≤ φ ≤ 0.25
Multi-stage ∗ [81] Wider operating range Reduce efficiency by ≃ 10%
Multi-stage ∗∗ [74] Improve efficiency by ≃ 2% Small parameter space
∗Symmetric airfoils ∗∗Non-Symmetric airfoils
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Figure 3.29: Wells turbine publication statistics in international journals and confer-
ences.
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• There is a renewed interest for Wells turbines in recent years, as shown in Fig. 3.29;

• Contradictory observations can be found in the literature, both qualitatively and
quantitatively. Therefore, the results presented in this review must all be consid-
ered with great caution, in particular concerning the contra-rotating design ;

• Many small modifications and improvements have been proposed in the literature
to improve global performance, as summarized in Table 3.2;

• Nevertheless, a real optimization of the system has not been realized up to now
and would therefore be very interesting. This will be the subject considered in
later chapters of this thesis.

3.3 Conclusions

In spite of many published studies, it still seems possible to increase considerably the
performance of both Savonius and Wells turbines by relying on modern computational
methods, as demonstrated in later chapters. The needed methodology for this purpose
is described in the next two chapters.



Chapter 4

Optimization

4.1 Introduction

Optimization pervades the fields of science, engineering, and business. In physics, many
different optimal principles have been enunciated, describing natural phenomena in the
fields of optics or classical mechanics. Statistics treats various principles termed ”max-
imum likelihood,” ”minimum loss,” and ”least squares,” and business makes use of
”maximum profit,” ”minimum cost,” ”maximum use of resources,” ”minimum effort,”
in its efforts to increase profits. A typical engineering problem can be posed as follows:
A process can be described by representative equations (or perhaps solely by experimen-
tal data). You have a single performance criterion in mind such as maximum efficiency
or minimum cost. The goal of optimization is to find the values of the variables in
the process that yield the best value of the performance criterion. A trade-off usually
exists. Typical problems in engineering process design or plant operation have many
(possibly an infinite number) of solutions. Optimization is concerned with selecting the
best among the entire set by efficient quantitative methods, thanks to computers and
associated software, which make the necessary computations feasible and cost effective.
To obtain useful information using computers, however, requires (1) a critical analysis
of the process or design, (2) insight about what the appropriate performance objec-
tives are (i.e., what is to be accomplished), (3) use of past experience, sometimes called
engineering judgment [35], and (4) suitable methods and algorithms.

Until recently, the denomination “optimization” was mostly used in the engineer-
ing literature to describe a trial-and-error, manual procedure (undoubtedly related to
optimization, but in a very minimalist sense), at the difference of a real, mathemati-
cal optimization. This is now changing rapidly. In the present project, mathematical
optimization will be considered to obtain the optimal shape geometry. Hence, for us,
optimization means ”the design (or operation) of a system or process to make it as
good as possible in some defined sense”. As a consequence, the best possible solution
constrained by appropriate conditions should be ideally found, and not simply a ”bet-
ter” one [132]. Another definition is given by [2], which states that optimization is the
process of obtaining the ”best”, if it is possible to measure and change what is ”good”
or ”bad”. The definition in [96] is that the optimization theory is a body of mathe-

54
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matical results and numerical methods for finding and identifying the best candidate
from a collection of alternatives without having to explicitly enumerate and evaluate all
possible alternatives.

In practice, one wishes the ”most” or ”maximum” (e.g., salary) or the ”least” or
”minimum” (e.g., expenses). Therefore, the word ”optimum” is taken to mean ”maxi-
mum” or ”minimum” depending on the circumstances; ”optimum” is a technical term
which implies quantitative measurement and is a stronger word than ”best” which is
more appropriate for everyday use. Likewise, the word ”optimize”, which means to
achieve an optimum, is a stronger word than ”improve”. A computer is the perfect
tool for optimization as long as the idea or variable influencing the idea can be input
in electronic format. The process of optimization lies at the root of engineering, since
the classical function of the engineer is to design new, better, more efficient, and less
expensive systems as well as to devise plans and procedures for the improved operation
of existing systems. The power of optimization methods to determine the best case
without actually testing all possible cases comes through the use of a modest level of
mathematics and at the cost of performing iterative numerical calculations using clearly
defined logical procedures or algorithms implemented on computing machines.

4.2 Optimization uncertainty

For practical problems, optimization does not deliver a ”solution truth” because of the
uncertainty that exists in the mathematical and physical representation of the process
or the data used to model it. Engineers have to use their own judgment in applying
optimization techniques to problems that have considerable uncertainty associated with
them, both from the standpoint of accuracy and from the fact that operating parameters
are not always static. In some cases, it may be possible to carry out a first analysis via
deterministic optimization and then add on stochastic features to the analysis to yield
quantitative predictions of the degree of uncertainty. Whenever the model of a process is
idealized and the input and parameter data only known approximately, the optimization
results must be treated judiciously. They can provide for instance upper limits on
expectations. Another way to evaluate the influence of uncertain parameters in optimal
design is to perform a sensitivity analysis. It is possible that the optimum value of a
process variable is unaffected by certain parameters (low sensitivity); therefore, having
precise values for these parameters will not be crucial to finding the true optimum [35].
Furthermore, optimization can only deliver accurate results when the quality of a specific
design can be measured accurately. For our problem, this issue will be considered in the
next chapter.

4.3 How can we achieve optimization?

Most real-life problems have several solutions and occasionally an infinite number of
solutions may be possible. Assuming that the problem at hand admits more than one
solution, optimization can be achieved by finding the best solution of the problem in
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terms of some performance criterion. Several general approaches to optimization are
available, as follows:

• Analytical methods

• Graphical methods

• Experimental methods

• Numerical methods

Analytical methods are based on the classical techniques of differential calculus. In these
methods the maximum or minimum of a performance criterion is determined by finding
the values of parameters x1, x2, ..., xn that cause the derivatives of f(x1, x2, ..., xn) with
respect to x1, x2, ..., xn to assume zero values. The problem to be solved must obviously
be described in mathematical terms before the rules of calculus can be applied. The
method need not entail the use of a digital computer. However, it cannot be applied to
highly nonlinear problems or to problems where the number of independent parameters
exceedingly grows.

A graphical method can be used to plot the function to be maximized or minimized
if the number of variables does not exceed a few. If the function depends on only one
variable, say, x1, a plot of f(x1) versus x1 will immediately reveal the maxima and/or
minima of the function. Similarly, if the function depends on only two variables, say, x1

and x2, a set of contours can be constructed. A contour plot, like a topographical map of
a specific region, will reveal readily the peaks and valleys of the function. Unfortunately,
the graphical method is of limited usefulness since in most practical applications the
function to be optimized depends on many variables.

The optimum performance of a system can sometimes be achieved by direct experi-
mentation. In this method, the system is set up and the process variables are adjusted
one by one and the performance criterion is measured in each case. This method may
lead to optimum or near optimum operating conditions. However, it can lead to unre-
liable results since in certain systems, two or more variables interact with each other,
and must be adjusted simultaneously to yield the optimum performance criterion.

The most important general approach to optimization is based on numerical methods
(real optimization). In this approach, iterative numerical procedures are used to gen-
erate a series of progressively improved solutions to the optimization problem, starting
with an initial estimate for the solution. The process is terminated when some conver-
gence criterion is satisfied. For example, when changes in the independent variables or
the performance criterion from iteration to iteration become insignificant. Numerical
methods can be used to solve highly complex optimization problems of the type that
cannot be solved analytically. Furthermore, they can be readily programmed on digital
computers. The discipline encompassing the theory and practice of numerical optimiza-
tion methods has come to be known as mathematical programming [2], covering:

• Linear programming
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• Integer programming

• Quadratic programming

• Nonlinear programming

• Dynamic programming

Each one of these branches of mathematical programming is concerned with a specific
class of optimization problems. The differences among them will be illustrated in the
nest sections.

4.4 Structure of optimization problems

Although the application problems discussed in the previous section originate from rad-
ically different sources and involve different systems, at their root they have a remark-
ably similar form. All five can be expressed as problems requiring the minimization
of a real-valued function f(x) of an N-component vector argument x = (x1, x2, ..., xN)
whose values are restricted to satisfy a number of real-valued equations hk(x) = 0, a

set of inequalities gj(x) ≥ 0, and the variable bounds x
(U)
i ≥ xi ≥ x

(L)
i . In subsequent

discussions we will refer to the function f(x) as the objective function, to the equations
hk(x) = 0 as the equality constraints, and to the inequalities gj(x) ≥ 0 as the inequality
constraints. For our purposes, these problem functions will always be assumed to be
real valued, and their number will always be finite. Optimization then means:

Minimize or maximize f(x)
Subject to hk = 0 k = 1, ..., K

gx ≥ 0 j = 1, ..., J

x
(U)
i ≥ xi ≥ x

(L)
i i = 1, ..., N

This general problem is called the constrained optimization problem. The problem
in which there are no constraints, that is, unconstrained optimization problem, would
correspond to

J = K = 0

and

x
(U)
i = −x

(L)
i = ∞ i = 1, ..., N

but it is almost never found in engineering.
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Optimization problems can be classified further based on the structure of the func-
tions f, hk, and gj and on the dimensionality of x. Unconstrained problems in which
x is a one-component vector are called single-variable problems and form the simplest.
Constrained problems in which the function hk and gj are all linear are called linearly
constrained problems. This subclass can further be subdivided into those with a linear
objective function f and those in which f is nonlinear. The category in which all problem
functions are linear in x includes problems with continuous variables, which are called
linear programs, and problems in integer variables, which are called integer programs.
Problems with nonlinear objective and linear constraints are sometimes called linearly
constrained nonlinear programs. This class can further be subdivided according to the
particular structure of the nonlinear objective function. If f(x) is quadratic, the problem
is a quadratic program; if it is a ratio of linear functions, it is called a fractional linear
program; and so on. Subdivision into these various classes is worthwhile because the
special structure of these problems can be sometimes efficiently exploited in devising
solution techniques [2]. Note that, in all this document, only direct optimization is con-
sidered. Possibilities offered by inverse design (based on solving the adjoint problem)
are not discussed.

4.5 Types of mathematical programming

Several branches of mathematical programming were enumerated in Section 4.3. Each
one of these branches consists of the theory and application of a collection of optimization
techniques that are suited to a specific class of optimization problems. The differences
among the various branches of mathematical programming are closely linked to the
structure of the optimization problem and to the mathematical nature of the objective
and constraint functions.

4.5.1 Linear programming (LP)

If the objective and constraint functions are linear and the variables are constrained to
be positive, optimization can be readily achieved by using some powerful LP algorithms.

4.5.2 Integer programming (IP)

In certain linear programming problems, at least some of the variables are required to
assume only integer values. This restriction renders the programming problem nonlinear
and more complex.

4.5.3 Quadratic programming (QP)

If the constraints are linear and the objective function is quadratic, such an optimization
problem is said to be a quadratic programming (QP) problem.
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4.5.4 Nonlinear programming (NP)

In nonlinear programming problems, the objective function and usually the constraint
functions are nonlinear. This is the most general branch of mathematical programming
and, in effect, LP and QP can be considered as special cases of nonlinear programming.
The choice of an optimization algorithm depends on the mathematical behavior and
structure of the objective function. Rarely, the objective function is a well behaved
nonlinear function and all that is necessary is a general purpose, robust, and efficient
algorithm. For many applications, however, specialized algorithms exist which are more
efficient or more robust [19]. This is clearly the case for the problems considered in the
present thesis.

4.5.5 Dynamic programming (DP)

In some applications, a series of decisions must be made in sequence, where subsequent
decisions are influenced by earlier ones. In such applications, a number of optimizations
have to be performed in sequence and a general strategy may be required to achieve an
overall optimum solution.

4.6 Requirements for optimization

To apply the mathematical results and numerical techniques of optimization theory
to real engineering problems, it is necessary to clearly delineate the boundaries of the
engineering system to be optimized, to define the quantitative criterion on the basis of
which candidates will be ranked to determine the ”best”, to select the system variables
that will be used to characterize or identify candidates, and to define a model that
will express the manner in which the variables are related. This composite activity
constitutes the process of formulating the engineering optimization problem. Good
problem formulation is the key to the success of an optimization study [96].

4.6.1 Defining the system boundaries

Before undertaking any optimization study, it is important to clearly define the bound-
aries of the system under investigation. They serve to isolate the system from its sur-
roundings, because, for purpose of analysis, all interactions between the system and its
surroundings are assumed to be frozen. Nonetheless, since interactions always exist, the
act of defining the system boundaries is the first step in the process of approximating
the real system. In many situations it may turn out that the initial choice of boundary
is too restrictive. To fully analyze a given engineering system, it may be necessary to
expand the system boundaries and to include other subsystems that strongly affect the
operation of the system under study.
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4.6.2 Performance criterion

Given that we have selected the system of interest and have defined its boundaries,
we next need to select a criterion on the basis of which the performance or design of
the system can be evaluated, so that the best design or set of operating conditions
can be identified. There is a considerable choice in the precise definition of such a
criterion: minimum production time, maximum production rate, minimum energy uti-
lization, maximum torque, minimum weight, and so on.

4.6.3 Independent variables

The third key element in formulating a problem for optimization is the selection of the
independent variables that are adequate to characterize the possible candidate designs or
operating conditions of the system. There are several factors to be considered in selecting
the independent variables. First, it is necessary to distinguish between variables whose
values are amenable to change and variables whose values are fixed by external factors,
lying outside the boundaries selected for the system in question. Furthermore, it is
important to differentiate between system parameters that can be treated as fixed and
those that are subject to fluctuations influenced by external and uncontrollable factors.
Clearly, variations in these key system parameters must be taken into account in the
formulation of the problem. Second, it is important to include in the formulation all
the important variables that influence the operation of the system or affect the design
definition. For instance, if in the design of a gas storage system we include the height,
diameter, and wall thickness of a cylindrical tank as independent variables but exclude
the possibility of using a compressor to raise the storage pressure, we may well obtain a
very poor design. For the selected fixed pressure, we would certainly find the least-cost
tank dimensions. However, by including the storage pressure as an independent variable
and adding the compressor cost to our performance criteria, we could obtain a design
with a much lower overall cost because of a reduction in the required tank volume.
Thus, the independent variables must be selected so that all important alternatives are
included in the formulation. Finally, another consideration in the selection of variables
is the level of detail to which the system is considered. While it is important to treat
all key independent variables, it is equally important not to obscure the problem by the
inclusion of a large number of fine details of subordinate importance. A good rule is
to include only those variables that have a significant impact on the composite system
performance criterion.

4.6.4 System model

Once the performance criterion and the independent variables have been selected, the
next step in problem formulation is to assemble the mathematical and physical models
that describe the manner in which the problem variables are related and the way in
which the performance criterion is influenced by the independent variables. In principle,
optimization studies may sometimes be performed by experimenting directly with the
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real system. Thus, the independent variables of the system or process may be set to
selected values, the system operated under those conditions, and the system performance
index evaluated using the observed performance. The optimization methodology would
then be used to predict improved choices of the independent variable values and the
experiments continued in this fashion. In practice, most optimization studies are carried
out with the help of a representation of the real system, called a model. Models are
typically used in engineering design because they offer the cheapest and fastest way of
studying the effects of changes in key design variables on system performance. For flow
optimization the Navier-Stokes equations constitute the natural model.

4.7 Optimization methods

In this work we consider methods that iteratively produce estimates of x∗ (optimum
solution), that set of design variables that causes f(x) to take on its optimum value.
The methods that have been devised for the solution of this problem can be classified
into three broad categories [96] based on the type of information that must be supplied
by the user:

• Direct-search methods, which use only function values;

• Gradient methods, which require estimates of the first derivative of f;

• Second-order methods, which require estimates of the first and second derivatives
of f.

No single method can be expected to uniformly solve all problems with equal ef-
ficiency. For instance, in some applications available computer storage is limited; in
others, function evaluations are very time consuming; in still others, high accuracy in
the final solution is desired. In many applications it is either impossible or very time con-
suming to obtain the derivatives. For our problem, it is almost impossible and extremely
time consuming to estimate the function derivatives. Furthermore, function evaluations
rely again on computer-based simulations, and are therefore noisy and of limited ac-
curacy. As a consequence, only Genetic Algorithms (a stochastic direct methods) are
discussed further.

4.8 Evolutionary Algorithms

Evolutionary Algorithms (EA) are computer programs that attempt to solve complex
problems by mimicking the processes of Darwinian evolution (e.g., [76]). In an EA
a number of artificial creatures search over the space of the problem. They compete
continually with each other to discover optimal areas of the search space. It is hoped
that over time the most successful of these creatures will evolve to describe the optimal
solution. The artificial creatures in EAs, known as individuals, are typically represented
by fixed length strings or vectors. Each individual encodes a single possible solution to
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the problem under consideration. For example, in order to construct an EA to search
the conformation space of a molecule, each angle of rotation around a flexible bond
could be encoded as a real number. Concatenating these numbers gives a string which
can be used within an EA. Thus, each individual would encode a specific set of torsion
angles. EAs manipulate pools or populations of individuals. The EA is started with
an initial population of size N comprising random or quasi-random individuals. Every
individual is then assigned a fitness value. To generate a fitness score the individual
is decoded to produce a possible solution to the problem. The value of this solution is
then calculated using the fitness function. Population members with high fitness scores
therefore represent better solutions to the problem than individuals with lower fitness
scores. Following this initial phase the main iterative cycle of the algorithm begins.
Using mutation (perturbation) and recombination operators, the N individuals in the
current population produce n children according to a survival probability ratio. The n
children are assigned fitness scores. A new population of N individuals is then selected
from the N individuals in the current population and the n children. This new popu-
lation becomes the current population and the iterative cycle is repeated. The survival
of the fittest is employed and individuals compete against each other. The selection is
applied either when choosing individuals to become parent of children or when choos-
ing individuals to form a new population. There have been three main independent
implementation instances of EAs: Genetic Algorithms (GAs), first developed by Hol-
land (1975) and thoroughly reviewed by Goldberg (1989); evolution strategies (ESs),
developed in Germany by Rechenberg (1973) and Schwefel (1981); and evolutionary
programming (EP), originally developed by L. J. Fogel et al.(1966) and subsequently
refined by D. B. Fogel (1995). Each of these three algorithms has been proved capable of
yielding approximately optimal solutions given complex, multi-modal, non-differential,
and discontinuous search spaces. In the present project, only GA have been employed
and therefore described now.

4.8.1 Genetic Algorithm (GA)

This is the most popular type of EA. One seeks the solution of a problem in the form of
strings of numbers, by applying operators such as recombination and mutation [114]. A
path through the components of the GA is shown as a flowchart in Fig. 4.1. Each block
in this ”big picture” overview is discussed in detail in what follows.

The canonical GA encodes the problem within binary string individuals. Nowadays,
real or double-precision representations are mostly used for engineering problems. Evo-
lutionary pressure is applied in the steps of the iterations, where the stochastic technique
of roulette wheel parent selection is used to pick parents for the new population. The
concept is as follow:

1. A population of N random or quasi-random individuals is initialized

2. Fitness scores are assigned to each individual
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Define cost function, cost, variables
Select GA parameters

Generate initial population

Decode chromosomes

Find cost for each chromosome

Select mates

Mating

Cross over and Mutation

Convergence Check

Done

Figure 4.1: Flowchart of a Genetic Algorithm.

3. Using roulette wheel parent selection N /2 pairs of parents are chosen from the
current population to form a new population.

4. With probability Pc (crossover), children are formed by performing crossover on
the N/2 pairs of parents. The children replace the parents in the new population.

5. With probability Pm (mutation), mutation is performed on the new population.

6. The new population becomes the current population.

7. If the termination conditions are satisfied exit, otherwise go to step 3.

In Fig. 4.2, selection based on roulette is expained using a trivial example with a
population of ten individuals. Each individual is assigned a sector of a roulette wheel
that is proportional to its fitness and the wheel is spun to select a parent.

While selection is random and any individual has the capacity to become a parent,
selection is clearly biassed towards fitter individuals. Parents are not required to be
unique and, in each iteration, fit individuals may produce many offsprings. From a
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Figure 4.2: Example of selection based on the roulette-wheel for ten individuals.

population of size N, N/2 pairs of parents are chosen. These parents initiate a new
population. With probability Pc each pair is recombined using the crossover operator
to produce a pair of children. This cut and splice operator is illustrated in Fig. 4.3.

Crossover point

Parents

Children

Figure 4.3: Example of crossover.

A cross point is selected at random. Each child is identical to one parent before
the cross point and identical to the other after the cross point. The child individuals
then replace their parents in the new population. Following crossover, mutation is
applied to all or some individuals in the new population. The probabilities of mutation
and crossover, Pm and Pc are parameters of the algorithm and must be set by the
user. With probability Pm, each bit on every string is inverted or modified. The new
population then becomes the current population and the cycle is repeated until some
termination criteria are satisfied. The algorithm typically runs for some fixed number
of iterations, or until convergence is detected within the population.
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Many GAs applied to real world problems bear only a passing resemblance to the
canonical GA, and GAs are best viewed as a paradigm for evolutionary search, rather
than a specific algorithm. The binary encoding is often inappropriate for many problems
and may be extended to non-binary representations. Successful GAs have used integer
string individuals or even more general representations such as tree and matrix struc-
tures. Specialized crossover operators have been devised to handle unusual encodings.
In order to increase program effectiveness hybrid GAs mix problem-specific operations
with crossover and mutation. Selection pressure is defined as the relative probability
that the fittest individual in the population will be chosen as a parent relative to an
individual of average fitness. Too high a selection pressure and a GA will rapidly con-
verge to a suboptimal solution. While encouraging search, a low selection pressure can
result in a GA taking an inordinate time to converge. In order to control selection pres-
sure within a GA fitness values are often rescaled when applying roulette wheel parent
selection. One problem with a canonical GA is that there is no guarantee that good
individuals will survive from one iteration to the next. Not all algorithms produce an
entirely new population at each iteration. An elitist strategy involves copying the best
individuals unchanged from the current population to the new population, as done in
the present work. In a steady-state GA, each iteration involves the application of one
crossover or mutation operator and only one or two new individuals are added to the
population, usually replacing the worst individuals. As a whole, GAs have proved to be
the most popular EAs. They provide an efficient a simple framework for attempting to
solve complex search problems and have been widely applied.

4.8.2 Advantage and disadvantage of Genetic Algorithm

Some of the advantages of a GA include that it

• Optimizes with continuous or discrete variables,

• Does not require any derivative information,

• Simultaneously searches from a wide sampling of the cost surface,

• Deals with a large number of variables,

• Is well suited for parallel computers,

• Optimizes variables with extremely complex cost surfaces (they can jump out of
a local minimum),

• Provides a list of optimum variables, not just a single solution,

• Works with numerically generated data, experimental data, or analytical functions.

These advantages produce stunning results when traditional optimization approaches
fail miserably. Of course, the GA is not the best way to solve every problem. For
instance, the traditional methods have been tuned to quickly find the solution of a well
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behaved convex analytical function of only a few variables. For such cases the calculus-
based methods by far outperform the GA, quickly finding the minimum while the GA
is still analyzing the costs of the initial population. However, many realistic problems
do not fall into this category.

4.9 Conclusions

For the optimization problem considered in this work:

• Function evaluations rely on a complex computation with a limited accuracy,

• Concurrent objectives will be considered,

• Local minima are often expected,

• Results for non optimal configurations may be nevertheless interesting,

• Parallel computers are available.

For all these reasons, GA appears to be ideally suited and will always be used in what
follows. Now, it is essential to compute the cost function as efficiently and accurately
as possible. This is the subject of the next chapter.





Chapter 5

Numerical methods and algorithms

5.1 Introduction

Accurate computer simulations of fluid flows involve a wide range of issues, from grid
generation to turbulence modelling to the applicability of various simplified forms of the
Navier-Stokes equations. Many of these issues are not addressed at all in this thesis,
like acoustics or reacting flows [3]. Instead, we focus on selected numerical issues,
with emphasis on finite-volume solutions of the Navier-Stokes equations, coupled with
optimization to improve wind and wave energy turbines. We present in this chapter a
foundation for developing, analyzing, and understanding such methods.

5.2 CFD & Optimization

Computational Fluid Dynamics (CFD) deals with the numerical analysis of complex
flows. Despite impressive progress in recent years, CFD remains an imperfect tool in
the comparatively mature discipline of fluid dynamics, partly because electronic digital
computers have been in widespread use for only thirty years or so. The Navier-Stokes
equations, which govern the motion of a Newtonian viscous fluid were formulated well
over a century ago. The most straightforward method of attacking any fluid dynamics
problem is to solve these equations for appropriate boundary conditions. Analytical
solutions are few and trivial and, even with today’s supercomputers, numerically exact
solution of the complete equations for the three-dimensional, time-dependent motion
of turbulent flow is prohibitively expensive except for basic research studies in simple
configurations at low Reynolds numbers. Therefore, the straightforward approach is
still impracticable for engineering purposes. Moreover, CFD will be considered for
optimization in this work.

Optimization methods allowing to identify a constrained, best possible solution have
been known for a long time, but have not permeated all engineering disciplines yet. Con-
cerning more specifically fluid dynamics, the first applications of optimization are found
for aeronautical problems, in particular to improve wing profile and flight properties
(typically, reduce drag). This is a problem with a high added-value and involves only

68
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the basic equations of fluid dynamics (Euler or Navier-Stokes equations, depending on
the investigated properties). This explains why most available books and articles dealing
with optimization relying on evaluations obtained by Computational Fluid Dynamics
concern such situations. Even then, the number of such books and review articles re-
mains quite limited [132]. In our group, a considerable experience is available concerning
such mathematical optimization relying on evaluations based on Computational Fluid
Dynamics. We therefore employ our own optimization library, OPAL (for OPtimization
ALgorithms), containing many different optimization techniques. Different CFD solvers
(in-house codes, ANSYS-Fluent, ANSYS-CFX) have been coupled in the past with this
optimizer. It has already been employed successfully to improve a variety of applications
like for instance heat exchangers [40] or burners [52].

5.3 Computational procedure

The optimization procedure can only deliver the right solution, if all evaluations relying
on Computational Fluid Dynamics indeed lead to an accurate flow description. From
the literature it is known that an accurate CFD simulation of the flow around a Savonius
turbine or Wells turbine is a particularly challenging task, mainly due to its highly time-
dependent nature and to the fact that flow separation plays an important role for the
efficiency of the system. It is therefore necessary to check the full CFD procedure with
great care. Afterwards, the resulting methodology must be validated.

5.3.1 Pre-process: geometry & grid generation

Note first that both problems considered in this thesis are indeed two-dimensional in
space, allowing an easier representation and discretization. The flow is time-dependent
for Savonius turbine, while a steady solution is sufficient for Wells turbine.

5.3.1.1 Savonius turbine: size of computational domain

The appropriate size of the computational domain has first been investigated. It must
be indeed checked that this size does not impact the results of CFD. A computational
domain of increasing dimensions (square domain of size 2L × 2L, suitably normalized
by the rotor radius R, see Fig. 5.1) has been considered in the CFD computation. It
is easy to notice from Fig. 5.1 that the three smaller domains are associated with a
large variation of the torque coefficient. On the other hand, the remaining three (larger
domains) lead to a nearly constant value, with a relative variation of the output quantity
below 1.1%. This demonstrates that the computational domain should extend at least
over 20 times the rotor radius in each direction. In a smaller domain, the boundary
conditions influence the flow results in an inappropriate manner. Finally, the domain
marked in Fig. 5.1 has been retained for all further Savonius computations in this work.
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Figure 5.1: Size of the computational domain and impact on the torque coefficient

5.3.1.2 Savonius turbine mesh independence

Several different two-dimensional grids of increasing density and quality, composed of
5 400 up to 120 000 cells, have been tested for a conventional two-blade Savonius turbine
with obstacle and deflector plates, using a representative example of the target solutions.
It is easy to notice from Fig. 5.2 that the five coarsest grids are associated with a large
variation of the torque coefficient. On the other hand, all remaining grids employing
more than 80 000 cells lead to a relative variation of the output quantity below 1.3%.
Since the cost of a CFD evaluation obviously increases rapidly with the number of grid
cells, the intermediate grid range between 85 000 and 100 000 cells has been retained for
all further results shown in the present work concerning Savonius turbines.

5.3.1.3 Wells turbine: size of computational domain

The mutual interaction between the blades constrains the size of the computational
domain (Fig. 5.3) since only a single blade is considered. The appropriate size of the
computational domain has been selected in the spanwise direction by using constant
solidity and periodic boundary condition for both sides of the domain. In the axial
direction recommendation from the literature have been implemented (s = 0.67, see
section 3.2.1.1).

5.3.1.4 Wells turbine mesh independence

Corresponding results are shown in Fig. 5.4. Several different two-dimensional grids of
increasing density and quality, composed of 12 200 up to 108 000 cells, have been tested
for the baseline, non-symmetric blade configuration NACA 2421. All other parameters
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Figure 5.2: Grid-independence study for the torque coefficient

Figure 5.3: Size of the computational domain around monoplane and two-stage Wells
turbines

of the CFD are unchanged. It is easy to notice that the six coarsest grids are associated
with a large variation of the objective functions (here, the tangential force coefficient is
represented). On the other hand, all remaining grids employing more than 53 000 cells
lead to a variation of the target variables smaller than 1.5%. Therefore, the intermediate
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grid range between 55 000 and 80 000 cells is retained for all further results shown in the
present work for Wells turbine, depending on the type (one or two stages).

Figure 5.4: Grid-independence study for the tangential force coefficient

5.3.2 Numerical solution of the flow field

5.3.2.1 Why Fluent?

From all CFD codes available in our group, ANSYS-Fluent has finally been retained.
Fluent is the world’s leading commercial supplier of Computational Fluid Dynamics
software and services. Fluent enables engineers to simulate fluid flow, fluid machines,
heat and mass transfer, and a host of related phenomena involving turbulent, reacting,
and multi-phase flows. Many researchers have used Fluent for simulating Savonius
turbines [1, 69, 70] and Wells turbine [9, 103, 130, 131] in the past. Therefore, Fluent
has a capability to predict the performance of such turbines. Other commercial tools
do not show any noticeable advantage. Open-source CFD codes like OpenFOAM are
definitely cheaper but of limited numerical efficiency when considering a moving mesh
or using parallel computers [139]. Fluent is already coupled to our own optimization
library and has been finally selected as CFD solver for this study.

5.3.2.2 Model validation and selection for Savonius turbine

All flow simulations presented in this work rely on the software ANSYS-Fluent version
6.3. The unsteady Reynolds-Averaged Navier-Stokes equations are solved using the
SIMPLE (Semi-Implicit Method for Pressure-linked Equations) algorithm for pressure-
velocity coupling. The flow variables and all turbulent quantities are discretized in a
finite-volume formulation using a second-order upwind scheme. The unsteady flow is
solved by using the Sliding Mesh Model (SMM).

The full numerical procedure and in particular the employed turbulence model have
been validated by comparison with published experimental results for conventional Savo-
nius turbines (two-blade and three-blade Savonius rotor of [38] and [48], respectively).
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The influence of the turbulence model is shown in Fig. 5.5 and Fig. 5.6. These results
demonstrate the excellent agreement obtained between CFD and experiments for the
target function, Cp, when using the Realizable k − ε turbulence model. The employed
computational procedure thus appears suitable to predict the performance of the tur-
bine in the investigated range of operation and is now kept for all further simulations
of Savonius turbines.
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Figure 5.5: Validation of computational model: a) torque coefficient, b) power coefficient,
both compared to published experimental results for a two-blade conventional Savonius
turbine [38]
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Figure 5.6: Validation of computational model: power coefficient compared to experi-
mental results for a three-blade Savonius turbine [48]

5.3.2.3 Model validation and selection for Wells turbine

The full numerical model and in particular the employed turbulence model have been
again validated by comparison with published experimental results for a standard, mono-
plane Wells turbine at a flow Reynolds number Re= 2.4 105 using the chord as char-
acteristic length. Published studies usually consider a range Re= 1 105 to Re= 5 105,
since this corresponds to realistic conditions for employing a Wells turbine. Solidity is
assumed constant and equal to s = 0.67 following [110], which corresponds to a number
of blades equal to 8. The influence of the turbulence model is shown in Fig. 5.7. These
results demonstrate again the excellent agreement obtained between CFD and experi-
ments for this standard configuration, in particular when using the Realizable k-ε turbu-
lence model. This model thus appears suitable to predict the performance of the turbine
in the later investigated range of operation (flow coefficient varying from φ = 0.08 to
0.25) and is now kept for all further simulations. For both turbines, Reynolds-Stress
Model (RSM) leads to a considerably longer computing time but surprisingly to a worse
agreement than the k-ε models. This is probably due to the low turbulence level and
to a larger influence of the inflow turbulence boundary conditions, which are not prop-
erly characterized in the experiments. Inlet boundary conditions for the RSM model
have been implemented using different possibilities, prescribing either k and ǫ or the
turbulence intensity together with a length scale. Nevertheless, it has been impossible
to obtain a better agreement. Therefore, the RSM model appears to be unappropriate
for such configurations, associated with a low but unknown inflow turbulence level.
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Figure 5.7: Influence of the turbulence model on the tangential force coefficient, compared
to experimental results for a monoplane Wells turbine [107]

5.3.2.4 Realizable k − ǫ turbulence model

As explained in the previous sections, the realizable k-ǫ turbulence model developed
by Shih et al. [113] has always been retained. This model contains a new transport
equation for the turbulent dissipation rate. Also, a critical coefficient of the model, Cµ ,
is expressed as a function of mean flow and turbulence properties, rather than assumed
to be constant as in the standard model. This allows the model to satisfy additional
mathematical constraints on the normal stresses, consistent with the physics of tur-
bulence (realizability). The concept of a variable is also consistent with experimental
observations in boundary layers. The Realizable k-ǫ model usually provides improved
results for swirling flows and flows involving separation when compared to the standard
k-ǫ model.

• Transport equations:
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where S is the modulus of the mean rate of strain tensor.

In these equations, Pk represents the generation of turbulence kinetic energy due
to the mean velocity gradients, calculated as follows:

Pk = µtS
2 (5.4)

Pb is the generation of the turbulence kinetic energy due to buoyancy, negligible
for our applications:

Pb = βgi

µt

Prt

∂T

∂xi

(5.5)

where Prt is the turbulent Prandtl number for energy and gi is the component of
the gravitational vector in the ith direction. The default value of Prt is 0.85.

The cofficient of thermal expansion, β is defined as:

β = −1

ρ
(
∂ρ

∂T
)P (5.6)

• Modelling turbulent viscosity

µt = ρ Cµ

k2

ǫ
(5.7)

While Cµ is constant in the standard k-ǫ model, in the Realizable k-ǫ model this
coefficient is calculated as follows:

Cµ =
1

A0 + As
kU∗

ǫ

(5.8)

U∗ =

√

Sij Sij + Ω̃ij Ω̃ij (5.9)

Ω̃ = Ω − 2ǫijk ωk (5.10)

and
Ω = Ωij − ǫijk ωk (5.11)

where Ωij is the mean rate of rotation viewed in a rotating reference frame with
the angular velocity ωk. The model constants A0 and As are given by:

A0 = 4.04, As =
√

6 cos φ (5.12)

where

φ =
1

3
arccos(

√
6 W ) (5.13)

W =
Sij Sjk Ski

S̃
(5.14)
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S̃ =
√

Sij Sij (5.15)

Sij =
1

2

(

∂uj

∂xi

+
∂ui

∂xj

)

(5.16)

• Model Constants

C1ǫ = 1.44, C2 = 1.9, σk = 1.0, σǫ = 1.3 (5.17)

5.3.3 Post-Processing: analysis of results

5.3.3.1 Moment calculation for Savonius turbines

The unsteady flow is solved by using the Sliding Mesh Model. Since many different con-
figurations must be evaluated during the optimization, the computing time associated
with one single CFD computation must be kept acceptable. Three complete revolutions
are always computed, using an appropriate, constant value of the time-step; the first
revolution is only used to initiate the correct flow solution, while the flow properties
(in particular the power coefficient Cp and the torque coefficient Cm) are obtained by
averaging the results during the last two revolutions. This combination (1 revolution
for initializing the flow + 2 revolutions to compute the target function) has been kept
throughout. The moment coefficient Cm and the power coefficient Cp are calculated
according to Eqs. (2.20) and (2.21), respectively.

We have checked separately the influence of the number of revolutions on the com-
puted turbine performance for the optimal design (Fig. 5.8), by continuing the CFD
simulation. After 10 revolutions, the average power coefficient reaches a constant value.
The absolute difference in Cp between this value and the one obtained after only three
revolutions equals 0.024. This is an estimation of the uncertainty associated with the
considered optimization process. This inherent uncertainty is very small compared to
the range of Cp explored during the optimization and is thus deemed acceptable. It
amounts to only 6% of the pressure coefficient associated with the optimal design. The
influence of the number of revolutions on the estimation of Cp by CFD has been also
investigated systematically in a separate project [139], confirming the present findings.
Only three revolutions have been thus computed for each Savonius design in order to
reduce the needed computational time.

5.3.3.2 Forces calculation for Wells turbines

When an airfoil is set at an angle of incidence α in a fluid flow, it will generate a lift force
FL normal to the free stream and a drag force FD in the direction of the free stream.
These lift and drag forces can then be combined to get the tangential force FT and
the axial force FA (Fig. 2.12). The corresponding force coefficients are the tangential
force coefficient CT and the axial force coefficient CA, respectively which are calculated
according to Eqs. (2.24) and (2.25). Together with the turbine efficiency, CT will be the
objective function for the optimization.
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Figure 5.8: Influence of the number of revolutions on the instantaneous and on the
average power coefficient Cp computed by CFD for the optimum design shown later.

5.4 CFD/Optimization coupling

A fully automatic optimization finally takes place, using OPAL (decision-maker for the
configurations to investigate), the commercial tool Gambit for geometry and grid gener-
ation (including quality check) and the industrial CFD code ANSYS-Fluent to compute
the flow field around the turbines. As a result of the CFD computation the objective
function(s) is determined, and stored in a result file. The procedure is automated using
journal scripts (to restart Gambit, Fluent) and a master program written in C (Algo-
rithm 5.5.1), calling all codes in the right sequence as shown in Fig. 5.9. By checking
the values stored in the result file, OPAL is able to decide how to modify the input
parameters before starting a new iteration. The fully coupled optimization procedure is
a complex task, which has been described in detail in previous publications [40, 52, 132].

Algorithm 5.4.1

/∗ Block 1 – Generate input file ∗/
begin

sprintf( filename, ”input.dat”);
if ( !( f input := fopen(path, ”w”) ) )

Open the input-file for the simulation.
then

printf( ”Cannot write file %s !”, path );
exit; Error opening the input-file.

fi
comment: Create the header of the input file.
fprintf( f input, ”$DesignVariable1 = %le”,
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Figure 5.9: Schematic description of optimizer (OPAL) and CFD code coupling.

DesignV ariable1);
fprintf( f input, ”$DesignVariable2 = %le”,
DesignV ariable2);
fclose( f input ); Close the input-file.

end
/* Block 2 – Perform the simulation */
begin system( ”rm -f old results.dat” ); Remove the previous result.

comment: Call the simulation tool.
system( ”fluent 2ddp -g -i journal file.jou” );

end
/* Block 3 – Import the result(s) of the simulation */
begin

if ( !(f result := fopen(”Result.dat”, ”r”) ) )
Open the result file.

then
ErrorVariable := 1; Error reading the result file.
continue;
if

fscanf( f result,”%le”, &Drag ); Read the objective value.
fclose( f result ); Close the result file.

end

Many types of files have to be prepared in order to start optimization process, as
follows:

• Fluent journal file (fluent.jou)
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In this file, all the steps needed for CFD have been coded by text interface as
script file. For example, a statement like ”de bc vi 3 y y n 10 n 0.9902 n -
0.13917 y n 0.49 n 4.9” means ”define boundary-conditions of the velocity inlet
(zone number 3), the velocity specification method is magnitude and direction
with absolute reference frame and constant value. The inlet velocity value equal
10 m/s with constant X-component of the flow direction equal 0.9902 and constant
Y-component equal −0.13917. The Inlet turbulent specification method is k and
ε with constant values equal 0.49 and 4.9, respectively”. This procedure is then
repeated for every step in fluent sequence.

• Gambit journal file (gambit.jou)

By the same method, a file is also constructed for geometry and grid generation.
However, in our cases, this file has been built from two sub-files (head and tail).
Since this work considers shape optimization, the tail file describes the body and
contains all geometry steps. The values of all parameters describing the geometry
are placed in the head file at the beginning of each optimization iteration.

• Optimization parameters file (*.tcl)

In this file, all the optimization parameters have been implemented, containing
number of generations, population size, mutation rate, crossover probability and
so on (Table 5.1). Beside these parameters, all constrains of each optimization
parameter have been defined in this file.

Further, files have been constructed during the optimization, as:

• Input file (*.in)

This file contains the values of the optimization parameters for every generation.

• Fluent output file (fluent.out)

with this file, we can follow the convergence of the CFD solution for every config-
uration during evaluation.

• Output file (Result.dat)

The output file includes all the objective results for every tested configuration.
Results are stored in this file after every generation.

5.5 Optimization parameters

5.5.1 Savonius turbine: single objective optimization

The design variables considered for the optimization will be described in the next chap-
ter, since many different cases have been optimized in this work. For this purpose,
different parameters are considered in each configuration, which, together, are sufficient
to fix clearly the geometry of this specific case. The objective function considers only
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one output of the simulation (single objective optimization), that should be maximized
as far as possible: the output power coefficient Cp. The parameters of the GA are listed
in Table 5.1.

Table 5.1: Parameters of the Genetic Algorithm
Parameter Value
Population size of the first generation, N 20 to 30
Number of generations Ng

Survival probability 50%
Average probability 33.3%
Crossover probability 16.7%
Mutation probability 100%
Mutation magnitude 30%a (i.e. ±15%)

aThis value is multiplied by 0.8 at each generation. For example the mutation
magnitude is only 4% (±2%) after 10 generations. Mutation magnitude must be

decreased during the optimization process to stabilize the population.

The number of generations Ng will be varied, depending on the number of free
parameters, since there is a very strong relation between the number of parameters,
the population size and the efficiency of the Genetic Algorithm (computing time and
solution quality) [20].

5.5.2 Wells turbine: multi-objective concurrent optimization

The central goal when designing an improved Wells turbine is to achieve high efficiency
and high power output (i.e., high tangential force coefficient). The objective function
hence contains simultaneously two outputs of the simulation (multi-objective concurrent
optimization), that should both be maximized as far as possible: the tangential force
coefficient CT ; and the turbine efficiency η , which is inversely proportional to the axial
force coefficient, and is defined for a negligible density change as:

η =
FT ut

∆p0 Q
(5.18)

with Q the volumetric flow-rate through the turbine.
The design variables again depend on the specific problem considered and will be

listed in Chapter 7. The parameters of the GA are given in Table 5.1.

5.6 Conclusions

All the tools required for the optimization have been now developed and validated. The
final analysis can be started, beginning with the Savonius turbine.



Chapter 6

Savonius turbine: single-objective
optimization

6.1 Introduction

As already discussed in section 3.1.3, both two-blade and three-blade Savonius turbines
have been proposed and constructed. The three-blade configuration should be in par-
ticular advantageous to obtain good self-starting conditions. At the beginning of this
project, a small company contacted us with a modified, three-blade design without gap,
called in what follows GW-turbine. We will start by considering and optimizing this
specific configuration, before comparing with the standard (but optimized) three-blade
Savonius turbine. At the end of the chapter, the best overall solution, involving indeed
only two blades, will be fully optimized, yielding very promising results.

6.2 Optimal GW-turbine: modified three-blade

Savonius turbine without gap

6.2.1 Performance of the original GW-turbine

A modified design, a three-blade rotor without passage in between has been proposed by
a small company, in an effort to improve the performance compared to the conventional
system (Fig. 6.1).

Three issues must be specifically investigated in this case:

1. is it possible to improve the performance by changing the shape of the blade (not
being semi-cylindrical any more)?

2. is it possible to improve the performance by employing a deflector nose in front of
the turbine?

3. is it possible to improve the performance by using mobile parts for the returning
blade, thus reducing drag by ”opening” the returning blade?

82
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Figure 6.1: Schematic shape of the GW-turbine

We begin by considering the newly proposed design compared to the conventional
turbine.
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Figure 6.2: Performance comparison between the GW-turbine and the conventional,
two-blade Savonius rotor.

Figure 6.2 shows the comparison between the GW-turbine (denoted “three blades
without passage”) and the conventional Savonius turbine performance. Unfortunately,
it appears clearly from these first comparisons that the new design systematically leads
to a poorer performance, both from the point of view of power coefficient and of torque
coefficient. For very low values of λ, the difference is small, but the loss of performance
becomes considerable for increasing λ. The peak value of Cp is only 0.16 compared to
0.18 for the conventional design. An analysis of the flow can readily identify the reason
for this loss of performance. Increasing the number of blades increases the reverse
moment as well. Closing the passage between the blades leads to a reduction of the air-
flow entering the system and increases the global drag on the returning blade (Fig. 6.3).
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Figure 6.3: Instantaneous velocity vectors around the GW-turbine

6.2.2 Reducing the drag on the returning blade

In order to improve the performance of the GW-turbine, it was proposed to reduce the
drag of the returning blade by employing mobile blade sections. In closed position, these
mobile parts return back to the standard blade shape. When open, they should lead to
a considerable reduction of the drag on the returning blade. This procedure is described
schematically in Fig. 6.4.

Wind

Just closed blade Just opened blade

Closed blade
(advancing blade)

Figure 6.4: Schematic description of the GW-turbine with open returning blade.

The new design with an open returning blade has been investigated numerically for
different values of the speed ratio λ. For these computations, the slits are considered
to be inclined by 30◦ (constant value) compared to the local blade direction. The
resulting performance has been compared with that of the baseline GW-turbine, as
shown in Fig. 6.4. The results show a considerable improvement of the performance
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when comparing with the baseline GW-turbine. This improvement is visible both for
the torque and for the power coefficient. The gain is directly a consequence of the drag
reduction on the returning blade, due to air passing between the slits of this returning
blade, as seen in Fig. 6.5. The increase of the power coefficient reaches 0.0843 at
λ = 0.8, which means a relative improvement of performance by almost 36% under such
conditions. The GW-turbine with open returning blade is also systematically better
than the conventional Savonius turbine. For example, at λ = 0.7 the relative increase
in performance is 25.9%.
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Figure 6.5: Performance comparison between the GW-turbine with or without open re-
turning blade. The performance of the conventional Savonius rotor is also shown for
comparison. Top: torque coefficient. Bottom: power coefficient.

Due to the effectiveness of this design, the effect of the slits opening angle on the
performance has been investigated. Therefore, nine different angles (from 10◦ to 90◦)
have been studied, as shown in Fig. 6.6. From the results for both torque and power
coefficients, the best performance for this design is when the slit angle lies between 30◦



CHAPTER 6. SAVONIUS TURBINE: SINGLE-OBJECTIVE OPTIMIZATION 86

0.2 0.4 0.6 0.8 1 1.2 1.4

Speed ratio (l)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

T
o

rq
u

e
C

o
e

ff
ic

ie
n

t
(C

m
)

open with 10°

open with 20°

open with 30°

open with 40°

open with 50°

open with 60°

open with 70°

open with 80°

open with 90°

0.2 0.4 0.6 0.8 1 1.2 1.4

Speed ratio(l)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

P
o

w
e

r
c

o
e

ff
ic

ie
n

t
(C

p
)

open with 10°

open with 20°

open with 30°

open with 40°

open with 50°

open with 60°

open with 70°

open with 80°

open with 90°

Figure 6.6: Performance of open returning blade turbine for different slit angles. Top:
torque coefficient. Bottom: power coefficient.

and 40◦ considering at effective operating range between λ = 0.6 to λ = 1.2, correspond-
ing to practical applications.

6.2.3 Influence of a rounded obstacle plate

In the original concept, a rounded deflector structure is placed in front of two counter-
rotating GW-turbines. It is therefore important to check the influence of this deflect-
ing surface on the global system performance. The corresponding geometry is shown
schematically in Fig. 6.7.

Figure 6.8 shows a comparison between an isolated GW-turbine and the turbine
placed behind the rounded deflector. Here again, it appears unfortunately that the
performance is systematically reduced by the deflector. A GW-turbine placed directly
in the free flow leads systematically to a higher performance, both in terms of torque



CHAPTER 6. SAVONIUS TURBINE: SINGLE-OBJECTIVE OPTIMIZATION 87

Rotation

0.8
5

m

5 cm

R
o

ta
ti

o
n

5
c
m

Wind 0.8
5

m

Flo
w

Flow

Figure 6.7: Schematic description of the counter-rotating GW-turbine with rounded de-
flector.

coefficient and of power coefficient. When analyzing the resulting flow field, the decrease
in performance can be related to the excessive size and large radius of the planned
deflector. As a consequence, the air flow is directed away from the blades instead of
entering the system.

6.2.4 Optimization of the blade shape

Both for the conventional Savonius turbine and for the new design, semi-cylindrical
blades are considered as a starting condition. Even if such blades are traditionally
employed, it has never been demonstrated that such a blade shape leads to an optimal
performance. Therefore, an optimization of this shape geometry reconstructed by splines
based on three discrete points (Fig. 6.9) has been carried out, moving only one point
(p1).

The mathematical optimization procedure described previously (Genetic Algorithm
relying on automated evaluations through CFD) is employed to find the optimal blade
shape. This is done for a speed ratio λ = 0.7, considering an incident wind velocity
U = 10 m/s, following the literature. This value of λ is retained, since it is known
from the literature that it corresponds to the peak power coefficient of the conventional
turbine (nominal conditions).

Two degrees of freedom are left simultaneously to the OPAL optimizer: X1 and Y1

define the coordinate of the center point of the blades (Fig. 6.9).
In this study, a relatively large domain has been defined for the optimization in the

parameter space. The limits of this domain for the two parameters are (0.32 : 0.675) for
(X1/R) and (−0.294 : 0.294) for (Y1/R), where R is the radius of the original design,
kept constant during the optimization.

Finally, the optimization process thus involves simultaneously two parameters (or
degrees of freedom): X1 and Y1. For each geometrical configuration one single objective
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Figure 6.8: Performance comparison between the new concept in free field or placed
behind a rounded deflector.

(power output coefficient) is determined by CFD evaluations, and should be maximized
by the optimization procedure.

The results presented in Fig. 6.10 indicate that the considered objective is indeed
considerably influenced by the two free parameters, X1 and Y1. As a whole, 140 different
geometrical settings have been evaluated by CFD.

An optimal configuration can readily be identified for λ = 0.7. This optimum point
differs noticeably from the original design and corresponds to the point of coordinate
X1/R = 0.6315 and Y1/R = −0.0521 as shown in Fig. 6.10. This optimal condition
leads to a power coefficient Cp = 0.1638 and a torque coefficient Cm = 0.2339.

When compared with the GW-turbine (semi-cylindrical blade shape, Fig. 6.11), the
optimal point found by the optimization procedure corresponds simultaneously to an
increase of the power coefficient by 0.01487 and of the torque coefficient by 0.02126 at
λ = 0.7. For the power coefficient, this means a relative increase of the performance
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Figure 6.9: Description of the blade shape with 3 discrete points connected by splines.

Figure 6.10: The two input parameters of the optimization and the power coefficient.

Semi-cylindrical Shape Best Shape

Figure 6.11: The best (right) configuration obtained during the optimization compared
to the original GW-turbine (semi-cylindrical shape: left).

by 7.1% compared to the original GW-turbine. Since such turbines must operate also
outside of the design conditions, it is now important to check how this gain will change
as a function of λ. Therefore, the performance of the obtained optimal configuration
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has been computed for the full range of useful λ-values, as shown in Fig. 6.12. The
results of the new design with semi-cylindrical blades are also shown for comparison.
Figure 6.12 demonstrates that the improvement of power output coefficient is observed
at all conditions for intermediate values of λ (in particular between λ = 0.7 and λ=1.1),
compared to the semi-cylindrical design. The highest gain in efficiency with the new
blade shape is obtained around λ = 1 and is roughly equal to 15%. For very low
(λ < 0.6) and very high (λ > 1.2) values of λ, the modified shape is less efficient than
the semi-cylindrical one. Therefore, operating at such conditions should be avoided.
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Figure 6.12: Power coefficient of the optimized configuration compared to the GW-
turbine as a function of λ.

6.2.5 Conclusions on the GW-turbine

We can summarize all these results as:

• The standard GW-design (three-blade without gap) is less favorable than the
conventional Savonius rotor.

• The rounded deflector is much too large in the original design.

• Opening the returning blade leads indeed to a considerable increase of perfor-
mance. Different opening angles between 10◦ to 90◦ have been tested, best values
are found between 30◦ and 40◦.

• Similar modifications could possibly lead to even better results for classical Savo-
nius turbines. It is therefore interesting to examine now such configurations, start-
ing with the conventional, three-blade turbine.
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6.3 Optimal three-blade Savonius turbine

The conventional, three-blade configuration with gap (Fig. 6.13) of the Savonius rotor
has been extensively studied in the past [48]. The corresponding values of Cp and
Cm have been determined numerically and sometimes experimentally as a function of
the speed ratio λ. This has already been used to validate extensively our numerical
procedure by comparison with published results, (see section 5.3.2.2). Published studies
have demonstrated that three-blade turbines show considerable drawbacks compared to
classical Savonius turbines (two-blade), in particular a lower efficiency. Nevertheless, we
will try now to improve the performance of this design through optimization.

Wind

R

Three-blade Savonius Turbine

gw

120

Figure 6.13: Schematic description and main parameters characterizing a conventional
Savonius rotor with three blades.

6.3.1 Influence of obstacle plate

Since one of the major advantages of the Savonius turbine is its simplicity and cor-
responding compactness, robustness and low cost, a modification introducing a high
complexity should probably not be retained. Considering the results of the previous
studies and of section 3.1.3, some simple guiding or deflecting plate could lead to the
best efficiency improvement at the lowest possible cost and complexity. Therefore, we
will now investigate numerically the effect of an obstacle shielding partly the returning
blade of a Savonius turbine. This part builds on top of a previous investigation [72]
considering Savonius turbines with two as well as with three blades. Adding a shielding
obstacle should in principle reduce the reverse moment, and as a consequence the total
moment of the turbine will be increased, since the total moment is the moment differ-
ence between the advancing and the returning blades. Related ideas have already been
proposed by other groups in the past [48]. But, at the difference of the previous studies,
we are not looking here for a better solution, but directly for the best possible one.
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6.3.1.1 Self-starting capability

One important issue associated with wind energy is the self-starting capability of the
system. For decentral, low-cost applications as considered here, it is essential to obtain
a self-starting system. To investigate this issue, the static torque exerted on a turbine at
a fixed angle has been computed by CFD as a function of this angle θ. Figure 6.14 shows
the obtained static torque coefficient Cms

obtained for three different positions of the
obstacle plate as a function of θ. The experimental results of [48] for the conventional
three-blade turbines are also shown for comparison in Fig. 6.14. Due to periodicity, the
results are only plotted for θ between 0 and 120◦. These computations demonstrate
that the obstacle plate has a considerable and mostly positive effect on the static torque
coefficient. The obstacle plate improves the self-starting capacity for part of the θ-range.
A self-starting capability (Cms

> 0) is always obtained in principle at any angle, which
is a major advantage.
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Figure 6.14: Static torque coefficient as a function of the rotor angle θ for three different
values of Y1 choosing X1/R = −1.4 and X2/R = −1.76.

6.3.1.2 Optimization of the obstacle position

The position and the angle of the shielding obstacle will now be optimized. The free
design variables considered for the optimization will describe the obstacle position. For
this purpose, three parameters are considered (X1, Y1 and X2) which, together with
a fixed value for Y2 are sufficient to fix clearly the geometry of the shielding obstacle
(Fig. 6.15). The objective function considers only one output of the simulation, that
should be maximized as far as possible: the output power coefficient Cp. The mathemat-
ical optimization procedure described previously can be employed to find the optimal
position of the obstacle. This is done again for a speed ratio λ = 0.7, considering a fixed
incident wind velocity U = 10 m/s.
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Figure 6.15: Schematic description of the geometry and free optimization parameters
X1, Y1, X2 used to modify the position of the shielding obstacle.

As explained previously, three degrees of freedom are left simultaneously to the
OPAL optimizer: X1 and Y1 define the upper tip of the shielding obstacle; the value
X2 is then sufficient to define the position of the lower tip, since Y2 is taken constant,
with Y2/R = −1.177 (Fig. 6.15). With these three factors, the position of the obstacle
is perfectly determined, and the angle β can be deduced as well. In this manner, a
truly optimal solution can be obtained considering a large set of possible parameters.
Of course, when choosing the parameter space, it must be checked that the shielding
obstacle cannot come into direct contact with the rotor (‖ X1 ‖> R and ‖ X2 ‖> R), so
the acceptable range for the input parameters is shown in Table 6.1. The corresponding
positions of the obstacle all lead to configurations that shield partially the returning
blade.

Table 6.1: Acceptable range for the input parameters (parameter space)
Parameter minimum maximum
X1/R −1.88 −1.017
Y1/R −0.88 0.0
X2/R −1.88 −1.017

In Fig. 6.16 a parallel coordinate representation has been chosen since it is the
most popular way to analyze output data from optimization involving several degrees
of freedom. Such figures might be at first difficult to understand. Each thin connecting
line represents all numerical parameters associated with one specific configuration, where
each parameter is associated with its own vertical axis. The first three columns therefore
show the value of the three free parameters, X1/R, X2/R and Y1/R; the last column on
the right corresponds to the value of the objective function, here the power coefficient
Cp. The scale of the first parameter (X1/R) is for instance bounded between −1.88
(minimum) and −1.017 (maximum). By following a single line, the reader can therefore
determine quantitatively the values of all parameters associated with one configuration.
The optimal solution is shown with a thick red line. The results presented in Fig. 6.16
indicate that the considered objective is indeed considerably influenced by the three free
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-1.88
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-0.88 -1.88
0.133

-

Optimal configuration

0.153
Without
obstacle

Figure 6.16: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal configurations are connected
with a thick red line. The power coefficient of the conventional three-blade Savonius
turbine is shown with a gray circle.

parameters, X1, Y1 and X2. As a whole, 210 different geometrical settings have been
evaluated by CFD, requesting 22 days of computing time on a standard PC for the
three-blade Savonius turbine. Note that the user-waiting time could be considerably
reduced by carrying out the requested CFD in parallel on a PC cluster [132]. Such a
parallel procedure, already implemented in OPAL, has not been used in the present case
but could reduce the needed time by more than an order of magnitude, as demonstrated
in other studies.

The optimal configuration (highest point in the right column in Fig. 6.16, all corre-
sponding parameters being connected by a thick red line) can now readily be identified
for λ = 0.7. The optimum obstacle position, optimum angle β and corresponding opti-
mal power coefficient Cp are listed in Table 6.2.

Table 6.2: Optimal configurations
Design parameter value β power coeff. Cp

Three-blade Savonius turbine X1/R −1.05632
Y1/R −0.36912 (80.52◦) 0.2120
X2/R −1.38162

When compared with the three-blade Savonius turbines (without shielding obsta-
cle), the optimal point found by the optimization procedure corresponds to an absolute
increase of the power coefficient by 0.058 at λ = 0.7. This means a relative increase of
the performance (measured by the power output coefficient) by 27.5%, compared to the
conventional three-blade Savonius design without any obstacle.

It is now important to check how this gain would change as a function of λ, since such
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Figure 6.17: Performance of the optimized configuration (red line) compared to the
conventional three-blade Savonius turbine without obstacle (black): a: torque coefficient;
b: power coefficient. The corresponding relative increase is shown with blue line.

a turbine must be able to work also for off-design conditions. Therefore, the performance
of the optimal configurations have been finally computed for the full range of useful λ-
values, as shown in Fig. 6.17. This figure demonstrates that the improvement of both
torque coefficient and power output coefficient is observed throughout for all values of
λ, compared to the conventional three-blade Savonius turbine without obstacle. The
absolute gain for Cp increases even slightly with λ at first, the relative increase being
highest for the largest values of λ considered in the present study.
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6.3.2 Optimal blade shape

In the previous section, the efficiency of the conventional three-blade Savonius turbine
has been increased by placing in an optimal manner an obstacle plate shielding the
returning blade. The present study now aims at improving further the output power
of the three-blade Savonius turbine. In order to achieve this objective, the geometry of
the blade shape (skeleton line) is now optimized in presence of the obstacle plate.

Optimization is used here to find the best blade shape while taking into account
the obstacle shielding the returning blade in the optimum position. The free design
variables considered for the optimization describe the blade skeleton line for a constant
blade thickness of 2 mm. For this purpose, six parameters are considered (XP1, YP1,
XP2, YP2, XP3 and YP3, see Fig. 6.18). The obstacle plate is kept fixed in the opti-
mal position identified in the previous section (X1/R = −1.05632, Y1/R = −0.36912,
X2/R = −1.38162 and Y2/R = −1.1770, which leads to an angle β = 80.52◦, see
Fig. 6.15). Now, the blade shape of the Savonius turbine will be optimized in order
to find the best possible flow conditions. The six shape parameters are sufficient to
determine uniquely the geometry of the system, since the obstacle position is fixed.

P4

P (X ,Y )1 P1 P1

P5

r

r Variable points

P (X ,Y )2 P2 P2

P (X ,Y )3 P3 P3

X

Y

(P0)Fixed points

Blade
center

Turbine shaft

gw

Figure 6.18: Schematic description of the free optimization parameters
XP1, YP1, XP2, YP2, XP3 and YP3 used to modify the blade shape.

Knowing all 5 points, the full profile of the blade is reconstructed using standard
splines (Nonuniform rational B-splines, NURBS). The order of a NURBS curve defines
the number of nearby control points that influence any given point on the curve. The
curve is represented mathematically by a polynomial of degree one less than the order
of the curve; this means that the spline order is 5 in our case and the degree of the
polynomial is 4. The objective function contains one single output of the simulation,
that should be maximized as far as possible: the power coefficient Cp. The parameter
space considered in the optimization has been defined as documented in Table 6.3. These
domains are selected to prevent any domain overlap along the Y -direction and to keep
realistic blade shapes. The reference point of the parameter space is point P0, which is
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the center of the original, semi-cylindrical shape with radius r as shown in Fig. 6.18.
During the calculations, a circular turbine shaft is included with a fixed radius Rsh

computed from Rsh/R = 0.03.

Table 6.3: Acceptable range for the input parameters (parameter space for blade shape
with the obstacle )

Parameter Minimum allowed Maximum allowed
XP1/r 0.53 1.47
YP1/r −0.24 0.24
XP2/r 0.24 1.2
YP2/r −0.94 −0.24
XP3/r 0.24 1.2
YP3/r 0.24 0.94

The results presented in Fig. 6.19 indicate that the considered objective is again
considerably influenced by the six free parameters, XP1, YP1, XP2, YP2, XP3 and YP3,
and thus by the blade shape. As a whole, 210 different geometrical settings have been
evaluated by CFD, requesting one and a half month of total computing time on a
standard PC.

0.53 -0.24 0.24 -0.94 0.24 0.24 0.0

0.240.941.2-0.241.20.241.47

X /r1 Y /r1 X /r2 Y /r2 X /r3 Y /r3 Cp

Optimal configuration

Three-blade
Savonius without

obstacle

0.153

0.233

Figure 6.19: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal configuration are connected
with a thick red line. The power coefficient of the conventional three-blade turbine (semi-
cylindrical shape) is also shown with a black circle.

The optimal configuration (highest point in the right column in Fig. 6.19, all corre-
sponding parameters being connected by a thick red line) can now readily be identified
for λ = 0.7. The optimum point positions and corresponding optimal power coefficient
Cp are listed in Table 6.4.
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Table 6.4: Optimal blade shape with the obstacle
XP1/r YP1/r XP2/r YP2/r XP3/r YP3/r Optimal power coeff. Cp

0.7519 0.0307 0.4345 −0.5456 0.6594 0.5464 0.233

At λ = 0.7 the optimal point found by the optimization procedure corresponds to
an absolute increase of the power coefficient by 0.08 compared with the conventional
three-blade Savonius turbine, respectively by 0.021 compared with the conventional
Savonius rotor (semi-cylindrical blade shape) with obstacle plate. As a whole, this
means a relative increase of the performance (measured by the power output coefficient)
by 34.3% for the optimum shape with obstacle plate, compared to the conventional
three-blade Savonius design without obstacle.

Note that this new shape (Fig. 6.20) is only optimum in combination with the em-
ployed obstacle plate. Indeed, the modified shape exploits best the flow redirection in-
duced by the obstacle. As a consequence, the reverse moment is reduced by the shielding
obstacle; simultaneously, the modified shape leads to an increase of the positive moment
of the advancing blade.

Obstacle

Wind

Figure 6.20: Optimum configuration obtained with the optimization procedure.

It is now important to check how this gain would change as a function of λ. Therefore,
the performance of the optimal configuration has been finally computed for the full range
of useful λ-values, as shown in Fig. 6.21. This figure demonstrates that the improvement
of both torque coefficient and power output coefficient is observed throughout for all
values of λ, compared to the conventional three-blade Savonius turbine. The absolute
gain for Cp and Cm is even higher for lower λ-values. The relative performance increase
compared to the conventional three-blade Savonius configuration is always higher than
30% in the effective operating range.
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Figure 6.21: Performance of the optimized configuration (red line) compared to the
conventional three-blade Savonius turbine (black line): a) torque coefficient; b) power
coefficient. The corresponding relative increase compared to the conventional three-blade
configuration is shown with blue line.

6.3.3 Optimal three-blade Savonius turbine with guiding
plates

After improving the efficiency of the three-blade Savonius turbine by placing appropri-
ately an obstacle shielding the returning blade, the present study aims at investigating
and improving further the output power of the three-blade Savonius turbine and im-
proving the static torque, which measures the self-starting capability of the turbine. For
this purpose, a modified design is considered, involving simultaneously an obstacle plate
shielding the returning blade and a flow deflector (frontal guiding plates). Four geomet-
rical properties are optimized simultaneously: 1) the position of an obstacle shielding
the returning blade; 2) the position of a deflector guiding the wind toward the advancing
blade; 3) the blade skeleton line and 4) the gap width.

The optimization process thus relies on free design variables that describe the posi-
tion and angles of the plates, the blade shape (skeleton line) as well as the gap width s
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Figure 6.22: Schematic description of the free optimization parameters characterizing a
three-blade Savonius rotor : a) plate parameters (X1, Y1, X2, Y2, Xd1, Yd1, Xd2 and Yd2);
b) XP1, YP1, XP2, YP2, XP3 and YP3 used to modify the blade shape; additionally, the gap
width gw.

(Fig. 6.22). At the end, fifteen free parameters are thus considered (X1, Y1, X2, Y2, Xd1,
Yd1, Xd2, Yd2, XP1, YP1, XP2, YP2, XP3, YP3 and gw). The objective function considers
again only one output of the simulation, that should be maximized: the output power
coefficient Cp.

The mathematical optimization procedure described previously can now be em-
ployed. This is done as usual for a constant speed ratio λ = 0.7, considering a fixed
incident wind velocity U = 10 m/s. The parameter space considered in the optimization
has been defined as documented in Table 6.5. These domains are selected to prevent any
domain overlap along the Y -direction, to keep realistic blade shapes and to cover a wide
region for positioning the guiding plates. The reference point of the parameter space for
the blade skeleton line is point P0, which is the center of the original, semi-cylindrical
shape with radius r as shown in Fig. 6.22. The reference point for the remaining space
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parameters (guiding plates and gap width) is the global center of turbine rotation. Dur-
ing the calculations, a circular turbine shaft is included with a radius Rsh computed
from Rsh/R = 0.03.
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0.153
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0.363
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Figure 6.23: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal configuration are connected
with a thick red line. The power coefficient of the conventional three-blade turbine (semi-
cylindrical shape) is also shown with a black circle.

The results presented in Fig. 6.23 indicate that the considered objective is indeed
considerably influenced by the fifteen free parameters. As a whole, 240 different geomet-
rical settings have been evaluated by CFD, requesting 47 days of total computing time
on a standard PC. Relying on parallel computers and possibly carrying out each CFD
evaluation again in parallel [132] is clearly necessary when considering three-dimensional
problems. Fortunately, this is quite straightforward to implement, so that researchers
having access to parallel clusters can solve corresponding problems within an acceptable
lapse of time.

The optimal configuration (highest point in the right column in Fig. 6.23, all corre-
sponding parameters being connected by a thick red line) can now readily be identified
for λ = 0.7. The corresponding geometry is shown in Fig. 6.24. The optimum parameter
values are listed in Table 6.6.

One instantaneous picture of the velocity field is shown as an example in Fig. 6.25,
demonstrating that the employed grid captures all important flow features in the vicinity
of the rotor and guiding plates. This is of course a dynamic process, difficult to illustrate
in a static figure.
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Table 6.5: Acceptable range for the input parameters (parameter space)
Parameter Minimum allowed Maximum allowed
Blade shape
XP1/r 0.53 1.2
YP1/r −0.24 0.24
XP2/r 0.24 1.1
YP2/r −0.94 −0.24
XP3/r 0.24 1.1
YP3/r 0.24 0.94
Guiding plates
X1d/R −1.2 0.0
Yd1/R 1.1 1.65
X2d/R −1.88 0.0
Yd2/R 1.76 2.6
X1/R −1.88 −1.1
Y1/R −0.7 0.0
X2/R −1.88 −1.1
Y2/R −1.88 −0.7
Gap width
gw/R 0.03 0.18

Advancing
Blade

Deflector

Obstacle

Optimum design

Wind

U

Returning blade

=77.58 °

=81.13 °

Figure 6.24: Optimum configuration obtained with the optimization procedure.

At λ = 0.7 the optimal point found by the optimization procedure corresponds to
an absolute increase of the power coefficient by 0.207 compared with the conventional
three-blade Savonius turbine (semi-cylindrical blade shape). As a whole, this means a
relative increase of the performance (measured by the power output coefficient) by 57%
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Table 6.6: Optimal configuration
Part Parameter Value Angle

Blade shape XP1/r 0.6077 -
YP1/r -0.1338
XP2/r 0.2735
YP2/r -0.7136
XP3/r 0.7065
YP3/r 0.5901

Guiding plates Xd1/R -0.3089 γ = 81.13◦

Yd1/R 1.436
Xd2/R -0.4591
Yd2/R 2.388
X1/R -1.3638 β = 77.58◦

Y1/R -0.1075
X2/R -1.691
Y2/R -1.5935

Gap width gw/R 0.0988 -

Figure 6.25: Instantaneous velocity vectors magnitude (m/s) around the optimum con-
figuration (zoom) at the design point (λ = 0.7).

for the optimum design.
The performance of the optimal configuration has been finally computed for the full

range of useful λ-values, as shown in Fig. 6.26. This figure demonstrates that the im-
provement of both torque coefficient and power output coefficient is observed throughout
for all values of λ, compared to the conventional three-blade Savonius turbine. The rel-
ative performance increase compared to the standard Savonius configuration is always
higher than 50% in the usual operating range (0.6 ≤ λ ≤ 1), demonstrating again the
interest of the optimized configuration.
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Figure 6.26: Performance of the optimized configuration (red line) compared to the con-
ventional three-blade Savonius turbine (black line): Top: torque coefficient; Bottom:
power coefficient. The corresponding relative increase compared to the standard config-
uration is shown with blue line.

6.3.3.1 Self-starting capability

For decentralized, low-cost wind-energy applications, it is essential to obtain a self-
starting system. To investigate this issue, the static torque exerted on the turbine at
a fixed angle has been computed by CFD as a function of this angle θ. Figure 6.27
shows the obtained static torque coefficient Cms for the optimal design compared to
the classical three-blade turbine. The experimental results of [48] for a conventional
three-blade turbine are also shown for comparison in Fig. 6.27. Due to periodicity, the
results are only plotted for θ between 0 and 120◦. Compared to the classical turbine,
these computations demonstrate that the modifications have a considerable and positive
effect on the static torque coefficient, except in a small range (90◦ ≤ θ ≤ 100◦). There,
the static torque coefficient is less than the classical one, but remains strictly positive.



CHAPTER 6. SAVONIUS TURBINE: SINGLE-OBJECTIVE OPTIMIZATION 105

Averaging over all angle positions, Cms is increased by 0.091 for the optimum design.
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Figure 6.27: Static torque coefficient Cms as a function of the fixed rotor angle θ for the
optimal design (filled red squares) compared to the classical three-blade Savonius turbine
(blue plus). The experimental results of [48] are also shown for comparison (empty black
squares).

6.3.4 Conclusions on three-blade design

It is possible to increase the performance of the conventional three-blade design using
optimization by modifying the blade shape and gap width while placing suitable obstacle
and deflector plates. However, it is known from the literature that the two-blade design
is usual better in terms of power coefficient. Therefore, in a last step, the conventional
two-blade design will be optimized along the same lines.

6.4 Optimal two-blade Savonius turbine

In this section, new designs will be step by step investigated and optimized to improve
the performance of the conventional two-blade Savonius turbine.

6.4.1 Obstacle plate

To achieve better performance, the position of an obstacle shielding the returning blade
of the Savonius turbine and possibly leading to a better flow orientation toward the
advancing blade is first optimized (Fig. 6.28).

Adding a shielding obstacle should in principle reduce the reverse moment, and as a
consequence the total moment of the turbine will be increased.
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Figure 6.28: Schematic description of the geometry and free optimization parameters
X1, Y1, X2 used to modify the position of the shielding obstacle.

6.4.1.1 Self-starting capability

It is essential to obtain a self-starting system. To investigate this issue, the static torque
exerted on a turbine at a fixed angle has been computed by CFD as a function of this
angle θ. Figure 6.29 shows the obtained static torque coefficient Cms

obtained for three
different positions of the obstacle plate as a function of θ. The experimental results
of [38] for the conventional turbine are also shown for comparison in Fig. 6.29. Due to
periodicity, the results are only plotted for θ between 0 and 180◦. These computations
demonstrate that the obstacle plate has a considerable and positive effect on the static
torque coefficient for the classical configuration. The conventional Savonius turbine
shows a very large variation of the static torque coefficient as a function of θ, with
negative values around θ = 140◦ − 170◦ (no self-starting). For all investigated positions
involving an obstacle, the negative torque region completely disappears, with a minimum
value of Cms

higher than 0.07. Apart from that, the evolution as a function of θ is similar
to that of the conventional turbine. As a whole, employing an obstacle plate improves
noticeably the self-starting properties for the classical configuration. A self-starting
capability (Cms

> 0) is always obtained in principle at any angle, which is a major
advantage.

6.4.1.2 Optimization

Three degrees of freedom are left simultaneously to the OPAL optimizer: X1 and Y1

define the upper tip of the shielding obstacle; the value X2 is then sufficient to define
the position of the lower tip, since Y2 is taken constant, with Y2/R = −1.177 (Fig. 6.28).
With these three factors, the position of the obstacle plate is perfectly determined, and
the angle β can be deduced as well.

In a previous study [72], a small range of variation had been defined for the parameter
space. Here, a much larger accessible domain has been prescribed, as documented in
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Figure 6.29: Static torque coefficient as a function of the rotor angle θ for three different
values of Y1 choosing X1/R = −1.4 and X2/R = −1.76.

Table 6.7. In this manner, a truly optimal solution can be obtained considering a large
set of possible parameters. Of course, when choosing the parameter space, it must
be checked that the shielding obstacle cannot come into direct contact with the rotor
(‖ X1 ‖> R and ‖ X2 ‖> R). The corresponding positions of the obstacle all lead to
configurations that shield partially the returning blade.

Table 6.7: Acceptable range for the input parameters
Parameter minimum maximum
X1/R −1.88 −1.017
Y1/R −0.88 0.0
X2/R −1.88 −1.017

The results presented in Fig. 6.30 indicate that the considered objective is consider-
ably influenced by the three free parameters X1, Y1 and X2. As a whole, 210 different
geometrical settings have been evaluated by CFD, requesting 24 days of computing
time on a standard PC. The optimal configurations (highest point in the right column
in Fig. 6.30, all corresponding parameters being connected by a thick red line) can
now be identified for λ = 0.7. The optimum obstacle position, optimum angle β and
corresponding optimal power coefficient Cp are listed in Table 6.8.

When compared with the standard Savonius turbines (without shielding obstacle),
the optimal point found by the optimization procedure corresponds to an absolute in-
crease of the power coefficient by 0.068 at λ = 0.7. This means a relative increase of
the performance (measured by the power output coefficient) by 27.3% for the two-blade
Savonius turbine, compared to the conventional Savonius design without any obstacle.
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X1/R Y1/R X2/R Power coeff.

-1.88 -0.88 -1.88 0.133

-1.017 0.0 -1.017 0.2503

Optimal configuration

Without
obstacle
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Figure 6.30: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal configurations are connected
with a thick red line. The power coefficient of the conventional turbine is shown with a
black circle.

Table 6.8: Optimal configurations (obstacle position and angle)
Design parameter value β power coeff. Cp

Two-blade Savonius turbine X1/R −1.23830
Y1/R −0.45390 (100.83◦) 0.2503
X2/R −1.09993

Note that we have been at first surprised to obtain an optimal geometry leading
to β > 90◦ for the two-blade turbine. After a thorough flow analysis, exemplified
in Fig. 6.31, it is possible to understand finally that the flow direction induced by
the obstacle at β = 100.83◦ is indeed optimal for the advancing blade in the relative
reference frame. Furthermore, for most configurations associated with β < 90◦, the
flow behind the shielding obstacle points partly toward the returning blade and thus
increases the reverse moment; this effect is reduced for the optimal configuration. The
optimal geometry of the shielding obstacle is of course highly dependent on the specific
rotor configuration.

6.4.1.3 Off design performance

The performance of the optimal configuration has been finally computed for the full
range of useful λ-values, as shown in Figure 6.32 . This figure demonstrate that the im-
provement of both torque coefficient and power output coefficient is observed throughout
for all values of λ, compared to the conventional Savonius turbine without obstacle. The
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Figure 6.31: Instantaneous flow structure when the advancing blade is in vertical position
for the optimal configuration at λ = 0.7: Zoom on the vicinity of the turbine (full CFD
domain is much larger).

absolute gain for Cp increases even slightly with λ at first, the relative increase being
highest for the largest values of λ considered in the present study.

6.4.1.4 Practical realization

From the technical point of view, many existing systems already rely on a tail vane
for optimal alignment into the wind direction. A similar technical solution would be
used for the Savonius turbine using the obstacle. In this manner the orientation of
the system can be simply, efficiently and automatically controlled. As a whole, the
optimized configuration is only slightly more complex, more expensive and heavier than
the original system. Therefore, the improved power and torque coefficients should easily
compensate these drawbacks within a short time after installation.

6.4.2 Optimal blade shape with obstacle plate

In the last section, the efficiency of the classical Savonius turbine has been increased
by placing in an optimal manner an obstacle plate shielding the returning blade. The
study now aims at improving further the output power of the Savonius turbine as well
as the static torque, which measures the self-starting capability of the turbine. In order
to achieve both objectives, the geometry of the blade shape is now optimized in presence
of the obstacle plate. Six free parameters are considered in this optimization process.

6.4.2.1 Optimization

The free design variables considered for the optimization describe the blade skeleton line
for a constant blade thickness of 2 mm. For this purpose, six parameters are considered
(XP1, YP1, XP2, YP2, XP3 and YP3, see Fig. 6.33). The obstacle plate is kept fixed in the
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Figure 6.32: Performance of the optimized configuration (red line) compared to the con-
ventional two-blade Savonius turbine without obstacle (black line): a: torque coefficient;
b: power coefficient. The corresponding relative increase is shown with blue stars.

optimal position identified in Section 6.4.1 (X1/R = −1.2383, Y1/R = −0.4539, X2/R =
−1.0999 and Y2/R = −1.1770, which leads to an angle β = 100.8◦, see Fig. 6.28). The
six shape parameters are sufficient to determine uniquely the geometry of the system,
since the obstacle position is fixed. The objective function considers only one output of
the simulation, that should be maximized as far as possible: the power coefficient Cp.

The parameter space considered in the optimization has been defined as documented
in Table 6.9. These domains are selected to prevent any domain overlap along the Y -
direction and to keep realistic blade shapes. The reference point of the parameter space
is point P0, which is the center of the original, semi-cylindrical shape with radius r as
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Figure 6.33: Schematic description of the free optimization parameters
XP1, YP1, XP2, YP2, XP3 and YP3 used to modify the blade shape.

shown in Fig. 6.33. During the calculations, a circular turbine shaft is included with a
fixed radius Rsh computed from Rsh/R = 0.03.

Table 6.9: Acceptable range for the input parameters for the blade shape
Parameter Minimum allowed Maximum allowed
XP1/r 0.53 1.47
YP1/r −0.24 0.24
XP2/r 0.24 1.2
YP2/r −0.94 −0.24
XP3/r 0.24 1.2
YP3/r 0.24 0.94

The results presented in Fig. 6.34 indicate that the considered objective is consider-
ably influenced by the six free parameters, XP1, YP1, XP2, YP2, XP3 and YP3, and thus
by the blade shape. As a whole, 210 different geometrical settings have been evaluated
by CFD, requesting one and a half month of total computing time on a standard PC.

The optimal configuration (highest point in the right column in Fig. 6.34, all cor-
responding parameters being connected by a thick red line) can now be identified for
λ = 0.7. The optimum point positions and corresponding optimal power coefficient Cp

are listed in Table 6.10.

Table 6.10: Optimal configuration
XP1/r YP1/r XP2/r YP2/r XP3/r YP3/r Optimal power coeff. Cp

0.6909 0.0386 0.3940 −0.6067 0.6389 0.6357 0.298

At λ = 0.7 the optimal point found by the optimization procedure corresponds to
an absolute increase of the power coefficient by 0.116 compared with the conventional
Savonius turbine, respectively by 0.0475 compared with the conventional Savonius rotor
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0.250

Figure 6.34: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal shape are connected with a
thick red line. The power coefficient of the conventional turbine is shown with a gray
circle. The power coefficient of the conventional turbine (semi-cylindrical shape) with
obstacle plate is also shown with a black circle.

(semi-cylindrical blade shape) with obstacle plate. As a whole, this means a relative
increase of the performance (measured by the power output coefficient) by 38.9% for
the optimum shape with obstacle plate, compared to the conventional Savonius design
without obstacle.

Note that this new shape (Fig. 6.35) is only optimum in combination with the em-
ployed obstacle plate. Indeed, the modified shape exploits best the flow redirection in-
duced by the obstacle. As a consequence, the reverse moment is reduced by the shielding
obstacle; simultaneously, the modified shape leads to an increase of the positive moment
of the advancing blade.

6.4.2.2 Off design performance

The performance of the optimal configuration has been finally computed for the full
range of useful λ-values, as shown in Fig. 6.36. This figure demonstrates that the im-
provement of both torque coefficient and power output coefficient is observed throughout
for all values of λ, compared to the classical Savonius turbine. The absolute gain for Cp

and Cm is even higher for lower λ-values. The relative performance increase compared to
the standard Savonius configuration is always higher than 30% in the effective operating
range.
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Figure 6.35: Optimum configuration (right) obtained with the optimization procedure
compared to the classical Savonius turbine (semi-cylindrical shape: left).

6.4.2.3 Self-starting capability

The static torque exerted on the turbine at a fixed angle has been computed by CFD as
a function of this angle θ. Figure 6.37 shows the obtained static torque coefficient Cms

obtained for the optimal configuration compared to the classical turbine with obstacle,
as a function of θ. The experimental results of [38] for a conventional turbine are
also shown for comparison in Fig. 6.37. Compared to the standard Savonius without
obstacle plate, these computations demonstrate that the modified blade shape has a
considerable and positive effect on the static torque coefficient. In the present, optimal
configuration the negative torque region completely disappears, with a minimum value
of Cms higher than 0.2. Apart from that, the evolution as a function of θ is similar to
that obtained with the conventional shape involving an obstacle plate. A self-starting
capability (Cms > 0) is always obtained at any angle in both cases, which is a major
advantage.

6.4.3 Optimal Savonius turbine with two guiding plates

From the summary of the most important modification proposals listed in Chapter 3,
the highest advantage of the Savonius turbine is its robustness. Modifications should not
involve an exceedingly complex or expensive design. Therefore, simple guiding plates
seem to be the best compromise between the increase of efficiency and the increase of
cost and complexity. In the present section we will thus investigate numerically the
effect of two combined guiding plates: a deflector plate is employed to obtain the best
possible flow conditions for the advancing blade, while an obstacle plate shields partly
the returning blade (Fig. 6.38)
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Figure 6.36: Performance of the optimized configuration (red line) compared to the con-
ventional Savonius turbine with and without obstacle plate (blue and black, respectively):
a: torque coefficient; b: power coefficient. The corresponding relative increase compared
to the standard configuration is shown with green line.

6.4.3.1 Optimization

The optimization work will be carried out for obstacle and deflector simultaneously,
with eight free space parameters (X1, Y1, X2, Y2, Xd1, Yd1, Xd2 and Yd2), which together
are sufficient to obtain clearly the position, length and angles of these guiding plates
(obstacle and deflector) as shown in see Fig. 6.38. The parameter spaces considered in
the optimization have been defined as documented in Table 6.11.

The results in Fig. 6.39 indicate that the considered objective is considerably influ-
enced by the eight free parameters, Xd1, Yd1, Xd2, Yd2, X1, Y1, X2 and Y2, and thus by
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Figure 6.37: Static torque coefficient Cms as a function of the fixed rotor angle θ for
the optimal configuration compared to the standard Savonius turbine with and without
obstacle plate. For this last case, the experimental results of [38] are also shown for
comparison.
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Figure 6.38: Schematic description of the geometry of Savonius turbine with frontal
guiding plates.

the positions, angles and lengths of the guiding plates. As a whole, 210 different geo-
metrical settings have been evaluated by CFD, requesting 40 days of total computing
time on a standard PC.

The optimum point positions are listed in Table 6.12. These optimum parameters
lead to the corresponding angles of 92.35◦ and 82.15◦ for obstacle and deflector, respec-
tively and lead also to lengths of the guiding plates Lo/d = 1.094 and Ld/d = 0.782, as
shown in Fig. 6.40.
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Table 6.11: Acceptable range for the input parameters (parameter space)
Parameter Minimum Maximum
Xd1/d −1.04 0
Yd1/d 0.9 1.87
Xd2/d −1.66 0
Yd2/d 1.3 1.87
X1/d −1.66 −0.9
Y1/d −0.78 0
X2/d −1.66 −0.9
Y2/d −1.66 −0.53

X /dd1 Y /dd1 X /dd2

-1.04 0.9 -1.66

0.0 1.87 0.0

1.3

Y /dd2

1.87

0.18

Cp
0.36
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-0.9 0 -0.9
Y /d2

-0.53

-1.66 -1.66-0.78 -1.66

0.182

Optimal conf.

Conventional
Savonius

0.349

Figure 6.39: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal design are connected with a
thick red line. The power coefficient of the conventional turbine is shown with a black
circle.

At λ = 0.7 the optimal points found by the optimization procedure corresponds
to an absolute increase of the power coefficient by 0.167 compared with the conven-
tional Savonius turbine. This means a relative increase of the performance (measured
by the power output coefficient) by 47.85% for the optimum design compared to the
conventional Savonius design.

6.4.3.2 Off design performance

The performance of the optimal configuration has been next computed for the full range
of useful λ-values, as shown in Fig. 6.41. The improvement of both torque coefficient
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Table 6.12: Optimum parameters of guiding plates
Xd1/d -0.066981
Yd1/d 1.509671
Xd2/d -0.17377
Yd2/d 2.28434
X1/d -1.134209
Y1/d -0.286166
X2/d -1.0892
Y2/d -1.37918

L
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opt.

opt.

L
o

Wind

Figure 6.40: Optimum configuration of guiding plates.

and power output coefficient is observed throughout for all values of λ. The absolute
gain for Cp and Cm is even higher for lower λ-values. The relative performance increase
compared to the standard Savonius configuration is always higher than 35% in the
effective operating range.

6.4.3.3 Profiled guiding plates

There is no reason to believe that flat guiding plates are the best choice. Therefore
we started an optimization for non-flat guiding plates. Optimization is repeated for
obstacle and deflector simultaneously, with fourteen free space parameters describing
the optimum shape of both guiding plates. These fourteen parameters (Xd1, Xd2 Yd2,
Xd3, Yd3, Xd4, Yd4, X1 X2, Y2, X3, Y3, X4 and Y4, while Y1 and Yd1 are constant and
taken from the previous section, Table 6.12). Fourteen parameters are sufficient to
define clearly the position and shapes of these guiding plates, as shown in Fig. 6.42.
The parameter space considered in the optimization has been defined as documented in
Table 6.13.

The results are shown in Fig. 6.43. More than 200 different geometrical settings have



CHAPTER 6. SAVONIUS TURBINE: SINGLE-OBJECTIVE OPTIMIZATION 118

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Speed ratio (l)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
o

rq
u

e
c
o

e
ff

ic
ie

n
t

(C
m
)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Speed ratio (l)

0

0.1

0.2

0.3

0.4

0.5

0.6

P
o

w
e
r

c
o

e
ff

ic
ie

n
t

(C
p
)

Optimal conf.
(Savonius withguiding plates)

Conventional Savonius turbine

%Relative increase

0

20

40

60

80

100

R
e

la
ti

v
e

in
c

re
a

s
e

(%
)

(a)

(b)

Figure 6.41: Performance of the optimized configuration (green line) compared to the
conventional Savonius turbine (blue line): a: torque coefficient; b: power coefficient.
The corresponding relative increase compared to the standard configuration is shown
with black line.

been evaluated by CFD, requesting 40 days of total computing time on a standard PC.
However, by comparison with the results of the flat guiding plates (see Section 6.4.3.1),
the difference in power coefficient is only minimal (around ≃ 0.01). Therefore, from
the manufacturing point of view, the slight improvement in the performance does not
compensate the additional complexity, cost and weight of the profiled guiding plates
(Fig. 6.44). As a consequence, only flat guiding plates are considered in the final opti-
mization step.
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Figure 6.42: Schematic description of the geometry of Savonius turbine with profiled
guiding plates.

Table 6.13: Acceptable range for the input parameters (parameter space)
Parameter Minimum Maximum
Deflector
Xd1/d −1.5 0
Xd2/d −1.5 0
Yd2/d 2 2.4
Xd3/d −1.5 0
Yd3/d 1.5 2
Xd4/d −1.5 0
Yd4/d 1.15 1.5
Obstacle
X1/d −1.5 −0.8
X2/d −1.5 −1.15
Y2/d −1.5 −1
X3/d −1.5 −1.15
Y3/d −1 −0.5
X4/d −1.5 −1.15
Y4/d −0.5 0

6.5 Final optimization of Savonius turbine

The optimization steps of increasing complexity described in the previous sections seem
very promising. Having now full confidence in the process, a last step involving all
characteristic geometrical parameters is now attempted.

The effect of blade shape and guiding plates positions will be incorporated simul-
taneously during the optimization. In this aggressive optimization work, we will opti-
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Figure 6.43: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal designs are connected with a
thick red line. The power coefficient of the conventional turbine is shown with a black
circle.

mize sixteen parameters simultaneously; eight parameters for both guiding plates (X1,
Y1, X2, Y2, Xd1, Yd1, Xd2 and Yd2, see Fig. 6.45a), considered flat for the reasons ex-
plained in the previous section. The blade shape is described by five points, two fixed
points (P4 and P5) and three movable points (P1, P2, P3). Every point has two coor-
dinates (XPi, YPi) this means we have another six free parameters (XP1, YP1, XP2, YP2,
XP3 and YP3 Fig. 6.45b). Knowing all 5 points, the full profile is reconstructed us-
ing standard splines. Another two parameters will taken into consideration for internal
spaces of the turbine (a and e see Fig. 6.45c). The objective function considers only one
output of the simulation that should be maximized as far as possible: the output power
coefficient Cp. The employed optimization parameters have been listed in chapter 5.

The parameter space considered in the optimization has been defined as documented
in Table 6.14.

Optimization results are shown in Fig. 6.46. 310 different geometrical settings have
been evaluated by CFD, requesting two and a half months of total computing time on
a standard PC for this ambitious analysis.

The optimal configuration (highest point in the right column in Fig. 6.46, all corre-
sponding parameters being connected by a thick red line) can now readily be identified
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Figure 6.44: Optimum configurations of curved guiding plates.

Table 6.14: Acceptable range for the input parameters (parameter space)
Parameter Minimum Maximum
Blade shape
XP1/r 0.53 1.47
YP1/r −0.24 0.24
XP2/r 0.24 1.2
YP2/r −0.94 −0.24
XP3/r 0.24 1.2
YP3/r 0.24 0.94
Guiding plates
Xd1/d −1.04 0
Yd1/d 0.9 1.87
Xd2/d −1.66 0
Yd2/d 1.3 1.87
X1/d −1.66 −0.9
Y1/d −0.78 0
X2/d −1.66 −0.9
Y2/d −1.66 −0.53
Internal spaces
a/d −0.09 0.18
e/d 0.05 0.28

for λ = 0.7. The optimum parameters are listed in Table 6.15, leading to the correspond-
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Figure 6.45: Schematic description of the geometry and free optimization parameters.

ing angles of 90.41◦ and 94.13◦ for obstacle and deflector, respectively. The lengths of
the guiding plates are Lo/d = 0.7597 and Ld/d = 1.048, as shown in Fig. 6.47.

Note that this new shape (Fig. 6.47) is only optimum in combination with the em-
ployed guiding plates. Indeed, the modified shape exploits best the flow redirection
induced by the guiding plates. As a consequence, the reverse moment is reduced by
the shielding obstacle and the flow redirected by the deflector to the advancing blade;
simultaneously, the modified shape leads to an increase of the positive moment of the
advancing blade.

One instantaneous picture of the flow field (pressure, velocity magnitude and veloc-
ity vectors) is shown as an example in Fig. 6.48 for the finally optimized design and for
the classical semi-cylindrical turbine with guiding plates, demonstrating that the em-
ployed CFD captures all important flow features in the vicinity of the rotor and guiding
plates. This is of course a dynamic process, difficult to illustrate in a static figure. The
pressure difference obtained for the optimal design is much larger, explaining the better
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Figure 6.46: Input parameters of the optimization and power coefficient represented
using parallel coordinates. The parameters of the optimal design are connected with a
thick red line. The power coefficient of the conventional turbine is shown with a black
circle.

Table 6.15: Optimum configurations
Blade shape
XP1/r 0.54822
YP1/r 0.19762
XP2/r 0.34849
YP2/r −0.37885
XP3/r 0.54593
YP3/r 0.770346
Guiding plates
Xd1/d −0.41882
Yd1/d 1.24505
Xd2/d −0.3433
Yd2/d 2.29074
X1/d −1.2828
Y1/d −0.4037
X2/d −1.27654
Y2/d −1.16339
Internal spaces
a/d −0.00635
e/d 0.18286



CHAPTER 6. SAVONIUS TURBINE: SINGLE-OBJECTIVE OPTIMIZATION 124

opt.L
d

Wind

L
o

opt.

Figure 6.47: Optimum design of Savonius turbine with guiding plates.

performance.

6.5.1 Off design performance

It is now important to check how this gain would change as a function of λ, since such a
turbine must be able to work also for off-design conditions. Therefore, the performance
of the optimal configuration has been finally computed for the full range of useful λ-
values, as shown in Fig. 6.49. This figure demonstrates that the improvement of both
torque coefficient and power output coefficient is observed throughout for all values of
λ, compared to the conventional Savonius turbine. The absolute gain for Cp and Cm

is even higher for lower λ-values. The relative performance increase compared to the
standard Savonius configuration is always higher than 40% in the effective operating
range.

6.5.2 Self-starting capability

To investigate the self-starting capability of the system, the static torque exerted on
a turbine at a fixed angle has been computed by CFD as a function of this angle θ.
Figure 6.50 shows the obtained static torque coefficient Cms obtained for the optimal
configuration compared to the classical turbine, as a function of θ. The experimental
results of [38] for a conventional turbine are again shown for comparison. Compared
to the classical Savonius, these computations demonstrate that the new design has a
considerable and positive effect on the static torque coefficient. For the optimal con-
figuration the negative torque region completely disappears, with a minimum value of
Cms of about 0.2. A self-starting capability (Cms > 0) is always obtained at any angle
in both cases, which is an essential property.
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Pressure distribution

Velocity vector distribution

Velocity  distribution
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Figure 6.48: Instantaneous flow fields around optimum configurations (zoom) at the de-
sign point (λ = 0.7), static pressure (Pa), velocity and velocity vector magnitudes (m/s);
a) classical Savonius with optimal guiding plates, b) optimal Savonius with optimal guid-
ing plates. Note that the color scales are identical to facilitate comparisons.
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Figure 6.49: Performance of the optimized configuration (red line) compared to the
conventional Savonius turbine (black line): a: torque coefficient; b: power coefficient.
The corresponding relative increase compared to the classical configuration is shown with
blue line.
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Figure 6.50: Static torque coefficient Cms as a function of the fixed rotor angle θ for the
optimal configuration compared to the conventional Savonius turbine. For this last case,
the experimental results of [38] are also shown for comparison.

6.6 Preliminary experimental tests in wind-tunnel

It is now important to check the CFD results experimentally. Therefore, we have con-
structed two small models for Savonius turbine, one model for the conventional two-
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blade Savonius and an other for the optimized shape with shielding obstacle. The main
objective of this work is to check that the optimized design is superior to the original
design.

Installation of Savonius turbine

at the test section

Figure 6.51: Model installation with open wind tunnel.

The wind tunnel operates with open or closed test section. The maximum flow rate
for open test section is 40 m/s (Fig. 6.51). When closed, velocity up to nearly 60 m/s
is possible. The setting of the load is carried out by a brake handle, fine-tuned by a
screw. To get the torque / speed curve, the signal of the torque sensor was transmitted
to a computer, which also is used to control the wind speed of the wind tunnel. The
software used for both tasks is LabView.

Five test series were run for each rotor design. Before each measurement the off
set of the torque sensor was set to zero. The model has been submitted to increasing
wind speed, self-starting, until a nominal wind speed of 20 m/s was achieved. Once
the rotor speed reaches a constant value, the load was progressively increased. Then,
output torque and rotation speed of the rotor have been recorded at every load to get
performance curves for the two designs.

First results (Fig. 6.52) indeed show increased power coefficient and torque coefficient
for the optimized design.

Technical difficulties (limited accuracy of the torque meter, vibrations of the set-
up, rapid wear of the employed brake) have prevented up to now a more thorough
comparison.

6.7 Conclusions on Savonius turbine

The conventional Savonius turbine is a promising concept for small-scale wind-energy
systems, but suffers from a poor efficiency. Therefore, the major objective of the present
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Figure 6.52: Selected experimental results [64] a) conventional Savonius turbine; b)
Optimized design.

study was to identify an optimal design, leading to higher values of the power coefficient
and of the static torque, thus obtaining a higher efficiency and better self-starting capa-
bility. For this purpose, many designs have been successively introduced and optimized
in this chapter.

• Three-blade Savonius turbine

After some preliminary steps, all the geometrical parameters are simultaneously
taken into consideration during optimization. Therefore, the blade shape, position
and angles of the guiding plates and gap width have been optimized in a fully au-
tomatic manner, in order to obtain the best possible performance, as measured by
the power coefficient Cp. The optimization relies on evolutionary algorithms, while
all geometrical configurations are evaluated by CFD. This optimization procedure
is able to identify considerably better configurations than the conventional three-
blade Savonius turbine. The best one leads in particular to a relative increase of
the power output coefficient by 57% at λ = 0.7. A performance gain of at least
25% is found for the full operating range of the conventional design. At the same
time, the operating range is extended up to λ = 1.5. A peak power coefficient of
Cp ≃ 0.39 is obtained for λ = 0.9. This positive effect is also observed for the
torque coefficient. The optimal design still ensures self-starting capability for all
rotating angles.
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• Two-stage Savonius turbine

Figure 6.53: Successive optimization steps for the two-blade Savonius turbine.

Here again, preliminary steps have been followed by an optimization involving all
important parameters. This optimization procedure is able to identify a tremen-
dously better configuration than the conventional Savonius turbine, leading in
particular to a relative increase of the power output coefficient by 58% at λ = 0.7.
A performance gain of at least 35% is found for the full conventional operating
range (0.3 ≤ λ ≤ 1.4). The optimal design shows a much larger range and still
delivers power at λ = 1.7. This positive effect is also observed for the torque
coefficient. The optimal design furthermore leads to self-starting capability at
any angle, at the difference of the conventional Savonius. Therefore, this opti-
mal configuration appears indeed to be very promising for low-power wind energy
generation in urban areas.

The successive steps of the optimization are documented in Fig. 6.53. At λ = 0.7, the
power coefficient has been increased from Cp ≃ 0.18 to Cp ≃ 0.44 thanks to optimization.
For the best design, a peak Cp of 0.48 is obtained for λ = 0.9, approaching Betz’ limit.

As a whole, and supporting previous findings from the literature, the two-blade
design appears superior to the three-blade configuration in terms of low weight, cost,
as well as efficiency and operating range. Self-stating capabilities are similar, with only
a very slight advantage for the three-blade design. Therefore, the optimized two-blade
configuration should indeed be very useful to supplement wind energy conversion.



Chapter 7

Wells turbine: Concurrent
optimization

7.1 Introduction

Wells turbine is a self-rectifying air flow turbine employed to convert the pneumatic
power of the air stream induced by an Oscillating Water Column into mechanical energy.
Standard Wells turbines have several well-known disadvantages: a very low tangential
force, leading to a low power output from the turbine; a high undesired axial force;
usually a low aerodynamic efficiency and a limited range of operation due to stall. All the
theoretical and experimental investigations listed in the section 3.2.3 only considered the
performance of Wells turbines using standard symmetric airfoils of type NACA 00XX.
As an illustration, Fig. 7.1 shows NACA 0015 and NACA 0021. Most investigations
pertaining to Wells turbines have considered NACA 0012, NACA 0015, NACA 0018
and NACA 0021 (e.g., [73, 81, 91, 93]). The formula for the shape of a NACA 00XX
foil, with “XX” being replaced by the percentage of maximum thickness to chord length
c, is

y =
ct

0.2

[

0.2969

√

x

c
− 0.126

(x

c

)

− 0.3517
(x

c

)2

+ 0.2843
(x

c

)3

− 0.1015
(x

c

)4
]

(7.1)

where x is the position along the chord from 0 to c, y is the half-thickness at a given
value of x (centerline to external surface), and t is the maximum half-thickness as a
fraction of the chord (so that 100 t gives a half of the last two digits in the NACA
4-digit denomination). Both monoplane and two-plane Wells turbines are considered
in the literature and show different advantage and drawbacks. As a consequence, it is
interesting to optimize both designs separately, starting with the simple configuration.

7.2 Optimal monoplane Wells turbine

Reference investigations indicated that NACA 0021 airfoil profiles (21% thickness) lead
to the best performance for conventional monoplane Wells turbines [93]. There is nev-

130
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Figure 7.1: Standard airfoils NACA 0015 and NACA 0021.

ertheless no proof that NACA profiles, as defined by Eq. 7.1, automatically lead to the
best possible performance. An alternative geometry might be much better, in particular
for such very specific applications. As a consequence, the present section now concen-
trates on the optimization of a symmetric airfoil shape, leading to the best possible
performance of a Wells turbine (i.e., maximal tangential force coefficient and efficiency).
Due to the complexity of the underlying optimization procedure, this first study consid-
ers only monoplane Wells turbines (the original design) and a constant turbine solidity
(s = 0.67, as proposed by [110]), while taking into account the mutual interaction effect
between the blades.

Rotor hub
on shaft

Forces resolved in
direction of rotation

Rotation

Sym. Airfoil
Blade

FA

FT

Chord (c)

sp
an

(b
)

rt

rh

FA
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flow

Figure 7.2: Axial and tangential forces acting on a Wells turbine.

In the present section, the free design variables considered for the optimization will
be the shape of the blade using a constant solidity (s = zc/[πrt(1 + h)]) where h is the
ratio between hub radius rh and tip radius rt (Fig. 7.2). The objective function contains
simultaneously two outputs of the simulation, that should both be maximized as far
as possible: the tangential force coefficient CT ; and the turbine efficiency η, which is
inversely proportional to the axial force coefficient, and is defined for a negligible density
change as:

η =
FT ut

∆p0 Q
(7.2)
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with Q the volumetric flow-rate through the turbine. For configurations involving con-
current objectives, Evolutionary Algorithms are particulary robust and have therefore
been used in the present study. The employed optimization parameters are listed in
Table 5.1.

7.2.1 Optimization of airfoil shape

After having checked the accuracy of an individual evaluation relying on CFD as de-
scribed in section 5.3.2.3, it is now possible to start the optimization procedure. As
explained previously, only symmetric blades are considered in what follows, based on
the profile NACA 0021 for a first guess.

To illustrate the optimization, a fixed angle of incidence α = 8◦ (flow coefficient
φ = 0.14) is considered. Twenty-two free parameters are varied simultaneously by the
OPAL optimizer, explaining the difficulty of the process. In the present case the outer
boundary of the airfoil (or airfoil shape) is constructed with thirteen points; two fixed
points (P1 and P13) and eleven variable points (P2, P3, P4, P5, P6, P7, P8, P9, P10,
P11 and P12) as shown in Fig. 7.3. Knowing the exact position of these 13 points,
the full profile is finally reconstructed for one face of the airfoil using standard splines
(Nonuniform rational B-splines, NURBS). The order of a NURBS curve defines the
number of nearby control points that influence any given point on the curve. The curve
is represented mathematically by a polynomial of degree one less than the order of the
curve; this means that the spline order is 13 in our case. Then, the obtained face is
mirrored to obtain the full symmetric airfoil. Every point P2 to P12 has two coordinates
(Xpi, Ypi), where i = 2 . . . 12. The parameter space considered in the optimization has
been defined as documented in Table 7.1 and illustrated in Fig. 7.3. The corresponding
parameter spaces have been selected to cover all usual NACA 00XX, while avoiding
collisions between reference points and keeping acceptable geometries. The reference
point is point P1(0,0), origin of the cartesian coordinate system.

Figure 7.3: Allowed parameter space for the moving points P2 to P12.
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Table 7.1: Parameter space for the moving points P2 to P12 for monoplane Wells turbine.
Point Parameter Minimum Maximum Point Parameter Minimum Maximum
P2 XP2/c 0.01 0.015 P8 XP8/c 0.45 0.55

YP2/c 0.023 0.043 YP8/c 0.043 0.143
P3 XP3/c 0.015 0.035 P9 XP9/c 0.55 0.65

YP3/c 0.025 0.066 YP9/c 0.039 0.11
P4 XP4/c 0.05 0.1 P10 XP10/c 0.65 0.75

YP4/c 0.034 0.11 YP10/c 0.034 0.094
P5 XP5/c 0.1 0.2 P11 XP11/c 0.75 0.85

YP5/c 0.043 0.143 YP11/c 0.026 0.066
P6 XP6/c 0.2 0.3 P12 XP12/c 0.85 0.95

YP6/c 0.054 0.154 YP12/c 0.015 0.035
P7 XP7/c 0.35 0.45

YP7/c 0.052 0.152

As a whole, the optimization process thus involves twenty two parameters (or degrees
of freedom) Xpi and Ypi with i = 2 . . . 12 and two objectives (efficiency and tangential
force coefficient) that should be simultaneously maximized in a concurrent manner.

The results presented in Figs. 7.4(a) and 7.4(b) indicate that the two considered
objectives are indeed considerably influenced by the airfoil shape. Figure 7.4(a) shows
all evaluation results. As a whole, 615 different configurations have been finally tested by
the optimizer, leading to 15 days of total computing time on a standard PC. In Fig. 7.4(a)
the performance of the standard airfoil NACA 0021 (tangential force coefficient and
efficiency (CT , η) = (0.1163; 0.5109)) is also plotted for comparison. Globally, the two
considered objectives are not fully concurrent but increase simultaneously, which is not a
complete surprise since the tangential force appears on the numerator in Eq. 7.2 defining
the efficiency.

When considering now only the best configurations of Fig. 7.4(a), located in the
upper-right corner (marked by a red square in dashed line), a more complex picture ap-
pears, as documented in Fig. 7.4(b). For the last percent of performance improvement,
the two objectives (tangential force coefficient and efficiency) become indeed slightly
concurrent and cannot be optimized simultaneously. Two optimal conditions are fi-
nally found: Point A, (CTA

, ηA) =(0.1325;0.5187) (highest tangential force); and Point
B,(CTB

, ηB) =(0.1281;0.5197) (highest efficiency). By analyzing in detail the resulting
geometries and considering daily engineering purposes, the increase in tangential force
coefficient (higher power output) appears to be more significant and valuable than the
very slightly increased efficiency. Therefore, the most interesting point is globally Point
A with (CTA

, ηA) ≈ (0.1325; 0.519).
The results of the optimization process can be usefully visualized in a different man-

ner using parallel coordinates (Fig. 7.5). Here again, the performance of the standard
airfoil NACA 0021 is also plotted for comparison, close to the middle of the parameter
space (thick dashed blue line). Figures 7.5(a) and 7.5(b) indicate by parallel coordinates
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Figure 7.4: Objectives of the optimization; a) for all computed configurations b) for the
best configurations (i.e., zoom on the upper-right part (red square) of a).

the X and Y coordinates of the eleven moving points (P2 . . . P12), together with the two
objectives. This figure demonstrates that very different shapes have been evaluated on
the way toward the optimal solution. The optimum configuration (Point A) is indicated
by a thick red line.

It can be seen that the optimal airfoil shape leads only to a slightly higher efficiency
(+0.78%) compared to the standard airfoil (NACA 0021). However, the tangential force
coefficient CT is at the same time increased by 0.0162. This means a relative increase
of 12.2% for the present flow coefficient, equal to 0.14.

The geometrical parameters corresponding to the optimal shape are listed in Ta-
ble 7.2. The resulting shape of the optimal airfoil in comparison with the standard
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Figure 7.5: Input parameters of the optimization and objectives represented using parallel
coordinates. The parameters of the optimal shape are connected with a thick red line. The
standard design (NACA 0021) is shown with a thick dashed blue line; a) X-coordinates
of the variable points (P2 . . . P12); b) Y-coordinates of the variable points (P2 . . . P12).

NACA 0021 is shown in Fig. 7.6. Knowing all points P1 to P13, the full profile is again
reconstructed using standard splines of order 13. Nevertheless, a simple polynomial de-
scription of this profile would be helpful for practical purposes. An excellent fit (average
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Table 7.2: Optimum shape parameters for monoplane Wells turbine
Point Parameter Value Point Parameter Value
P2 XP2/c 0.0124947 P8 XP8/c 0.469922

YP2/c 0.033155 YP8/c 0.0666932
P3 XP3/c 0.0269924 P9 XP9/c 0.56625

YP3/c 0.045006 YP9/c 0.0493063
P4 XP4/c 0.0678583 P10 XP10/c 0.723109

YP4/c 0.0608499 YP10/c 0.037401
P5 XP5/c 0.155326 P11 XP11/c 0.798623

YP5/c 0.078402 YP11/c 0.0315091
P6 XP6/c 0.248998 P12 XP12/c 0.8891079

YP6/c 0.0877814 YP12/c 0.0214618
P7 XP7/c 0.405838

YP7/c 0.0751153

residual error of 0.38%) has been obtained with following polynomial description:

Y

c
= A

(

X

c

)5

+ B

(

X

c

)4

+ D

(

X

c

)3

+ E

(

X

c

)2

+ H

(

X

c

)

+ K (7.3)

with the constants A to H listed in Table 7.3. Furthermore, this polynomial removes
any possible oscillations of the profile shape induced by the spline description.

Table 7.3: Polynomial coefficients of optimal airfoil shape (best fit)
A B D E H K

1.6958588 −5.4277515 6.560073 −3.737973 0.898334 0.01409362
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0.08c

0.04c

0

0 0.2c 0.4c 0.6c 0.8c c

Optimum shape

Polynomial fit of optimum shape

NACA 0021

Figure 7.6: Comparison between the original profile NACA 0021 (solid line), the optimal
airfoil shape described by splines (black squares showing the position of the control points)
and the corresponding polynomial fit (Eq. 7.3, dashed line).
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7.2.2 Off design performance

It is important to check how the gain induced by the new airfoil shape would change
as a function of the flow coefficient φ, since such a turbine must be able to work also
for off-design conditions. Therefore, the performance of the optimal shape has been
finally computed for the full range of useful φ-values, as shown in Fig. 7.7. These results
demonstrate that the improvement of tangential force coefficient is observed throughout
for all values of φ, compared to the conventional turbine based on standard airfoils
NACA 0021. The absolute gain for CT increases even slightly with φ. The relative
increase is higher than 8.8% throughout the useful operating range, with an average
gain of 11.3% (Fig. 7.7a). At the same time the efficiency of the optimized shape
is always higher than for the conventional design, the difference being lower for large
flow coefficients. The corresponding gain varies between 0.2% and up to 3.2%, with
an average increase of 1% (Fig. 7.7b). No significant difference is observed in Fig. 7.7
between the performance of the exact profile described by splines and the associated
polynomial fit (Eq. 7.3).

7.3 Optimal two-stage Wells turbine with non-

symmetric airfoils

In this section we investigate extensively the potential of non-symmetric airfoil blades
to improve the tangential force and efficiency associated to a two-stage Wells turbine.
Since these two stages are mirrored, the system stays globally symmetric, as requested.
Non-symmetric blades could perhaps allow to increase considerably the power output
from the turbine and the global efficiency of the system.

All published results concerning the flow field around a Wells turbine rotor indicate
that a considerable amount of exit kinetic energy is lost with the swirl component
of the flow velocity, at least in the absence of guide vanes (see Section 3.2.3). This
kinetic energy can be partly recovered by using a second stage of blades. Two-stage
Wells turbine have been already investigated experimentally and theoretically [21, 61,
66, 80, 107], but considering only symmetric airfoils. The present work concentrates
on a modified, two-stage Wells turbine constructed from non-symmetric airfoils based
initially on NACA 2421. The two stages are mirrored to keep the global symmetry of
the turbine as shown in Fig. 7.8.

The performance of the two-stage rotor is modified by mutual aerodynamic interfer-
ences due to the proximity of the two planes. The upstream rotor affects the performance
of the downstream rotor by producing a deflection of the air stream. Therefore, the gap
between the two rotors is an important parameter to control performance. Using nu-
merical optimization, the solidity and the shape of the non-symmetric airfoils will be
optimized in this section.
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Figure 7.7: Performance of the spline optimal configuration (red line), fitting optimal
one (black cross) compared to the conventional Wells turbine relying on the NACA 0021
profile (green line). The corresponding relative increase is shown with blue line; a)
tangential force coefficient; b) efficiency.

7.3.1 Optimal airfoil shape without mutual interactions

In order to assess the potential of non-symmetric airfoils, a first optimization is carried
out without mutual interactions between the blades. To illustrate the process, a fixed
angle of incidence α = 12◦ (flow coefficient φ = 0.21) is considered. Two degrees of
freedom are left to the OPAL optimizer: the thickness factors y1 for the upper side of
the airfoil and y2 for the lower side (see Fig. 7.8). These two factors are constrained
by the user between 0.2 and 1.6, so that considerable variations are still allowed (both
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Figure 7.8: Two-stage Wells turbine based on non-symmetric airfoils

for increasing and decreasing thickness). All blades of both rotors are always modified
simultaneously and the two rotors are still mirrored to preserve the global symmetry of
the turbine. As a whole, the optimization process thus involves only two parameters
y1 and y2 and two objectives (efficiency and tangential force coefficient) that should be
simultaneously maximized in a concurrent manner.

The optimal point found in this first study, corresponds to the scaling factors y1 =
1.22966 (23% thickening) for the upper face and y2 = 1.1795 (18% thickening) for the
lower face. The resulting shape of the optimal airfoil in comparison with the standard
one is shown in Fig. 7.9.

Figure 7.9: Comparison between the optimal shape of the airfoil and the original profile
NACA 2421

When compared with the baseline case (NACA 2421) the optimal point corresponds
simultaneously to a relative improvement of the efficiency by 2.1% and of the tangential
force coefficient by almost 6%, demonstrating the interest of non-symmetric airfoils.
However, mutual interactions could modify these results and must now be taken into
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account.

7.3.2 Optimal airfoil shape with mutual interactions

7.3.2.1 Mutual interactions effect

The present section describes the optimization of the airfoil shape considering mutual
interactions between the blades. A Wells turbine consisting of two mirrored airfoil stages
is considered again. Mirroring is needed to keep the global symmetry of the system,
as requested when using power from an Oscillating Water Column. But, in order to
increase system efficiency, non-symmetric blades are considered. The influence of the
mutual interactions between the blades building one plane (perpendicular to the main
flow direction) are considered extensively in what follows.

The results of the previous section indicated that non-symmetric airfoils are better
than symmetric ones. However, these results have been obtained neglecting any inter-
actions between the blades. The validity of these first results is therefore questionable,
since the performance of the two-stage Wells turbine is affected by mutual aerodynamic
interaction between the blades in a single plane. This aerodynamic interaction results
from the wakes produced by the preceeding blades and is a function of the angle of
incidence of the air flow as well as of the solidity of the blades.

In the past, the influence of the mutual interaction between blades has been studied
using wind-tunnel measurements or simple theoretical correlations relying on potential
flow analysis and singularity theory for flat plate aerofoils in cascade [86]. According
to such studies, the correlation factor m describing the ratio between the lift coefficient
considering the interaction and the coefficient of an isolated flat plate is given by:

m =

(

2B

πc

)

tan
( πc

2B

)

(7.4)

where c is the blade chord length and B is the pitch between the blades.
In this section, the interaction effect of the modified Wells turbine is investigated

numerically in a systematic manner. The axial and tangential force coefficients normal-
ized by the corresponding coefficients obtained for an isolated blade (single airfoil) have
been computed for a constant gap ratio G = 1 (Fig. 7.10). The results demonstrate that
both the normalized tangential and axial force coefficients increase exponentially with
the solidity s due to the growing influence of wake effects. Increasing the tangential
force is a positive aspect, but an increasing axial force is of course a major drawback.

The efficiency of the modified Wells turbine decreases very rapidly when increasing
the solidity due to high losses, as shown in Fig. 7.11b. As the same time, the tangential
force coefficient increases with the solidity (Fig. 7.11a).

This decrease in efficiency can be explained by the fact that the losses near the
turbine hub are considerably higher than near the turbine tip, because the flow passage
at the tip is much wider than the flow passage near the hub for a standard rectangular
blade shape as shown in Fig. 7.12a. Therefore, we suggest to replace the rectangular
shape of the blades by a trapezoidal shape as shown in Fig. 7.12b. This trapezoidal
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Figure 7.10: Impact of mutual interaction between blades in the same plane on a) tan-
gential force (left) and b) axial force (right), as a function of the solidity.
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Figure 7.11: Impact of solidity on the two-stage Wells turbine performance considering
the tangential force coefficient (a: left figure) and the turbine efficiency (b: right figure).

shape leads to the same passage at both hub and tip, and consequently such blades
should give globally a better efficiency along the blade span (iso-performance blade).
The best conditions should be obtained when the ratio between hub radius and tip
radius equals the ratio between hub chord and tip chord:

(

Rh

Rt

)

=

(

ch

ct

)

(7.5)

Checking the performance of this modified design would unfortunately require three-
dimensional CFD which are beyond reach when coupled with an optimizer. Therefore,
this issue is left for future studies.
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Figure 7.12: Projected shape of the turbine; a) Conventional turbine b) Suggestion of
iso-performance turbine.

7.3.2.2 Optimization

Starting from NACA 2421, the present section concentrates on the optimization of a
non-symmetric airfoil shape, leading to the best possible performance (as usual, maxi-
mal tangential force coefficient and efficiency) of a two-stage Wells turbine. A constant
turbine solidity (s = 0.67, as proposed by [110]) and a constant gap between the rotors
G = d/c = 1.0 are again considered, while taking into account the mutual interac-
tion effect between the blades (see previous section). In the present case the outer
boundary of the airfoil is constructed with thirty four points; two fixed points (P0

and P17) and thirty two variable points (sixteen variable points for every face of the
airfoil, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15 and P16 for upper face,
P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32 and P33 for lower face)
as shown in Fig. 7.13. Knowing the exact position of these 34 points, the full profile is
reconstructed for each face of the airfoil using standard splines (NURBS). The param-
eter space considered in the optimization has been defined as documented in Table 7.4
and illustrated in Fig. 7.13. The corresponding parameter spaces have been selected
to cover all usual NACA airfoils, while avoiding collisions between reference points and
keeping acceptable geometries. The reference point is point P0(0,0), origin of the carte-
sian coordinate system.
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Table 7.4: Parameter space for the moving points P1 to P16 for upper face and P18 to
P33 for lower face
Point Parameter Minimum Maximum Point Parameter Minimum Maximum
P1 XP1/c 0.006 0.018 P18 XP18/c 0.006 0.018

YP1/c 0.03 0.06 YP18/c -0.03 -0.016
P2 XP2/c 0.018 0.032 P19 XP19/c 0.018 0.032

YP2/c 0.03 0.07 YP19/c -0.04 -0.025
P3 XP3/c 0.032 0.06 P20 XP20/c 0.032 0.06

YP3/c 0.05 0.07 YP20/c -0.055 -0.035
P4 XP4/c 0.06 0.08 P21 XP21/c 0.06 0.08

YP4/c 0.07 0.13 YP21/c -0.06 -0.045
P5 XP5/c 0.08 0.13 P22 XP22/c 0.08 0.13

YP5/c 0.08 0.14 YP22/c -0.076 -0.055
P6 XP6/c 0.13 0.17 P23 XP23/c 0.13 0.17

YP6/c 0.1 0.15 YP23/c -0.08 -0.06
P7 XP7/c 0.17 0.23 P24 XP24/c 0.17 0.23

YP7/c 0.11 0.16 YP24/c -0.08 -0.06
P8 XP8/c 0.23 0.27 P25 XP25/c 0.23 0.27

YP8/c 0.11 0.17 YP25/c -0.08 -0.06
P9 XP9/c 0.27 0.35 P26 XP26/c 0.27 0.35

YP9/c 0.12 0.18 YP26/c -0.075 -0.06
P10 XP10/c 0.35 0.45 P27 XP27/c 0.35 0.45

YP10/c 0.12 0.17 YP27/c -0.07 -0.055
P11 XP11/c 0.45 0.55 P28 XP28/c 0.45 0.55

YP11/c 0.11 0.16 YP28/c -0.06 -0.045
P12 XP12/c 0.55 0.65 P29 XP29/c 0.55 0.65

YP12/c 0.1 0.15 YP29/c -0.055 -0.035
P13 XP13/c 0.65 0.75 P30 XP30/c 0.65 0.75

YP13/c 0.08 0.13 YP30/c -0.04 -0.025
P14 XP14/c 0.75 0.85 P31 XP31/c 0.75 0.85

YP14/c 0.06 0.09 YP31/c -0.03 -0.016
P15 XP15/c 0.85 0.93 P32 XP32/c 0.85 0.93

YP15/c 0.03 0.06 YP32/c -0.014 -0.01
P16 XP16/c 0.93 0.98 P33 XP33/c 0.93 0.98

YP16/c 0.01 0.04 YP33/c -0.009 -0.006

The results are presented in Fig. 7.14. As a whole, 615 different configurations have
been tested by the optimizer, leading to 18 days of total computing time on a stan-
dard PC. In Fig. 7.14a the performance of the standard airfoil NACA 2421 (tangential
force coefficient and efficiency (CT , η )=(0.2074;0.4453)) is also plotted for comparison.
Globally, the two considered objectives are not fully concurrent but increase simulta-
neously. When considering now only the best configurations of Fig. 7.14, located in
the upper-right corner (marked by a red square), a more complex picture appears, as
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Figure 7.13: Allowed parameter space for the moving points.

in previous cases, with slightly concurrent objectives. Two optimal conditions are fi-
nally found: Point A, (CT , η)= (0.2247;0.4482) (highest tangential force); and Point B,
(CT , η)= (0.2212;0.4506) (highest efficiency). As usual, the increase in tangential force
coefficient (higher power output) appears to be more significant and valuable than the
very slightly increased efficiency.

Therefore, the most interesting point is globally Point A with (CT , η)≃(0.225;0.448).
The results of the optimization process can be also visualized using parallel coordinates
(Fig. 7.15). Figure 7.15a indicates by parallel coordinates the X and Y coordinates of
the eleven moving points of upper face (P1 . . . P16), together with the two objectives,
while Fig. 7.15b shows by parallel coordinates the X and Y coordinates of the eleven
moving points of lower face (P18 . . . P33), with the same two objectives.

This figure demonstrates that very different shapes have been evaluated on the way
toward the optimal solution. The optimum configuration (Point A) is indicated by a
thick red line. It can be seen that the optimal airfoil shape leads only to a slightly
higher efficiency (+0.5%) compared to the standard airfoil (NACA 2421). However,
the tangential force coefficient CT is at the same time increased by 0.017, i.e., a relative
increase of more than 7.7% for the present flow coefficient, equal to 0.14. The geometrical
parameters corresponding to the optimal shape are listed in Table 7.5.

The resulting shape of the optimal airfoil in comparison with the standard NACA
2421 is shown in Fig. 7.16. Knowing all points P0 to P33, the full profile is again



CHAPTER 7. WELLS TURBINE: CONCURRENT OPTIMIZATION 145

0 0.05 0.1 0.15 0.2 0.25

Tangential force coefficient

0

0.1

0.2

0.3

0.4

0.5

E
ff

ic
ie

n
c
y

Optimization output

NACA 2421

0.21 0.213 0.216 0.219 0.222 0.225

Tangential force coefficient

0.43

0.435

0.44

0.445

0.45

0.455

E
ff

ic
ie

n
c
y

Optimization output

Max. tangential force coeff.

Max. Efficiency

(a)

(b)

Point (B)
Point (A)
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reconstructed using standard splines. Nevertheless, a simple polynomial description of
these profiles is helpful for practical purposes. An excellent fit (average residual error
of 0.3%) has been obtained using Eq. 7.3

with the constants A to H listed in Table 7.6 for the upper face and the lower face.

7.3.2.3 Off design performance

The results shown in Fig. 7.17 demonstrate that the improvement of tangential force
coefficient is observed throughout for all values of φ, compared to the non-symmetric
turbine based on standard airfoils NACA 2421, with an average increase of 5.5%. At
the same time the efficiency of the optimized shape is slightly higher than the standard
airfoil design. The corresponding gain varies between 0.2% and 0.7%, with an average
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Table 7.5: Optimum shape parameters for two-stage Wells turbine with non-symmetric
airfoils
Point Parameter Value Point Parameter Value Point Parameter Value
P1 XP1/c 0.01129 P12 XP12/c 0.5748 P24 XP24/c 0.18961

YP1/c 0.0405 YP12/c 0.125 YP24/c -0.0653
P2 XP2/c 0.02179 P13 XP13/c 0.68696 P25 XP25/c 0.2485

YP2/c 0.0527 YP13/c 0.09814 YP25/c -0.06995
P3 XP3/c 0.0377 P14 XP14/c 0.7556 P26 XP26/c 0.3229

YP3/c 0.06611 YP14/c 0.07551 YP26/c -0.06117
P4 XP4/c 0.06938 P15 XP15/c 0.8759 P27 XP27/c 0.3846

YP4/c 0.0928 YP15/c 0.0386 YP27/c -0.0602
P5 XP5/c 0.1169 P16 XP16/c 0.9365 P28 XP28/c 0.5078

YP5/c 0.1229 YP16/c 0.0149 YP28/c -0.0584
P6 XP6/c 0.1372 P18 XP18/c 0.0096 P29 XP29/c 0.559

YP6/c 0.1302 YP18/c -0.02274 YP29/c -0.0464
P7 XP7/c 0.1795 P19 XP19/c 0.0196 P30 XP30/c 0.6882

YP7/c 0.1345 YP19/c -0.03159 YP30/c -0.0327
P8 XP8/c 0.247 P20 XP20/c 0.0577 P31 XP31/c 0.8019

YP8/c 0.1351 YP20/c -0.0453 YP31/c -0.0219
P9 XP9/c 0.2783 P21 XP21/c 0.0689 P32 XP32/c 0.862

YP9/c 0.1417 YP21/c -0.0514 YP32/c -0.0121
P10 XP10/c 0.3936 P22 XP22/c 0.1069 P33 XP33/c 0.9508

YP10/c 0.1353 YP22/c -0.0633 YP33/c -0.0073
P11 XP11/c 0.5205 P23 XP23/c 0.1478

YP11/c 0.1334 YP23/c -0.0709

Table 7.6: Polynomial coefficients of optimal airfoil shape (best fit) for two-stage non-
symmetric airfoil Wells turbine considering mutual interaction between the blades (up-
per and lower face)

Face A B D E H
Upper face −1.31571 3.19739 −2.9773 1.06296 0.02429
Lower face 0.88881 −2.18127 1.8927 −0.58341 −0.014714

increase of 0.3% (Fig. 7.17b).
This optimization study considers the largest number of free optimization parameters

(64) ever considered in our group. By analyzing the results we observed that the resulting
Pareto frontier was relatively irregular and poorly populated.

The presented results should therefore be considered with caution. It is probably
better to keep a lower number of free parameters in association with concurrent opti-
mization problems. For this reason, the next section considers only symmetric profiles,
that might be described with much fewer control points while keeping a larger parameter
space.
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Figure 7.17: Performance of the optimal configuration (red line), compared to the non-
symmetric two-stage Wells turbine relying on the NACA 2421 profile (black line). The
corresponding relative increase is shown with blue line; a) tangential force coefficient; b)
efficiency.

7.4 Optimal two-stage Wells turbine with symmet-

ric airfoils

The present section finally concentrates on the optimization of a symmetric airfoil shape,
leading to the best possible performance (i.e., maximal tangential force coefficient and
efficiency) for a two-stage Wells turbine. A constant turbine solidity (s = 0.67)) and a
constant gap between the rotors G = d/c = 1.0 (Fig. 7.18) are again considered, while
taking into account the mutual interaction effect between the blades.
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Figure 7.18: Two-stage Wells turbine with symmetric airfoils NACA 0021.

7.4.1 Optimization of airfoil shape

The blade shape is now constructed with thirteen points, two fixed points (P1 and P13)
and eleven variable points (P2, P3, P4, P5, P6, P7, P8, P9, P10, P11 and P12) as shown in
Fig. 7.19. Knowing the exact position of these 13 points, the full profile is finally re-
constructed for one face of the airfoil using standard splines. Figure 7.20a shows all

Figure 7.19: Allowed parameter space for the moving points.

evaluation results. As a whole, 615 different configurations have been finally tested
by the optimizer, leading to 17 days of total computing time on a standard PC. In
Fig. 7.20a the performance of the standard airfoil NACA 0021 (tangential force co-
efficient and efficiency (CT , η)=(0.2104;0.4351)) is also plotted for comparison. Glob-
ally, the two considered objectives are not fully concurrent but increase simultaneously.
When considering now only the best configurations of Fig. 7.20, located in the upper-
right corner (marked by a red circle), a more complex picture appears, as documented in
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Figure 7.20b. For the last percent of performance improvement, the two objectives (tan-
gential force coefficient and efficiency) become again slightly concurrent and cannot be
optimized simultaneously. Two optimal conditions are finally found: Point A, (CT , η)=
(0.2489;0.4430) (highest tangential force); and Point B, (CT , η)= (0.2384;0.4450) (high-
est efficiency). Here again, the increase in tangential force coefficient (higher power
output) appears to be more significant and valuable than the very slightly increased
efficiency.
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Figure 7.20: Objectives of the optimization: a) for all computed configurations; b) for
the best configurations, i.e., zoom on the upper-right part (red circle) of (a).

Therefore, the most interesting point is Point A with (CT , η)≈(0.249;0.443). The
results of the optimization process can be also visualized using parallel coordinates
(Fig. 7.21). Here again, the performance of the standard airfoil NACA 0021 is also
plotted for comparison (thick dashed blue line).

The optimum configuration (Point A) is indicated by a thick red line. It can be seen
that the optimal airfoil shape leads only to a slightly higher efficiency (+0.8%) compared
to the standard airfoil (NACA 0021). However, the tangential force coefficient CT is at
the same time increased by 0.0385, i.e., a relative increase of more than 15% for the
present flow coefficient, equal to 0.14. The geometrical parameters corresponding to the
optimal shape are listed in Table 7.7.

The resulting shape of the optimal airfoil in comparison with the standard NACA
0021 is shown in Fig. 7.22. Knowing all points P1 to P13, the full profile is again
reconstructed using standard splines of order 13. A polynomial description of this profile
would be helpful for practical purposes. An excellent fit (average residual error of 0.16%)
has been obtained using again Eq. 7.3 with the constants A to H listed in Table 7.8.

7.4.1.1 Off design performance

The results shown in Fig. 7.23 demonstrate that the improvement of tangential force
coefficient is observed throughout for all values of φ, compared to the conventional
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Figure 7.21: Input parameters of the optimization and objectives represented using par-
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turbine based on standard airfoils NACA 0021. The absolute gain for CT increases even
slightly with φ. The relative increase is higher than 10% throughout the useful operating
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Table 7.7: Optimum shape parameters for two-stage Wells turbine
Point Parameter Value Point Parameter Value
P2 XP2/c 0.01188 P8 XP8/c 0.53128

YP2/c 0.03242 YP8/c 0.090718
P3 XP3/c 0.03056 P9 XP9/c 0.58674

YP3/c 0.0458 YP9/c 0.08169
P4 XP4/c 0.0746 P10 XP10/c 0.70306

YP4/c 0.0636 YP10/c 0.065626
P5 XP5/c 0.11839 P11 XP11/c 0.78848

YP5/c 0.07726 YP11/c 0.047259
P6 XP6/c 0.29647 P12 XP12/c 0.89755

YP6/c 0.111736 YP12/c 0.027875
P7 XP7/c 0.3825

YP7/c 0.11015

Table 7.8: Polynomial coefficients of optimal airfoil shape (best fit) for two-stage Wells
turbine with symmetric airfoils

A B D E H K
0.5233101 −2.1617185 3.357793 −2.588445 0.8563828 0.01314256

range, with an average gain of 12% (Fig. 7.23a). At the same time the efficiency of
the optimized shape is higher than the conventional design for φ < 0.18; the difference
disappears for large flow coefficients due to stall. The corresponding gain varies between
0.5% and 2%, with an average increase of 0.6% (Fig. 7.23b).

7.5 Conclusions on Wells turbine

As discussed previously, standard Wells turbines have several well-known disadvantages:
low tangential force, high (undesired) axial force; low aerodynamic efficiency and lim-
ited range of operation. In the present work we have shown the potential of CFD-based
optimization to improve the tangential force induced by monoplane and two-stage Wells
turbines. Two concurrent objectives (efficiency and tangential force coefficient) have
been maximized in a concurrent manner. The optimization relied on Genetic Algo-
rithms, all geometrical configurations being evaluated in an automatic manner by CFD,
taking into account the influence of the mutual interaction between the blades.

• Monoplane Wells turbine

In this case, only symmetric airfoils can be considered. Due to the importance
of the airfoil shape, a mathematical optimization procedure has been carried out
considering simultaneously up to twenty-two free parameters.

This optimization procedure is able to identify a considerably better configuration
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Figure 7.23: Performance of the optimal configuration (red line), compared to the con-
ventional two-stage Wells turbine relying on the NACA 0021 profile (gray squares). The
corresponding relative increase is shown with blue line; a) tangential force coefficient; b)
efficiency.

than the standard design relying on NACA 0021. A relative increase of the tan-
gential force coefficient exceeding 8.8% (as a mean, 11.3%) is obtained for the full
operating range. At the same time, the efficiency improves also by at least 0.2%
and up to 3.2% (as a mean, 1%).

• Two-stage Wells turbine with non-symmetric airfoils

Then, the aerodynamic performance of a modified two-stage Wells turbine consist-
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Figure 7.24: Successive optimization steps for the monoplane and two-stage Wells tur-
bines.

ing of non-symmetric airfoils has been optimized. The two stages are mirrored, so
that the system globally stays symmetric. Mutual interaction effects between the
blades are taken in account. An aggressive mathematical optimization procedure
has been carried out considering simultaneously sixty-four free parameters. This
optimization procedure is able to identify a better configuration than the standard
design (NACA 2421). It can be seen that the optimal airfoil shape leads only to
a slightly higher efficiency compared to the standard airfoil (NACA 2421). The
relative increase of the tangential force coefficient is however 6.2% at φ = 0.14,
with an average increase of 5.5% along the operating range. The gain in efficiency
varies between 0.2% and 0.7%, with an average increase of 0.3%.

• Two-stage Wells turbine with symmetric airfoils

Finally, two-stage Wells turbines consisting of classical, symmetric airfoils have
been considered. Optimization has been carried out considering twenty-two free
parameters. This optimization procedure is again able to find a considerably better
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configuration than the standard design (NACA 0021). The absolute gain for CT

increases even slightly with the flow coefficient. The relative increase is higher
than 10% throughout the useful operating range, with an average gain of 12%. At
the same time the efficiency of the optimized shape is higher than the conventional
design for a flow coefficient φ ≤ 0.18. The corresponding gain varies between 0.5%
and 2%, with an average increase of 0.6%.

As a whole, and supporting previous findings from the literature, the monoplane
design appears clearly superior to the two-stage design in terms of efficiency. At φ =
0.14, the efficiency of the optimized monoplane turbine exceeds η ≃ 52%, compared to
η ≃ 45% for optimized two-stage design (Fig. 7.24). The tangential force coefficient of
the two-stage design is approximately twice the monoplane one, keeping in mind that
the two-stage design needs higher potential waves to operate (see section 2.3.1). The
two-stage Wells turbine consisting of symmetric airfoils is found better than the two-
stage design consisting of non-symmetric airfoils in terms of tangential force coefficient
with only minor difference in efficiency (Fig. 7.24).

Finally, we can conclude that these optimized Wells turbine configurations should
help indeed to improve wave energy conversion.



Chapter 8

Conclusions and Outlook

In this thesis, two important systems allowing energy generation from renewable sources
(Savonius turbine: wind; Wells turbine: sea waves) have been optimized by Genetic
Algorithms, evaluating the performance by Computational Fluid Dynamics. After many
new development, check, and validation steps, the optimization process can be carried
out in a fully automatic manner allowing to explore efficiently a variety of configurations.
Concerning the process, the main findings are as follows:

• An optimization requires typically one month of computing time on a single PC.
While acceptable for research purposes, this is too long for industrial needs, high-
lighting the need for parallel computing. Fortunately, GAs are ideally suited for
parallelization. Furthermore, it must be kept in mind that only two-dimensional
geometries have been considered here. For 3D cases, parallel optimization is a
clear must, even for academic research.

• It is possible to optimize considering a large number of design parameters. Up to
64 such free parameters have been employed in this work. This is, however, the
maximum number that can be reasonably considered with the present algorithm.
For concurrent optimization, GA works better for only 10 to 30 parameters and
improvements are needed before considering, say, 100 variables.

• Concurrent optimization involving several objectives is also possible but leads to
additional issues. In particular, it is usually necessary to involve additional criteria
in the final decision process, when Pareto fronts are encountered.

Concerning engineering results:

• The performance of the original Savonius turbine could be tremendously increased,
with an extraordinary peak Cp of about 0.48 compared to 0.18 for the original
system (Fig. 8.1). A patent has been submitted for this configuration.

• In a similar but somewhat less impressive manner, the tangential force coefficient
and efficiency of the original Wells turbine could be improved, typically by 12%
for the tangential force coefficient and 1% for efficiency. Though limited, this gain

156
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is already highly interesting for practical purposes and discussions with possible
industrial partners are running.
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Figure 8.1: Power coefficients of wind rotors of different designs including newly devel-
oped, optimal Savonius turbine.

8.1 Suggestions for further research

The present study introduced optimized designs with superior performance for Savonius
and Wells turbines. However, a full experimental verification of the findings is needed:

• Wind tunnel or urban wind measurements should be carried out for the optimal
Savonius turbine.

• Experimental measurements should be carried out as well for the optimal Wells
turbine considering an oscillating flow.

Concerning methodology:

• Fully parallel optimization involving parallel CFD should be implemented as a
future standard.

• Improvements in the algorithm are needed to consider many parameters in a con-
current optimization.

• The performance of GA could be improved by coupling with other alternatives like
particle swarm or surface responce techniques, allowing to reduce the numbers of
(very costly) evaluations.
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