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In this paper, gradient/Hessian-enhanced surrogate models have been developed based 

on Kriging approaches. The gradient/Hessian-enhanced Kriging methods have been 

developed based on direct and indirect formulations. The efficiencies of these methods are 

compared by analytical function fitting, aerodynamic data modeling and 2D airfoil drag 

minimization problems. For the aerodynamic problems, efficient CFD gradient/Hessian 

calculation methods are utilized that make use of adjoint and automatic differentiation 

techniques. The gradient/Hessian-enhanced surrogate models are shown to be useful in the 

development of efficient design optimization, aerodynamic database construction, and 

uncertainty analysis. 

I. Introduction 

umerical design optimization in the field of aerospace engineering is becoming more commonplace largely due 

to the maturity of Computational Fluid Dynamics (CFD) tools and the increase in computer hardware 

performance. Although gradient-based local optimization approaches are computationally efficient, more global 

optimization techniques are often required as the design space becomes more complex. The major bottleneck of 

aerodynamic design optimization with global search methods, such as genetic algorithms (GA), is the large number 

of required CFD function evaluations which can easily exceed several thousand, making these methods impractical 

for use with high-fidelity CFD tools. 

Recently, global optimization approaches based on surrogate models have been gaining popularity as 

alternatives for reducing the cost of global methods. The idea of a surrogate model is to replace expensive 

functional evaluations (i.e. high-fidelity CFD simulations) with an analytical model which is constructed through 

selective sampling of the high-fidelity model. When a surrogate model is constructed with given training data, the 

most promising locations in the model are explored at very low computational cost. The accuracy of surrogate 

models can be increased efficiently by adding the exact function information in the most promising locations. This 

approach can save a lot of computational cost and enables the exploration of wider design space more efficiently. In 

Ref.[1], the performances of major surrogate models, such as least square polynomial, multi-layer perceptron, radial 

basis function (RBF) and Kriging, have been compared for a two dimensional turbomachinery problem. The Kriging 

and RBF models showed the best performance during this investigation. The Kriging model, which was originally 
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developed in the field of geological statistics, has often been found to perform well in other engineering fields and 

has thus gained popularity in aerospace engineering1-12. This surrogate model predicts the function value by using 

stochastic processes, and has the flexibility to represent multimodal/non-linear functions. 

Because efficient gradient evaluation methods based on adjoint formulations have been developed and applied 

successfully in the field of aerodynamics13-19, the introduction of gradient information within surrogate models as 

additional training data has also attracted attention. Two gradient-enhanced Kriging (called cokriging or GEK) 

approaches have been developed and beneficial results have been shown in the literature6,9,10,12. Additionally, 

efficient CFD Hessian evaluation methods have been developed recently20, details of which are described in 

Subsection V.A. In this approach, the Hessian matrix of a CFD functional output with respect to design variables 

can be calculated efficiently by using the adjoint method and automatic differentiation (AD) tools such as 

TAPENADE21. Thus it is promising to utilize the Hessian information within surrogate models to enhance the 

accuracy of the surrogate model. 

In addition to design optimization problems, surrogate models can be used to reduce the computational 

expense of creating aerodynamic database, and for uncertainty quantification22,23. For aerodynamic database 

construction, a surrogate model may be used to reduce the overall number of simulations required to fill out the 

entire flight envelope. With respect to uncertainty quantification, although most high-fidelity CFD computations 

typically assume perfect knowledge of all parameters, there is much uncertainty in reality due to manufacturing 

tolerances, in-service wear-and-tear, approximate modeling parameters and so on. The most straightforward and 

accurate method for uncertainty analysis is a full non-linear Monte-Carlo (MC) simulation. Although this method 

is easy to implement, it is still prohibitively expensive for high-fidelity CFD computations. Moment methods based 

on Taylor series expansions represent an alternative strategy to assess uncertainty, by estimating the mean and 

standard deviation of the output function. The use of a surrogate model is another approach for dramatically 

reducing the computational cost of uncertainty analysis, because the surrogate model is an analytic representation 

of the design space. Thus, the surrogate model can be utilized for an Inexpensive Monte-Carlo (IMC) simulation to 

obtain not only mean and standard deviation, but also an approximate probability density function (PDF) of the 

output function. The accurate response surfaces enhanced by gradient and Hessian information can increase the 

accuracy of uncertainty analysis based on an IMC simulation. 

In this paper, gradient/Hessian-enhanced surrogate models are proposed based on Kriging approaches for 

efficient design optimization, aerodynamic database construction and uncertainty analysis. The efficiencies are 

investigated using analytical function fitting, aerodynamic data modeling and 2D airfoil drag minimization 

problems. 

 

II. Kriging Model 

In this section, gradient/Hessian-enhanced Kriging model approaches are proposed based on indirect/direct 

formulations. First, the basics of conventional Kriging, as well as direct and indirect GEK approaches are reviewed. 

Then, the two GEK approaches are extended to gradient/Hessian-enhanced Kriging models. 

A. Conventional Kriging, direct/indirect GEK approaches 

The Kriging method is a statistical prediction of a function from a set of exact function values obtained with 

arbitrary design variables or input parameters. Kriging prediction depends on the spatial correlations between given 

sample points. The correlation is given by a correlation function which is only dependent on the distance between 
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two points. These correlations are considered in a matrix (called correlation matrix) which appears in the Kriging 

formulation. The size of the matrix is nn× , where n  is the number of sample points. The formulation details 

are given in Subsection II.C for the case of a gradient/Hessian-enhanced direct Kriging model. 

For a GEK model, the gradient information at several sample points is also used for the construction of the 

Kriging model. In the case of direct GEK, the gradient information is directly used in the modified Kriging 

formulation by including the correlations between function/gradient and gradient/gradient. These correlations can 

be modeled by differentiating the correlation function. If all sample points have function and gradient information, 

the size of the correlation matrix is ( )mn +1 , where m  is the dimensionality of the design space (i.e. number of 

design variables), and n  is the number of sample points, as previously. 

The formulation of the indirect GEK is exactly the same as that of the original Kriging model although 

additional sample points are introduced using the gradient information. In this case, the additional sample points 

are created around a real sample point (i.e. a point where function and gradient information is evaluated) based on 

a first-order Taylor approximation as follows: 
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where ix  and ( )i
y x  are the location and exact function value of a real sample point, respectively. 

add

ix  and 

( )add
i

y
x

 are the location and approximated function value of an additional sample point. x∆  is a user-specified 

step size vector for the relative location of the additional sample point. Usually, one additional point is created in 

each direction of the design variable space as illustrated in Fig.1a (in total m  additional points per real sample 

point). After augmentation of the sample points, the indirect GEK model is created by using both real and 

additional sample point information. If all sample points have function and gradient information, the total number 

of sample points is ( )mn +1 , which is the same as the size of the direct GEK correlation matrix. The advantage 

of the indirect GEK over the direct approach is the ease of implementation. On the other hand, the major 

disadvantage of indirect GEK is the issue associated with the step size used for creating additional sample points 

x∆ . Very small step sizes can lead to an ill-conditioned correlation matrix in the Kriging formulation due to the 

closely spaced sample points. The step size is usually determined by considering both the accuracy of the 

first-order Taylor approximation and the matrix conditioning. According to Ref.[9], direct and indirect GEK 

models are identical in the limit of small step size and same set of hyper parameters. However, ill-conditioning 

associated with small step sizes can be avoided by the direct GEK approach. 

 

B. Gradient/Hessian-enhanced Indirect Kriging Approach 

The extension of the indirect GEK approach to a gradient/Hessian-enhanced model can be achieved 

straightforwardly. This can be realized by modifying Eq.(2.1) to the second-order Taylor approximation as 
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There are many different ways to create additional sample points around a real sample point. Two approaches are 

typically used in this study. In the first approach, two additional points are created in each direction of the design 

variable space as illustrated in Fig.1b. In this approach, the diagonal components of the Hessian matrix are only 

used to create the additional sample points. If all real sample points have gradient/Hessian information, the 

augmented number of sample points becomes ( )mn 21+ . The second approach is more general, creating an 

arbitrary number of additional sample points, addm  by using a sampling method with a fixed distance from a real 

sample point as shown in Fig.1c. 

As understood from the above explanation, two major user-specified parameters appear in the 

gradient/Hessian-enhanced indirect Kriging formulation, which are the step size x∆  and the number of 

additional sample points per real sample point addm . To specify these parameters reasonably is more difficult than 

in the case of the indirect GEK. The matrix conditioning becomes worse when addm  is large. When addm  is 

small, conversely, it is difficult to make use of the Hessian information. In these cases, the step size should be 

larger than that used for the indirect GEK to make use of the Hessian information in the second-order Taylor 

approximation. However, identifying a reasonable step size is essentially problem/location dependent. 

Specification of smaller or larger step sizes yields worse matrix conditioning or inaccurate Taylor approximations. 

That is to say, there are severe tradeoffs for these user-specified parameters and these are difficult to determine. 

These issues led us to develop a gradient/Hessian-enhanced direct Kriging approach, which is described in the next 

subsection. 

 

Fig.1 Arrangements of Additional Sample Points for 2D Design Space, 

a) Gradient-enhanced, b) Gradient/Diagonal Hessian-enhanced, c) Gradient/Hessian-enhanced 

 

C. Gradient/Hessian-enhanced Direct Kriging Approach 

In this subsection, the gradient/Hessian-enhanced direct Kriging formulation is derived. The formulation is 

based on the conventional “ordinary Kriging” model for simplicity of the description. The mathematical form of a 

Kriging model has two terms as follows: 

( ) ( )xx Zy += βˆ         (2.3) 

where ( )xŷ  is the prediction of an unknown function at an arbitrary location of x . The first term β  is a 

constant model (or low-order polynomial regression model in the formulation of a “universal Kriging” model7) and 
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the second term ( )xZ  represents a random process model with zero mean, variance 
2σ  and the covariance of 

two locations ix  and jx  is given as follows: 

( ) ( )[ ] ( )
jiRZZCov

ji
xxxx ,, 2σ=       (2.4) 

where R  is the spatial correlation function which is only dependent on the distance between the two locations. 

For the gradient/Hessian-enhanced direct Kriging approach, the following additional covariance is also required: 
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Suppose that there are ( )nnn ′′′,,  known function, gradient and Hessian components, and consider a linear 

combination of the exact information at given sample points as follows: 
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where ( )yyy ′′′,,  are the observed function, gradient and Hessian, and ( )φλ,,w  are their weight coefficients. 

In this derivation, the numbers of function values, gradients and Hessian components can be arbitrary. Therefore, 

the sample points which have gradient and/or Hessian information are also arbitrary. Furthermore, users can limit 

arbitrarily the gradient/Hessian components which are enforced in the formulation (e.g., only the diagonal Hessian 

components can be enforced). The Kriging approach finds the best linear unbiased predictor which minimizes the 

mean square error (MSE) : 
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subject to the unbiasedness constraint as follows: 
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The weight coefficients can be found by solving this constrained minimization problem with the Lagrange 
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multiplier approach. They can be found by the following system of equations: 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( )

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( )

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( )

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

′′==

++

′==

++

==

+++

∑

∑∑∑

∑∑∑

∑∑∑

=

′′

=

′

==

′′

=

′

==

′′

=

′

==

1

,,1,

,,,

,,1,

,,,

,,1,

2

1
,,,

1

''

1

''''

1

'''

1

''

'

1

'''

1

''

1

'

1

''

1

'

1

n

i

i

n

k

k

n

j

j

n

i

i

n

k

k

n

j

j

n

i

i

n

k

k

n

j

j

n

i

i

w

nlZZCov

ZZCovZZCovZZCovw

nlZZCov

ZZCovZZCovZZCovw

nlZZCov

ZZCovZZCovZZCovw

l

kljlil

l

kljlil

l

kljlil

L

L

L

xx

xxxxxx

xx

xxxxxx

xx

xxxxxx

φλ

φλ

µφλ

 (2.9) 

where µ  is the Lagrange multiplier. Substituting Eqs.(2.4) and (2.5) in Eq.(2.9) finally yields the following 

matrix form: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
1~0

rw

F

FR

µT
       (2.10) 

where ( ) nnnT

nnnww
′′+′+

′′′ ℜ∈= φφλλ ,,,,,,,, 111 LLLw , ( ) nnnT ′′+′+ℜ∈= 0,,0,1,1 LLF  ( n  units and 

nn ′′+′  zeros), and ( )22~ σµµ = . 
( ) ( )nnnnnn ′′+′+×′′+′+ℜ∈R  is the correlation matrix which expresses the 

correlation between the observed data. 
nnn ′′+′+ℜ∈r  is the correlation vector which expresses the correlation 

between the observed data and x . The expressions of R  and r  are too complicated to present in this paper. 

R  and r  respectively include the correlation terms up to the fourth- and second-order derivatives (see Ref.[12] 

for the expressions of gradient-enhanced case, the expressions of our gradient/Hessian case are their 

straightforward extensions). The unknown weight coefficients are determined by inverting the matrix of Eq.(2.10). 

The final form of the gradient/Hessian-enhanced direct Kriging approach is: 

( ) ( ) ( )FYRr xx ββ −+= −1ˆ Ty        (2.11) 

where ( ) YRFFRF
111 −−−= TTβ  and ( )Tnnn yyyyyy ′′′ ′′′′′′= ,,,,,,,, 111 LLLY . The MSE of Eq.(2.7) can 

be expressed as: 

( )[ ] ( ) ( ) ( ) ( )( )111ˆ 1111122 −−+−== −−−−−
rRFFRFrRFrRrxx

TTTTTsyMSE σ   (2.12) 

There is no sensitive parameter in the formulation of the gradient/Hessian-enhanced direct approach, although the 

expression is more complicated than the indirect approach. Since additional sample points are not created around 

real sample points, the matrix conditioning is much better than that of the indirect approach. 

 

D. Correlation Function 

The correlation matrix and vector are specified by a spatial correlation function and its derivatives. General 

correlation functions depend only on the distance between two locations as follows: 
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where kθ  is the hyper parameter for each direction of design variables. Gaussian or cubic spline functions are the 

most common forms for the spatial correlation function. The Gaussian function is defined as follows: 

( ) ( ) ( )0exp, 2 >−= kkkkk hhscf θθθ     (2.14) 

One of the cubic spline functions is defined as follows: 
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The hyper parameter expresses the distance weight for both spatial correlation functions. Generally, cubic spline 

functions yield a better conditioned correlation matrix than Gaussian functions. However, the cubic spline 

functions cannot be used in our practical cases since the fourth-derivatives of the correlation function are required 

as shown in Eq.(2.5). Therefore, the following RBF is used for the spatial correlation function in this research: 
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This function also yields a better conditioned correlation matrix than the Gaussian function. The derivatives up to 

fourth-order are calculated by employing the TAPENADE automatic differentiation tool21. 

 

E. Model Fitting by Maximum Likelihood Estimation 

The Kriging model still includes the undetermined parameters θ  and 
2σ . These parameters can be 

estimated by maximizing the likelihood (joint probability) function of the given samples. This empirical approach 

finds the parameters which are most consistent with the sample data. Optimal mean and variance are analytically 

determined as: 

( ) YRFFRF
111 −−−= TTβ        (2.17) 

( ) ( )FYRFY ββσ −−
′′+′+

= −12 1 T

nnn
     (2.18) 

One can notice that the mean of Eq.(2.17) is equal to that of Eq.(2.11). Since there is no analytical form solution for 

θ , these are estimated by a numerical optimization which corresponds to the maximization of a likelihood 

function. For given θ , β  and 
2σ , the following log-likelihood function is calculated: 

( )( ) ( ) ( ) ( )Rln
2

1
ln

2

1
ln 2 −′′+′+−= σθ nnnL      (2.19) 

The most consistent θ  is determined through the maximization of the log-likelihood function. One of the issues 

associated with the maximum likelihood estimation is the multimodality of the log-likelihood function. Therefore, 

some global optimization method, such as GA, is preferable to find the global optimal parameters. However, the 
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computational cost for this optimization problem can become relatively expensive above a certain number of 

sample points. This is because the evaluation of a likelihood function requires the inversion of R  and the 

calculation of the determinant, and a large number of function evaluations with different sets of θ  is required for 

a global optimization. In our approach, a master-slave type MPI-parallelized GA24,25 is used for the optimization. 

The correlation matrix inversion and the determinant evaluation are solved with a Cholesky decomposition 

method. 

 

F. Addition of New Sample Points by Expected Improvement 

Once the Kriging model is constructed with given function/gradient/Hessian information, design optimization 

or uncertainty analysis can be realized on the surrogate model at low computational cost. For design optimization, 

it is a straightforward approach to find the approximate optimal (best ( )xŷ ) location on the surrogate model by 

using any type of optimizer. The surrogate model can be iteratively updated by adding new sample point information 

where exact function evaluation is required during the optimization process. However, this approach usually 

converges to a local optimal point depending on the locations of the initial sample points, because it does not take 

into account the uncertainty of the surrogate model. 

Expected Improvement (EI)4 expresses a potential for improvement which considers both estimated function 

values and uncertainties in the surrogate model. At a point x , the EI for minimization problems is given as follows: 
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where Φ  and φ  are the normal cumulative distribution function and probability density function, respectively. 

( )xs  is the standard deviation expressed by Eq.(2.12). miny  is the minimum (optimal) function value among n  

given sample points. The new sample point is added in the location where the EI is maximal. This EI-based iterative 

approach can increase the accuracy of Kriging models by maintaining a balance between global and local search 

criteria. In our approach, a master-slave type MPI-parallelized GA is used for the maximization of EI. 

 

III. Validation in Analytical Function Problems 

In this section, the developed gradient/Hessian-enhanced surrogate models are used to fit analytical functions 

with various sets of sample points. The sets of sample points are generated by a Latin Hypercube Sampling (LHS) 

method3. 

A. 2D Rastrigin Function Fitting 

Firstly, one of the most impressive results which make use of gradient/Hessian information within the 

surrogate model is shown. Surrogate models are used to fit the 2D Rastrigin function using 80 sample points 

generated by LHS. The gradient and Hessian components are analytically evaluated on these sample points. The 

Rastrigin function is defined as: 

( ) ( )[ ] ( )12.512.52cos1010
1

2 ≤≤−−+= ∑
=

i

m

i

ii xxxmRastrigin πx  (3.1) 

where m  denotes the dimension (i.e. 2=m  in this case). The shape of the 2D Rastrigin function is illustrated 



 

American Institute of Aeronautics and Astronautics 

9

in Fig.2, which is a highly multimodal function. In Fig.3, three different surrogate models constructed by function, 

function/gradient and function/gradient/Hessian information are compared. The gradient and gradient/Hessian- 

enhanced Kriging models are constructed by the direct Kriging approach. Although the function values show 

agreement at the 80 sample locations, the function-based conventional Kriging model cannot capture the global 

trend of the Rastrigin function at all. Although the local trends of the Rastrigin function around the given sample 

points can be captured by including the gradient information, the gradient-enhanced Kriging model still does not 

capture the global trend. By including the Hessian information, on the other hand, the gradient/Hessian-enhanced 

Kriging model reproduces the global trend very accurately. Thus, the gradient/Hessian-enhanced model is 

promising for constructing an accurate surrogate model of complex multimodal functions. 

 

Fig.2 Visualization of 2D Rastrigin Function 

 

Fig.3 Kriging Models Used to Fit Rastrigin Function with 80 Sample Points 
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B. 5D Rosenbrock Function Fitting 

For investigating the performance of the developed approaches, the developed surrogate models are used to fit 

the 5D Rosenbrock function by using various sets of sample points (from 10 to 600) generated by LHS. The 

Rosenbrock function is defined as: 

( ) ( ) ( )[ ] ( )321001
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22
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=
+ i
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i

iii xxxxRosenbrock x   (3.2) 

where m  denotes the dimension of the function (i.e. 5=m  in this case). Once the surrogate model is 

constructed, the accuracy of the model is evaluated by using the root mean squared error (RMSE) between the exact 

function and approximate function values given by the surrogate model. The RMSE is given as follows: 

( ) ( )( )
2

1

ˆ
1 ∑

=

−=
M

j

exact

jj
yy

M
RMSE xx       (3.3) 

where the coordinates ( )Mjj ,,1L=x  define an equally spaced Cartesian mesh which covers the entire 

design space. 

In Fig.4 the RMSE values are compared between the direct/indirect Kriging approaches. For the 

gradient/Hessian-enhanced indirect Kriging approach, three runs are executed with different sets of x∆  and 

addm . For the gradient/Hessian-enhanced direct Kriging approach, two runs are executed for gradient/diagonal 

Hessian-enhanced and gradient/full Hessian-enhanced cases. Although the gradient/Hessian-enhanced indirect 

Kriging approaches mostly show better performance than the gradient-enhanced indirect Kriging approach, the 

performance is sensitive to the user-specified parameters. The direct approaches do not have any parameters to be 

specified, and the performance is much better than the indirect approaches. This superiority is due to the exact 

enforcement of derivative information and the better conditioning of the correlation matrix. 

In Fig.5, the x-axis is modified to represent the number of pieces of information and the approximated 

computational time factor for a detailed comparison. The number of pieces of information is the sum of the number 

of function values, gradient as well as Hessian net components among all sample points, which is generally equal 

to the size of the correlation matrix. The approximated computational time factor is defined as follows, considering 

the gradient/Hessian computational times in our practical CFD case: 

⎪
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==∑
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//
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3

2

1

,
1

   (3.4) 

This definition assumes that the computational times of gradient/Hessian evaluations are respectively comparable 

to one function evaluation. Although this is the case when using an adjoint approach for obtaining the gradient 

information, the Hessian construction scales with the number of design variables or input parameters. On the other 

hand, our implementation parallelizes this aspect of the Hessian (see Subsection V.A) resulting in an overall wall 

clock timing close to that assigned above. The original function-based Kriging shows the best performance when 

compared by the number of pieces of information. This result implies that the scattering of only function 

information for the whole design space is better than the concentration of function/gradient/Hessian information at 

a limited number of sample points to obtain a more accurate fitting of the whole design space. When compared by 
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the approximated computational time factor, the gradient/Hessian-enhanced direct Kriging approaches show better 

performance than the original Kriging approach. This result indicates that the developed approaches can provide 

better performance by using our efficient gradient/Hessian evaluation methods. Since the computational times for 

CFD gradient evaluations are independent of the number of design variables, the gradient (and to a lesser degree 

Hessian) enhanced surrogate model approaches can be expected to be more effective as the dimensionality of the 

problem increases. 

 

Fig.4 Comparison of RMSEs between Kriging Approaches, 

(F: Function-based Original Kriging, FG: Gradient-enhanced, 

FGH: Gradient/Hessian-enhanced, FGHd: Gradient/Diagonal Hessian-enhanced) 

 

Fig.5 Comparison of RMSEs between Kriging Approaches, 

Left: By Number of Pieces of Information, Right: By Approximated Computational Time Factor 
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C. Minimization of 20D Rosenbrock Function 

In this subsection, the 20-dimensional Rosenbrock function is minimized by using a surrogate model-based 

optimization framework as shown in Fig.6. The most promising location is searched by maximizing the EI value. 

The optimization starts from 30 initial sample points that are generated by LHS. To reduce the computational cost 

to create a surrogate model, the number of sample points that have gradient/Hessian information is limited to the 

current optimal region. The optimization histories are shown in Fig.7. The gradient/Hessian-enhanced direct 

Kriging approach shows much faster convergence towards the global optimal than the other Kriging approaches. 
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Fig.6 Surrogate Model-based Optimization Framework     Fig.7 Optimization History 

 

D. Uncertainty Analysis on 2D Rosenbrock Function 

In this subsection, uncertainty analysis is conducted on an exact/approximated 2D Rosenbrock function. The 

center location for the uncertainty analysis is (1.0, 1.0), where the exact function has minimal value. The center 

location and the exact function distribution are shown in Fig.8. Five sample points which are generated by LHS are 

used to create direct Kriging models, and then inexpensive Monte-Carlo (IMC) simulations are executed on the 

surrogate models (Note that there is no sample point on the center location in this case). The performance of the 

IMC simulations is compared with a full-MC simulation and the second-order moment method. In the full-MC 

simulation, a large number of exact function calls is required around the center location. The moment method is 

based on a Taylor series expansion and makes use of derivative information at the center location. The mean and 

variance of a function are given by the moment method as follows22: 
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where cx  is the center location and 
iDσ  is the standard deviation of design variable iD . 

In Fig.9, the variations of mean and variance with respect to the variation of Dσ  are shown (a same standard 

deviation value was used for the all design variables). The full and inexpensive MC simulations use a total of 

100,000 function calls. The second-order moment method (MM2) shows good agreement with the full-MC 

simulation for smaller values of Dσ  since the method of MM2 uses the derivative information at the center 

location. For larger Dσ  values, however, the discrepancy increases because the trend of the exact function 

deviates from the quadratic approximation. On the other hand, the result of IMC with the 

gradient/Hessian-enhanced Kriging model shows good agreement at both smaller and larger Dσ  values. The PDF 

(and then cumulative density function, CDF) also can be obtained by the IMC approach. In Fig.10, the CDFs of the 

full-MC and IMC simulations are compared for the case of 15.0=Dσ . The CDF of IMC with the 

gradient/Hessian-enhanced model shows good agreement with that of the full-MC simulation. 

 

 

 

 

 

Fig.8 Visualizations of 2D Rosenbrock Function and the Center Location for Uncertainty Analysis 
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Fig.9 Variations of Mean/Variance of Function by Uncertainty Analysis 
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Fig.10 Comparison of CDFs obtained by Full-MC and IMC Simulations 

 

IV. Fitting on Aerodynamic Data of 2D Airfoil 

In this section the developed Kriging approaches are used to fit an airfoil two-dimensional aerodynamic 

database. We consider the steady inviscid flow around a NACA0012 airfoil as a flow example which is described 

in more detail in Mani and Mavriplis26,27. The governing Euler equations of the flow problem are discretized by a 

finite-volume approach and are solved with second-order spatial accuracy. The details of our adjoint derivative 

calculation method are described in Subsection V.A. The computational mesh contains approximately 20,000 

triangular elements and is shown in Fig.11. In this study, two parameters are considered; Mach number and angle 

of attack. Their ranges are specified as [ ]5.1,5.0∈∞M  and [ ] [ ]5,0deg ∈α . The exact surface or validation data 

is obtained through a series of 21x21=441 flow computations covering the entire parameter space at equally spaced 

increments. 

The exact hypersurfaces of lift and drag coefficients are shown in Figs.12-13. It can be observed that their 

behaviors are complicated at the transonic Mach numbers. Since the CFD functional outputs on this design space 

are relatively noisy, the CFD Hessian information is not used to construct Kriging models. The Kriging models are 

constructed by utilizing the function and adjoint gradient values on ten sample points, and their hypersurfaces are 

also illustrated in Figs.12-13. It can be understood that the adjoint derivative information is helpful to construct 

accurate surrogate models for these practical non-linear aerodynamic functional outputs. The discrepancies 

between the exact and approximate hypersufaces are sufficiently reduced by utilizing the gradient information to 

construct the surrogate models. 

 

Fig. 11 Unstructured Mesh Visualization around NACA0012 Airfoil 
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Fig.12 Hypersurfaces of Lift Coefficient, 

From Left to Right: Exact, Function-based, Gradient-enhanced Kriging 

 

 

Fig.13 Hypersurfaces of Drag Coefficient, 

From Left to Right: Exact, Function-based, Gradient-enhanced Kriging 

 

V. Application to Drag Minimization Problem of 2D Airfoil 

In this section, the developed gradient/Hessian-enhanced direct Kriging approach is used for a 2D airfoil shape 

optimization. 

A. Problem Definition and CFD Methods 

We consider again the steady inviscid flow around a NACA0012 airfoil. The governing Euler equations are 

discretized and solved in the same manner as described previously and the same computational mesh of Fig.11 is 

used in this study. The required deformation and movement of the mesh are performed via a linear tension spring 

analogy26-28. The free-stream Mach number is ∞M =0.755 with an angle of attack of 1.25 degrees. This flow 

condition gives a lift coefficient of lC = 0.268 and a drag coefficient of dC = 0.00521 for the NACA0012 airfoil. 

The optimization example consists of an inverse design given by the following objective function: 

( ) ( )2*2*

2

100

2

1
ddll CCCCF −+−=       (5.1) 

where a star denotes a target lift or drag coefficient and the factor of one hundred is introduced since the drag 

coefficient is about an order of magnitude smaller than the lift coefficient in this particular flow example. We use 

16 design variables, half of which are placed at upper and the other half at lower surface points which control the 
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magnitude of Hicks-Henne sine bump functions29. This steady inverse design problem is initialized with the 

NACA0012 airfoil profile and the target lift and drag coefficients are set to 0.675 and 0.0, respectively, that is, we 

attempt a lift constrained drag minimization problem. We must use bound constraints on the design variables to 

prevent the generation of invalid geometries from the mesh movement algorithm. In addition, a quadratic penalty 

term is added to the objective function if the sectional area of the new design is less than 90% of the initial one. 

The details of our CFD gradient/Hessian evaluation methods are described in Ref.[20]. There are two options 

to evaluate the Hessian referred to as exact Hessian and approximate Hessian evaluation methods. For steady flow 

cases, the procedures to evaluate the exact Hessian are as follows: 

i.  The grid deformation residual equations ( )( ) 0, =DxDs  are solved 

ii. The flow residual equations ( ) ( )( ) 0,, =DwDxDR  are solved 

iii. The flow adjoint problem ( ) ( ) 0=∂∂+Ψ∂∂ wFwR
T

 is solved 

iv. The grid adjoint problem ( ) ( ) 0=∂∂Ψ+∂∂+∂∂
TTT

xRxFxs λ  is solved 

v. m  linear problems are solved each for idDdx  

vi. m  linear problems are solved each for idDdw  

vii. Each Hessian element can be evaluated as ( ) ( ) ( ) ( ) ( )sRFdDdDFd ij

T

ij

T

ijji ∂+ℑΨ+ℑ= λ2
 

where D , x  and w  are the design variables, grid coordinates and flow variables, respectively. Ψ  and λ  

are respectively the flow and grid adjoint variables. ijℑ  and ij∂  indicate all possible second-order derivatives 

for F , R  and s , and they are evaluated by employing the TAPENADE automatic differentiation tool. For a 

CFD gradient evaluation, only the first four steps are required. Since the computational costs of the grid 

deformation related steps (i, iv, v) and of the final combination (vii) are much cheaper than the others, the major 

computational costs are given by one flow solution, one flow adjoint solution and m  linear solutions for 

idDdw . Taking the computational cost of a flow solution as one unit, the total computational cost for a CFD 

exact Hessian is roughly 2+m  units. Since there is no dependency between the third to sixth steps, they can be 

parallelized with 1+m  processors as shown in Fig.14 a). Then the wall clock time for a CFD exact Hessian can 

be reduced to two units. 

The approximate Hessian can be evaluated at reduced computational cost for inverse design objective 

functions of the type shown in Eq.(5.1). This type of function can be written in the form: 

( ) ( ) ( )( )( )∑
=

−=
K

k

kkk FDwDxDFWDF
1

2*,,
2

1
     (5.2) 

where kF , 
*

kF  and kW  are respectively k-th flow function value, its target value and weighting factor. The 

first derivatives of F  with respect to D  are given by 
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and can be calculated inexpensively using the adjoint approach. Differentiating Eq.(5.3) again yields 
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The last approximation is true if one is close to the optimum where 
*

kk FF ≈  for Kk ,,1L= . Eq.(5.4) implies 

that the Hessian can be approximated by determining only the first derivatives ik dDdF  for Kk ,,1L=  

where one can use the adjoint to determine each derivative. The total computational cost for an approximate CFD 

Hessian is 1+K  units, which is independent of the number of design variables. Again, all adjoint calculations 

can be parallelized with K  processors as shown in Fig.14 b). The accuracies of the exact Hessian at any location 

and the approximate Hessian close to the optimum location have been confirmed by comparing the results of a 

finite differenced Hessian20. 

 

 

Fig.14 Flowcharts of Hessian Evaluation Approaches, 

a) Exact CFD Hessian, b) Approximate CFD Hessian 

 

B. Optimization Results 

The direct Kriging approaches are used for this optimization. The optimization histories are shown in Fig.15. 

For these optimizations, a set of 16 initial sample points has been chosen by the LHS method. The gradient and 

Hessian have not been evaluated for the initial samples. Therefore, the same surrogate model is firstly constructed 

for all available cases. When constructing the surrogate model, new sample points are added which are chosen by 

maximizing the EI value. For the cases utilizing gradient and/or Hessian-enhanced surrogate models, the 

gradient/Hessian evaluations are invoked only when a new design has better performance than all previous designs. 

In addition, the number of sample points that have gradient/Hessian information is limited to the current optimal 

region to reduce the computational cost to construct a surrogate model. 

It was confirmed that the gradient and/or Hessian-enhanced model approaches delivered better optimization 

histories than the conventional function-based Kriging approach. However, it was difficult to observe the 

superiority of gradient/Hessian-enhanced approaches over the gradient-enhanced approach. This was because the 

deformable range of the Hicks-Henne bump functions, that is the design space, was fairly limited to prevent 

negative thickness airfoils, and to ensure convergence and accuracy of the Hessian evaluation. Actually, several 

particular design variables of optimal designs were located on the bound values. Another reason is the presumably 
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simple objective functional shape due to the inviscid flow model, resulting in similar performance for both 

gradient- and gradient/Hessian-enhanced approaches. However, the absolute best design was obtained still by the 

gradient/exact Hessian-enhanced model approach. In Fig.16, the flowfields of the initial and optimal design given 

by the gradient/exact Hessian-enhanced approach are compared. It can be confirmed that the optimal design results 

in a supercritical airfoil shape which increases lift while reducing the strength of the shock wave on the upper 

surface of the airfoil. 

Faster convergence towards the global optimal direction, i.e. the improvement of the search efficiency, is 

considered to be one of the major benefits of derivative-enhanced surrogate model approaches. These approaches 

should yield more beneficial results in higher-dimensions and/or for more complex physical models. 

 

 

Fig.15 Optimization History 

 

 

Fig.16 Pressure Distributions around 2D Airfoil Shapes, Left: Initial, Right: Optimal 
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C. Uncertainty Analysis at the Optimal Location 

Subsequent to the optimization procedure, an uncertainty analysis is executed at the optimal location obtained 

by the gradient/exact Hessian-enhanced approach. The results are compared between a full Non-Linear 

Monte-Carlo simulation (NLMC), a second-order moment method (MM2), and IMC simulations (IMC1, IMC2). 

For NLMC, a total of 3000 non-linear flow evaluations per specified standard deviation of all design variables 

( Dσ ) is executed around the center (optimal) location. The gradient and exact Hessian information at the center 

location is used for the MM2 approach. For the IMC1 method, the final gradient/exact Hessian-enhanced Kriging 

model given in the optimization loop is used for the IMC simulation. For the IMC2 method, 

function/gradient/Hessian information is evaluated on 10 different sample points which are created by using a 

sampling method for 01.0=Dσ . The gradient/Hessian-enhanced surrogate model for IMC2 is then created by 

using the information at 11 points (center and the 10 sample points). The number of (approximate) function calls 

for IMC is also 3000, and the computational cost of IMC is much cheaper than that of NLMC. The computational 

time of a NLMC simulation is over 6 days using one node (four cores) of our cluster (of course the computational 

time can be reduced by parallelizing the 3000 non-linear flow evaluations). On the other hand, the computational 

time for IMC simulation is less than one minute. 

In Fig.17, the variations in the mean of the objective function with respect to the variation of Dσ  are 

compared. For an intuitive understanding, the mean airfoil (optimal airfoil) and the airfoils resulting from 

perturbations of 1.0±  for all design variables are shown in Fig.18. The IMC results showed good agreements 

with the NLMC results for smaller values of Dσ  while the discrepancies increased for larger Dσ  values. The 

IMC2 method showed the worst performance for larger Dσ  values since the 10 different sample points were 

generated for 01.0=Dσ . For IMC1, there are two major reasons for the discrepancy at larger Dσ  values. 

Firstly, the sample point locations were decided by the EI maximization criteria in the optimization procedure, that 

did not take into account the total model accuracy. Therefore, the distribution of sample points was biased towards 

the optimization purpose. Secondly, several optimized design variables were located on the bound values. 

Therefore, various of the function calls for the IMC simulation were at the outside of design space where there was 

no sample point. Although the Kriging model can predict function values even the outside of the design space, this 

essentially corresponds to extrapolation and is less accurate than interpolation. 

In Fig.19, the CDFs of the objective function at 01.0=Dσ  are compared. The CDF of a quadratic 

surrogate model constructed by using the gradient/Hessian information at the center location is also included in 

Fig.19. Although the CDFs of the IMC approaches showed slightly better agreement with the NLMC results than 

the quadratic model, the accuracy difference is not justified by the additional complexity and cost. In this case, 

additional sample criteria will be essential to achieve an efficient design optimization and accurate uncertainty 

analysis simultaneously. 
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Fig.17 Variations of Mean of Objective Function by Uncertainty Analysis 

 

Fig.18 Perturbed Airfoils (thin) from the Mean Airfoil (thick) 

 

Fig.19 Comparison of CDFs at 01.0=Dσ  
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VI. Conclusion 

In this paper, gradient/Hessian-enhanced surrogate models have been developed based on direct/indirect 

Kriging approaches. The direct approaches showed better performance than the indirect approaches, thanks to the 

exact enforcement of derivative information and better matrix conditioning. Firstly, analytical function fitting 

problems were investigated. The accuracy of surrogate models was sufficiently increased by adding 

gradient/Hessian information in the Kriging formulation. It was demonstrated that the gradient/Hessian-enhanced 

surrogate models were the most accurate and computationally least expensive even when taking into account the 

computational costs of gradient/Hessian evaluations. Design optimization and uncertainty analysis on analytical 

functions also showed the superiority of the developed gradient/Hessian-enhanced direct Kriging approach as well 

as IMC simulation utilizing the surrogate model. 

Then, the developed Kriging model approaches were used to fit aerodynamic functions of a 2D airfoil in 

which Mach number and angle of attack were utilized as the parameters. It was confirmed that adjoint derivative 

information was helpful to construct accurate surrogate models for the practical non-linear aerodynamic functions. 

Finally, a drag minimization problem was solved by combining the developed surrogate models with the 

efficient CFD gradient/Hessian evaluation methods. One could observe a faster reduction of the objective function 

value for gradient/Hessian-enhanced model approaches which will be more beneficial in higher dimensions and/or 

for more complex physical models. The uncertainty analysis at the obtained optimal location was also conducted 

and showed reasonable results compared to full non-linear Monte-Carlo simulations at much lower cost. 

Thus, the developed gradient/Hessian-enhanced direct Kriging approach is promising for efficient design 

optimization, aerodynamic database construction and uncertainty analysis problems. The developed methods will 

be further applied and validated in more practical and higher dimensional problems. 
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