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Abstract

Background: Production of proteins as therapeutic agents, research reagents and molecular tools frequently depends on
expression in heterologous hosts. Synthetic genes are increasingly used for protein production because sequence
information is easier to obtain than the corresponding physical DNA. Protein-coding sequences are commonly re-designed
to enhance expression, but there are no experimentally supported design principles.

Principal Findings: To identify sequence features that affect protein expression we synthesized and expressed in E. coli two
sets of 40 genes encoding two commercially valuable proteins, a DNA polymerase and a single chain antibody. Genes
differing only in synonymous codon usage expressed protein at levels ranging from undetectable to 30% of cellular protein.
Using partial least squares regression we tested the correlation of protein production levels with parameters that have been
reported to affect expression. We found that the amount of protein produced in E. coli was strongly dependent on the
codons used to encode a subset of amino acids. Favorable codons were predominantly those read by tRNAs that are most
highly charged during amino acid starvation, not codons that are most abundant in highly expressed E. coli proteins. Finally
we confirmed the validity of our models by designing, synthesizing and testing new genes using codon biases predicted to
perform well.

Conclusion: The systematic analysis of gene design parameters shown in this study has allowed us to identify codon usage
within a gene as a critical determinant of achievable protein expression levels in E. coli. We propose a biochemical basis for
this, as well as design algorithms to ensure high protein production from synthetic genes. Replication of this methodology
should allow similar design algorithms to be empirically derived for any expression system.

Citation: Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, et al. (2009) Design Parameters to Control Synthetic Gene Expression in Escherichia coli. PLoS
ONE 4(9): e7002. doi:10.1371/journal.pone.0007002

Editor: Grzegorz Kudla, University of Edinburgh, United Kingdom

Received July 1, 2009; Accepted August 17, 2009; Published September 14, 2009

Copyright: � 2009 Welch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was financially supported by NSF SBIR grant no. 0638333. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors declare competing financial interests: DNA2.0 performs gene design optimization as a free service with the genes that it sells.
The authors also declare competing interests in the form of two pending relevant US patent applications, nos. 12/184,240 and 12/184,234. Austin Gurney declares
no competing interests.

* E-mail: mwelch@DNA20.com

Introduction

Protein expression is important at many different levels of

biological research. The cost of production for biopharmaceuticals

and recombinant research reagents depends in large part upon the

protein expression levels that can be achieved; construction of

metabolic pathways requires that genes moved from one organism

express protein in another; even biochemical studies of funda-

mental processes are frequently hampered or made impossible

because sufficient amounts of protein cannot be obtained.

Genetic constructs for the expression of proteins now frequently use

synthetic DNA. This is because sequence information from genome

and metagenome sequencing projects has increased exponentially

over the last decade [1], but most of these sequences are not available

as physical DNA. The increase in speed and decrease in cost of

synthetic DNA provides a convenient route to obtain genes encoding

these virtual proteins [2]. Modifications of the natural DNA sequences

are often introduced into the synthetic genes with the aim of

enhancing expression, particularly in heterologous hosts.

Designing a gene to express a protein requires choosing from an

enormous number of possible DNA sequences [3]. Most current

synthetic gene design strategies are guided by mimicry of natural

gene characteristics thought to be relevant for increased expression

[4]. A variation on this approach is to copy the codon bias of a

subset of highly-expressed native host genes [5] or even to

exclusively use the codons most common in highly expressed genes

[6]. The codon bias of a gene toward common codons is reflected

in the Codon Adaptation Index (CAI) [7]. While genes designed to

match host bias or maximizing CAI have expressed successfully in

many instances [8,9], clear relationships between these practices

and expression are lacking. Most reported ‘‘codon optimization’’

successes describe only two genes: one natural and one synthetic

[8]. Since only successful optimization experiments are published,

and published examples generally differ in many respects, one

cannot draw reliable conclusions on how best to design synthetic

genes [3,9,10].

A recent study of expression of a diverse library of GFP genes

in E. coli concluded that expression was limited primarily at
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initiation of translation [11]. Impaired expression correlated

with a strong mRNA secondary structure near the translational

start site, but no dependence on CAI or overall GC content was

observed. However, a significant body of literature suggests that

synonymous codon usage beyond the initiation region can

impact expression [3,8,9]; for example E. coli strains over-

expressing rare tRNAs can significantly improve gene expres-

sion [12–14].

In this work we have examined the relationship between protein

expression and gene sequence characteristics, using two different

proteins of commercial value for which expression levels were

limiting. We designed and independently synthesized about 40

genes encoding each of these proteins; synonymous codon

variation caused more than 40-fold variation in expression. We

identified sequence properties that correlated with expression by

combining partial least squares regression [15,16] with genetic

algorithms [17]. Variation among both gene sets was highly

correlated to the codon biases for 10 amino acids. We tested the

predictive value of these correlations by designing and testing

several new genes; expression levels of these genes were high and

well predicted. Finally, we discuss a possible biochemical basis for

the codon preferences we observe.

Results

Synonymous substitutions cause expression differences
Two genes were chosen as targets for systematic exploration of

the effect of synonymous codon usage on expression; one encoding

the DNA polymerase of Bacillus phage W29 [18], the second

encoding a synthetic single-chain antibody fragment (scFv)

developed by OncoMed, Redwood City, CA. These genes were

selected because they encode evolutionarily, structurally and

functionally different proteins. There was also immediate com-

mercial value in improving their expression as well as expression of

the general classes they represent.

Two initial variant sets were designed: 21 variants of the

polymerase gene and 24 of the scFv. Only synonymous codon

usage within the open reading frame was varied. Gene variants

were designed by back-translating the protein sequence using a

Monte Carlo repeated random sampling algorithm to select

codons probabilistically from codon frequency lookup tables

[19]. Different sequences were obtained from different lookup

tables, and by independently controlling predicted mRNA

structures and GC bias in the first 15 codons (see Supplementary

Material). The average pairwise DNA sequence identity was

79% and 82% within the scFv and polymerase variants,

respectively.

Gene variants were synthesized, sequence-verified and cloned

under control of the T7 promoter (Materials & Methods).

Expression of full-length protein was directly measured by

polyacrylamide gel electrophoresis for a minimum of three clones

for each gene variant (see Fig. 1). Sequences and expression levels

for all genes in this study are provided in Table S1. Protein yields

varied from undetectable (,5 mg/ml of culture at A600 = 3.0) to

,68 mg/ml (estimated to be ,10% of total cell protein) for the

polymerase, and to ,200 mg/ml (,30% of total cell protein) for

the scFv. Synonymous codon changes thus caused more than 40-

fold differences in expression.

Figure 1. Protein expression from variant genes. Equal amounts of bacterial lysates were separated by polyacrylamide gel electrophoresis and
stained with Sypro Ruby (Pierce). Three independent clones for each variant were measured. Variant names are indicated above the gel lanes. Also
shown are molecular weight standards (M); negative control samples (C); BSA mass standards (Stds). Red arrows indicate positions of full-length phi29
DNA polymerase (top panel) or scFv (bottom panel). BSA standard lanes include 500, 250, 125, 62.5, and 25 ng total protein (top panel, left to right) or
1000, 500, 250, 125, and 50 ng total protein (bottom panel, left to right).
doi:10.1371/journal.pone.0007002.g001
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Expression variation is caused by distributed sequence
differences

Sequence characteristics affecting expression could be local (e.g.

mRNA structures and rare codon clusters) or global (e.g. codon

usage and GC content). To distinguish between localized or

distributed effects, four sets of chimeras were constructed. For each

set, a well-expressed gene and a poorly-expressed gene were

divided into three segments (59, middle and 39), chimeras were

synthesized and their expression determined (Table 1).

Chimeras between polymerase genes P19 (high expresser) and P15

(low expresser) showed highly distributed effects. The 59 or 39

segments of P19 when individually substituted into P15 increased

expression over that seen for P15 alone, with the strongest effect

contributed by the 39 segment. Conversely, any one segment of P15

was deleterious when substituted into P19, with the strongest effect

again seen for the 39 segment. In contrast, expression of chimeras of

P7 (low expresser) and P20 (high expresser) showed a strong

dependence on the parental origin of the middle segment with

relatively little contribution from the 59 and 39 segments. Chimeras

between scFv genes A1(high expresser) and A17 (low expresser)

correlated strongly with the parent of the 39 segment, while chimeras

between scFv genes A1 and A11 (low expresser) expressed protein at

comparable levels to the parent of the 59 segment (first 43 codons).

These results show that protein expression levels can depend on

elements distributed throughout the gene and are not confined to any

specific region. Each of A11, A17 and P7 appeared to have a

dominant ‘‘poisoning’’ segment; replacement of that segment with

the corresponding segment from a good expresser boosted expression

close to the level seen in the good expresser. However the position of

the deleterious segment was different in each of these chimera sets,

while in the P15/P19 set each segment contributed similarly.

We analyzed all gene variants, attempting to correlate

expression levels with properties that have been suggested to

affect expression (see Table S1). We could not find correlation with

previously suggested deleterious motifs, such as predicted 59 or

internal mRNA secondary structures, GC bias in the first 15

codons, content, runs of C or G, transcriptional terminator motifs

[20,21], internal Shine-Dalgarno-like motifs [22], RNaseE cleav-

age sites [23], or over- or under represented codon pairs [24,25].

This suggested that expression level differences were either

determined by several unidentifiable elements or were influenced

by a distributed sequence property such as codon usage.

Synonymous codon choice correlates with expression
Models to predict expression as a function of codon usage were

constructed using Partial Least Squares (PLS) regression [15].

Models were calculated from the polymerase and scFv variant sets

separately and in combination. Initial regression analysis with all

sense codons suggested that frequencies of only a subset of codons

could explain most expression variation. A genetic algorithm was

used to evolve 888 highly-predictive unique PLS models, each

with a reduced set of codons (average of 14.2 codons per model).

The predictions of the best models are shown in Figure 2.

Using on average 80% of the 34 datapoints in the polymerase

set, the model predicted expression from the remaining 20% of

sequences with a correlation coefficient of 0.69 (Figure 2A).

Genetic algorithm selection identified 6 codons representing biases

for 6 different amino acids (Gly, Leu, Asp, Glu,Tyr, and Ala) as

most critical for modeling. Five of these 6 codons (all but Ala)

encode the 5 most utilized amino acids in the polymerase and 5 of

6 (all but Leu) encode amino acids that are utilized at levels above

that of average genes in E. coli.

Initial modeling of scFv expression gave results similar to the

polymerase. However, 9 scFv gene variants showing no or barely

detectable expression were difficult to explain along with the

remainder of the set. When these 9 variants were not included in

the model, a strongly predictive model was obtained (R2 = 0.86,

Cross-Val R2 = 0.68; Fig. 2B). Genetic algorithm selection

identified 5 codons representing 4 amino acids (Ser, Thr, Ala,

and Val) as most significant.

The two datasets were combined by normalizing expression of each

gene to the highest expressing gene in its set. A PLS model of the

combined data is shown in Figure 2C (R2 = 0.77, Cross-Val R2 = 0.65).

Fitting statistics for this model are shown in Table S3. As a further

validation of low sensitivity to over-fitting of our method and

significance of the correlations observed, the genetic algorithm was

applied to datasets where the association of expression levels to variants

was randomized. No predictive model based on codon frequency could

be obtained after randomization for either the polymerase dataset (Best

model: R2 = 0.037, Cross-Val R2 = 0.004), the reduced scFv dataset

(Best model: R2 = 0.44, Cross-Val R2 = 0.30) or the combined dataset

(Best Cross-Val R2 = 0.11). We conclude that variation in expression

within our dataset is highly correlated to codon usage.

Preferred codons are not those used most frequently by
E coli

Ten amino acids were consistently represented in all 888

evolved models (Table 2), suggesting they are critical for optimal

prediction. All other amino acids were represented in fewer than

30% of the models. Summary codon usage data for the 10 highly-

represented amino acids is shown in Table 2. The codon bias

observed for highly expressed genes of the dataset is different from

codons used at highest frequency in naturally highly expressed E.

coli genes [5,7]. We also see no correlation between codon bias of

highly expressed native E. coli genes and the codon regression

vectors obtained from PLS regression of our data (Table S3). For

example, although Ser-UCU is preferred in highly expressed E. coli

genes, our model indicates that Ser-AGC is preferred: it is used 7

times more often than UCU in our most highly expressing genes.

For threonine, highly-expressed E. coli genes use ACC 4 times as

often as ACG; our model suggests that ACG should be used more

often than this, and our most highly expressed variants use ACG at

over half the frequency of ACC.

Table 1. Expression of 4 chimeric gene sets.

A: P15 P7 A17 A11

B: P19 P20 A1 A1

A A A 0.0960.02 0.2460.03 0.2260.07 nd

B A A 0.1360.02 0.1960.03 0.3260.05 0.6660.14

A B A 0.0960.01 0.4860.02 0.3160.05 nd

A A B 0.2260.07 0.1860.02 0.7460.18 nd

A B B 0.4360.03 0.5660.03 0.8560.15

B A B 0.4560.05 0.3260.03 0.9160.16

B B A 0.3260.04 0.7960.05 0.2860.02

B B B 160.29 160.23 160.12 160.12

Expression levels are normalized to that of the highest expressing parent of
each chimera set. Crossover points between three contiguous gene fragments
for each set were as follows: For the P15/P19 chimera series, genes were split
after codons 75 and 325 of the 575-codon polymerase genes. For P7/P20
chimeras, genes were split at codons 25 and 300. For A17/A1 and A11/
A1chimeras, genes were split at codons 43 and 163 of the 281-codon scFv
genes. ‘‘nd’’ indicates that expression was not detected. Standard errors for a
minimum of three replicates are shown.
doi:10.1371/journal.pone.0007002.t001
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Bias towards codons that are most used in highly expressed

native E. coli genes (increasing the CAI [7]) is widely used as the

basis of gene optimization [26]. The discrepancy between these

codons and those that our PLS model indicates are important is

therefore significant. Plotting the CAI score against the expression

obtained for each gene in our study confirmed that CAI has no

value in predicting gene expression for either gene set (Fig. 3A).

Another factor that has recently been shown to be important for

expression of green fluorescent protein is the structure of the

mRNA around the initiating AUG [11]. For the most part, we see

no correlation between the energy of RNA structure in this region

and expression (Fig. 3B), although a few of the most structured

scFv genes show very poor expression that was not predicted by

our codon usage model.

59 mRNA affects expression in some scFv variants
From the analysis expression levels of the variant chimeras, we

observed that the 59 segment of A11 appeared highly deleterious for

expression (Table 1). This poorly expressing variant is predicted to

express highly based on our codon usage model. Several reports have

implicated the 59 coding region as especially important in modulating

translation initiation [3,11,27–33]. A recent study implicated mRNA

structure formed in the region from 24 to +38 relative to the start of

the ORF (starting A identified as position 1) as particularly deleterious

for green fluorescent protein expression [11]. The 59 regions of

variants A11, A14, A16, and A19, all of which expressed at levels

below those predicted by our codon usage model also showed

stronger than average predicted mRNA secondary structure around

the site of translational initiation (Table S1). We therefore tested

whether replacing the 59 segment of 6 other antibody genes would

increase protein expression levels as it had for A11. Three of 6 of the

non-expressing antibody genes were clearly improved when their 59

segments (the first 15 codons) were replaced by that of A1. An A1_14

chimera expressed at similar levels to A1. Chimeras A1_19 and

A1_24 showed improved but lower expression than A1_14. Barely

detectable expression was seen for the A1_7 and A1_16 chimeras and

no expression was seen for chimera A1_8, indicating that something

other than the 59 leader is limiting expression of these gene variants.

Four of these 6 gene variants (all that show significantly improved

expression and A1_8) are well predicted from their codon usage by

the PLS model, as shown in Figure 4.

None of three weakly expressing polymerase variants (P2, P11,

and P16) were detectably improved by exchange of the first 15

codons with those of the highly expressed P19 (data not shown).

Clearly, these genes are poor due to downstream elements or

global features. All three were predicted to be low expressed based

on codon usage by the PLS model.

Variation among gene chimeras is largely explained by
codon usage

The variation in the distribution of critical sequence determi-

nants among variant gene chimeras is described in Table 1.

Chimeras between polymerase variants P15 and P19 showed that

expression levels resulted from sequence properties that were

distributed throughout the gene, whereas other chimera sets

showed different emphasis on particular gene fragments. With the

exception of the chimeras made with one parent showing

undetectable expression, indicating a deleterious 59 mRNA leader,

the variation among the chimeras is largely explained by the

codon usage based PLS model, as shown in Figure 5.

We interpret these results to mean that codon usage is a strong

determinant of the overall expression level that can be obtained

from a gene, but that this level can be reduced if deleterious

Figure 2. PLS codon frequency models. For each variant the
measured expression level was plotted against the expression predicted
from a PLS model using genetic algorithm-selected codons. (A) Model
fit for polymerase variant expression data. Blue diamonds indicate the
34 gene training set used to create the model. (B) Model fit for scFv
expression data. Blue diamonds indicate the 24 gene training set used
to create the model. Green triangles are variants from the initial set with
undetectable expression, and which were not used for model building.
(C) Combined model constructed from polymerase variants (34 red
squares) and scFv variants (27 blue diamonds). Expression in each set
was normalized to the highest expression level in that set ( = 3). R2(CV)
indicates the correlation coefficient for the fit of the model in cross-
validation (see Materials and Methods). Variants used to provide
datapoints for construction of the models are indicated in Table S1.
doi:10.1371/journal.pone.0007002.g002
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sequence elements are present, for example those that form mRNA

structures that may interfere with the initiation of translation.

Codon usage models supported by design and testing of
new gene variants

Although the PLS model uses codon usage to predict gene

expression for two different gene sets, it does not directly provide

an optimal codon usage. Rather it indicates which codons should

be used more and less often than their average use in the dataset

(see Table 2). An optimal solution from this kind of experiment

typically requires several iterations of modeling and testing [34],

but this is unnecessary to demonstrate that expression depends

upon the frequencies of particular codons. Instead, we tested this

hypothesis by designing a set of new genes using new codon bias

Table 2. Codon biases that predict expression in PLS models of the combined datasets.

AA Codon GA Incl. Fc, HE_coli Fc, Dataset Fc, Best Variants %A, scFv %AA, Pol %A, coli tRNA sensitivity

Ala GCA 1.00 0.24 0.17 0.24 6.4 4.5 10.2 1.9

Ala GCC 0.07 0.16 0.12 0.19 21.5

Ala GCG 0.38 0.32 0.47 0.44 1.9

Ala GCU 0.90 0.28 0.24 0.12 2.0

Gly GGA 1.00 0.02 0.03 0.00 11.7 7.1 8.2 0.6

Gly GGC 0.00 0.43 0.41 0.39 12.5

Gly GGG 0.07 0.04 0.03 0.00 0.3

Gly GGU 0.02 0.51 0.53 0.60 12.5

Phe UUC 0.43 0.71 0.55 0.55 3.2 5.2 3.3 NA

Phe UUU 0.68 0.29 0.45 0.45 NA

Ser AGC 1.00 0.24 0.32 0.68 12.5 4.2 4.7 3.4

Ser AGU 0.06 0.04 0.05 0.00 3.4

Ser UCA 0.01 0.05 0.05 0.02 7.5

Ser UCC 0.20 0.27 0.23 0.13 35.5

Ser UCG 0.00 0.07 0.08 0.05 4.4

Ser UCU 0.05 0.33 0.27 0.10 7.9

Lys AAA 0.27 0.79 0.68 0.51 3.9 11.3 6.5 NA

Lys AAG 0.93 0.21 0.32 0.49 NA

Pro CCA 0.19 0.15 0.13 0.10 3.6 3.8 3.9 32.0

Pro CCC 0.02 0.02 0.03 0.00 2.1

Pro CCG 0.86 0.72 0.75 0.81 13.3

Pro CCU 0.04 0.11 0.08 0.09 3.7

Asp GAC 0.43 0.54 0.50 0.54 6.0 7.3 5.8 NA

Asp GAU 0.74 0.46 0.50 0.46 NA

Leu CUA 0.00 0.01 0.01 0.00 7.5 7.7 8.5 26.9

Leu CUC 0.00 0.08 0.05 0.03 24.8

Leu CUG 0.16 0.77 0.68 0.78 5.5

Leu CUU 0.70 0.06 0.05 0.02 24.8

Leu UUA 0.06 0.03 0.06 0.03 3.0

Leu UUG 0.54 0.05 0.15 0.14 0.6

Gln CAA 0.69 0.19 0.31 0.45 5.0 2.3 3.5 32.2

Gln CAG 0.35 0.81 0.69 0.55 14.4

Thr ACA 0.14 0.04 0.05 0.00 8.2 6.3 5.4 5.7

Thr ACC 0.00 0.54 0.61 0.57 20.9

Thr ACG 0.99 0.13 0.14 0.33 2.4

Thr ACU 0.00 0.29 0.19 0.10 6.6

A genetic algorithm was used to identify codon biases that best explained expression levels for the combined datasets. The algorithm evolved 888 unique codon
subsets with root mean square error in cross-validation within 5% of that of the best predictive subset. These evolved subsets contained an average of 14 codons each.
The codon biases for 10 amino acids were represented by at least one codon in greater than 99% the majority of the subsets. All other amino acids were represented at
less than 30% in the subsets. Codon frequency data for the 10 highly represented amino acids is shown. Column 3 (‘‘GA incl.’’), frequency of inclusion of the specified
codon in the 888 selected subsets. Fc, codon usage frequency per cognate amino acid, shown for a subset of naturally highly expressed E. coli genes (‘‘HE_coli’’) [5], for
the entire combined dataset (‘‘Dataset’’), and for 10 highly expressed genes among the dataset (‘‘Best variants’’; see text). %AA, percent usage of the indicated amino
acid in the scFv and polymerase (‘‘Pol’’) genes as well as that measured for the E. coli proteome (see Materials and Methods). ‘‘tRNA senstitivity’’ is an estimate of the
sensitivity of the charged cognate tRNA supply to amino acid limitation [36].
doi:10.1371/journal.pone.0007002.t002
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tables, measuring their expression and comparing with that

predicted by the model.

We tested three different codon biases, none of which we

expected to be optimal, but all predicted to give better than

average expression in the dataset. These frequencies are shown in

Table S2. The expression of 2 scFv variants (A_FreqA and

A_FreqB) and 2 polymerase variants (P_FreqB and P_FreqC)

synthesized using these tables are shown in Figure 6, and their

expression levels are also given in Table S1. All of these genes

expressed extremely well, and as predicted by the PLS model. In

contrast, an additional scFv variant, A_HiCAI, was designed using

codons that occur frequently in highly expressed native E. coli

genes. This gene also used identical coding to the highest

expressed variant A1 for the first 15 codons to avoid possible

deleterious mRNA structure near the translational initiation site.

Known toxic motifs were avoided in the design. A_HiCAI’s

expression, accurately predicted by the PLS model, was only 15%

of the levels obtained for A_FreqA or A_FreqB. This data supports

the conclusion that controlling gene codon frequencies, but not

maximizing CAI, is critical for optimal protein expression.

Figure 3. Expression is not predicted by Codon Adaptation
Index or mRNA structure. The codon adaptation index [7] (part A)
and the strength of mRNA secondary structure from position 24 to +38
relative to the initiating AUG (part B) were calculated for each variant
synthesized in this study and plotted against the expression level
measured for that variant. Blue diamonds indicate scFv variants. Red
squares indicate polymerase variants. Expression levels are normalized
to highest expressing variant for each set (equal to 3).
doi:10.1371/journal.pone.0007002.g003

Figure 4. Modification of 59 sequence improves the perfor-
mance of some scFv variants. For each scFv variant the measured
expression level was plotted against the expression predicted from a
PLS model using genetic algorithm-selected codons. Blue diamonds
indicate the 24 gene training set used to create the model, Green
triangles are variants from the initial set with undetectable expression.
Red squares are new variants created by combining the first segment
(the first 15 codons) of variant A1 with the remainder of these 6 poorly-
expressed variants. Arrows indicate changes in predicted and measured
expression upon 59 codon exchange. Variants represented as green
triangles or red squares were not included in the training set from
which the model was built. Variant A1_11_11, in which a larger 43
codon portion of the 59 section of the A11 gene was replaced with that
of A1, is also indicated for comparison.
doi:10.1371/journal.pone.0007002.g004

Figure 5. Prediction of variant chimera expression by the
combined dataset PLS model. Expression predicted by the
combined model shown in Figure 2C for the subset of chimeric
variants. Each chimera series is indicated by different symbols as shown
in the legend.
doi:10.1371/journal.pone.0007002.g005
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Discussion

By designing and synthesizing 81 individual genes encoding two

different proteins, we have found that sequence differences entirely

confined to non-coding changes within the open reading frame

caused at least 40-fold differences in protein expression. We were

able to create predictive sequence-expression models based on a

strong correlation between expression and the codon bias of a

subset of amino acids. The model correctly predicted the

expression of variants not included in the model-building, and of

new variants designed using improved codon bias tables.

Most of the codons that were identified as influential for

expression encode amino acids that are highly represented in one

or both proteins studied (Table 2). However, the most favorable

biases for expression clearly do not correspond to those found in

highly expressed native E coli genes [5,7]. This contradicts a

widespread gene design principle that mimicking the codon bias of

the host or of a selected group of host genes will ensure protein

expression [6,26]. The rationale for this approach has been that

tRNA availability could limit translational elongation. However,

translation is not limited directly by tRNA levels, but by the

availability of amino-acylated (charged) tRNA [35].

In 2003, Elf et al [36] predicted that charging of some tRNA

isoacceptors would be much more sensitive than others to

perturbations of the recharging rate. These are tRNAs used at

high frequency relative to their level in the cell. Subsequently,

these predictions were experimentally confirmed for a subset of

tRNAs [37]. Furthermore, heterologous overexpression is predict-

ed to deplete intracellular amino acid and charged tRNA

concentrations depending on the amino acid composition of the

overexpressed protein [38,39]. This may have a direct impact on

translation rate and may also induce metabolic responses

deleterious for expression yield [38].

PLS modeling suggests that most of the variation in our dataset

can be explained by codons for serine (AGC favored and UCU

disfavored), threonine (ACG favored), and leucine (UUG favored).

These results fit well with the predicted sensitivities to amino acid

starvation of the isoacceptor tRNAs that recognize these codons

[36]. The tRNA pools for all three favored codons (AGC, ACG

and UUG) are the least sensitive to starvation for their respective

amino acids (Table 2). The relative tRNA charging levels during

starvation have been measured for threonine and leucine [37].

From this data and from the tRNA abundance [40] we can

estimate the number of copies of each charged and uncharged

tRNA per cell (Table 3). Considering either absolute numbers of

charged tRNAs or the ratio of charged to uncharged tRNAs,

UUG becomes a more attractive codon for encoding leucine

relative to CUG as recharging is limited by starvation. Likewise

ACG improves greatly relative to ACC for encoding threonine.

Figure 6. New gene variants express as predicted by the
combined PLS model. For each variant the measured expression
level was plotted against the expression predicted from a PLS model
using genetic algorithm-selected codons. Polymerase variants (34 red
squares) and scFv variants (27 blue diamonds) were included in the
training set, expression in each set was normalized to the highest
expression level in that set ( = 3). Green triangles show measured and
predicted expression of 5 new genes not included in the training set.
Correlation coefficients represent fits of the entire training set.
doi:10.1371/journal.pone.0007002.g006

Table 3. Charging of leucine and threonine codons under starvation conditions.

Codon tRNA1
# per
cell1

# per
codon1

Relative
charging2 # Charged

Total # Charge
per codon

Total %
charged

CUG Leu1 4470 5136 0.086 384 410 8

Leu3 666 0.039 26

UUG Leu4 19133 2944 0.24 459 6763 23

Leu5 10313 0.21 217

ACG Thr2 541 1457 0.2 108 190 13

Thr4 916 0.09 82

ACC Thr1/3 1020 1020 0.081 83 83 8

ACA Thr4 916 916 0.09 82 82 9

ACU Thr1/3 1020 1936 0.081 83 165 9

Thr4 916 0.09 82

Charging of tRNAs and the codons that they recognize calculated from published data.
1From Dong, et al [40].
2From Dittmar, et al [37].
3We note that discrepancy between studies in estimates of total tRNA for Leu4 and Leu5 have been reported [48].
doi:10.1371/journal.pone.0007002.t003
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Both trends are consistent with the codon preferences identified by

our PLS model.

From this data it is tempting to speculate that much of the

variation we see in expression is influenced by charged tRNA

depletion and/or induction of a metabolic response from the host

organism. High translation rates deplete the translational machin-

ery [41]. As amino acid charging of tRNA becomes limiting, only

those tRNAs that can maintain charge can support high

translation levels. The optimal codon bias for a gene probably

depends both on maintaining high levels of charged tRNAs and

minimizing the levels of uncharged tRNAs which may inhibit

translation and/or cause a deleterious metabolic response

[38,39,41].

In contrast with a recent study of GFP variants [11], we saw

relatively little influence of mRNA structure near the initiation site.

In three scFv genes weak expression, poorly predicted by the

model, correlated with stronger than average mRNA structure in

this region. Replacing the first 15 codons with a less-structured

synonymous equivalent restored expression to levels predicted by

the model, suggesting that mRNA structure may limit expression

of these genes. In reconciling our results with those of Kudla et al,

we note that the predicted 59 mRNA structures of almost all of our

genes are significantly weaker than those found to have a

significant effect in the GFP study: only one of our gene variants

had a free energy less than 29 kcal/mol in this region (Table S1).

Indeed, little correlation was observed in the GFP study between

59 mRNA structure and expression for genes with structure

strength .29 kcal/mol despite greater than 20-fold variation in

expression among these genes [11]. Inhibition of initiation by

especially strong mRNA structure would obscure effects resulting

from factors that influence elongation, such as codon usage, which

dominates our results.

Although we were unable to find any predictive correlations

between expression and any parameter other than codon

frequency, other sequence elements may contribute to some

variation observed and could be important in optimal gene design.

Differences in mRNA stability could also cause at least some

expression variation observed. The translation rate itself can

influence mRNA degradation rate making cause and effect in this

case difficult to disentangle [42–44].

As direct synthesis replaces classic cloning as the preferred path

for constructing functional genetic elements, it is critical to develop

gene design algorithms for reliable heterologous expression. Here

we have shown that sequences beyond the translational initiation

region are critical and that codon usage is a key determinant of

expression yield. Regardless of the mechanism by which codon

bias affects expression, systematic analysis of the relationship

between gene sequences and expression will be a powerful tool to

refine our design algorithms, both for E. coli and other expression

hosts.

Materials and Methods

Gene synthesis and protein expression
Synthetic gene variants and chimeras were all made by standard

in-house procedures essentially as previously described [45] and

cloned into a pET24a expression vector (EMD, Madison, WI)

under control of the T7 promoter, between the XbaI and EcoRI

restriction sites. Each construct was completely sequenced in both

directions to ensure consistency with the designed sequence. Each

variant plasmid was transformed into E. coli expression host strain

BL21(DE3) pLysS (Invitrogen, Carlsbad, CA). BL21(DE3) pLysS

was chosen as the host for all expression studies described. The

low-level expression in this host of T7 lysozyme, an inhibitor of T7

RNA polymerase, gives tight repression of heterologous expression

prior to induction to minimize potential gene toxicity which could

affect data quality.

Prior to protein expression analysis of the variants, expression

was analyzed for multiple variants showing a range of expression

levels to determine appropriate expression time and temperature.

Strong, consistent expression was achieved at 30uC, a commonly

used temperature for heterologous expression in E. coli. Time

courses at 30uC showed expressed protein levels increasing to a

maximum after approximately two hours, as the cells entered

stationary phase growth, and expression remained steady for at

least five hours. Relative protein expression levels between these

variants were consistent as protein accumulated during growth

phase and were maintained in stationary phase (data not shown).

For our variant analysis we chose to express for four hours at

30uC.

At least three independent isolates for each gene were picked

and cultured overnight in 2 ml Luria Broth (LB) containing

25 mg/ml kanamycin and 25 mg/ml chloramphenicol. Overnight

cultures were diluted 50-fold in fresh media and incubated at 37uC
until the cells were in mid-log growth (OD at 600 nm = 0.6).

Expression was induced by addition of IPTG to 1 mM and

incubation for four hours at 30uC. Final optical densities of

cultures were measured and equivalent amounts of culture were

analyzed by polyacrylamide gel electrophoresis. Gels were stained

with Sypro Ruby (Pierce), visualized by fluorescence imaging, and

protein band intensities quantified using TotalLab100 image

analysis software (Nonlinear, Inc). Each gel contained protein

concentration standards to calibrate band intensity. In each

experiment, a consistent reference variant was co-expressed in

triplicate. For analysis of polymerase expression, the reference was

a phi29 DNA polymerase variant identical to variant 21 but

containing two differences in the 59 untranslated region. For

analysis of the scFv variants, Variant A13 was used as the

reference. Reference variants were used to correct for experiment

to experiment variation in yield. Measured expression levels are all

relative to these references. Reported values in mg/ml are

normalized to the average expression level of the references over

the sum of experiments. The detection limit of the assay was

approximately 5 mg protein per ml culture at an A600 = 3. The

standard error of measured expression for variant repeats was

generally ,20% of the mean.

Design of initial gene variant sets
Gene variants were designed by back-translating the protein

sequence using a Monte Carlo repeated random sampling

algorithm [19]. This algorithm selects a codon for each position

at a probability defined in a codon frequency lookup table. A

variety of different lookup tables and constraints were applied to

create variant designs that differed in a number of parameters that

have been associated with expression effects in the literature.

Global codon usage was primarily varied in bias toward or away

from codons used preferentially in either highly expressed or

average native E. coli genes and inclusion or exclusion of naturally

rare codons. We also specifically varied the first 15 codons toward

higher or lower GC content. Design of Experiments methodology

was used to minimize co-variation of these constraints and thus

maximize diversity among the variants and improve our ability to

distinguish independent contributions. We also analyzed and

edited mRNA structure to minimize co-variation of structure,

internally or near the translational initiation site, with codon usage

constraints. We also minimized co-variation of codon bias with G/

C islands, which might promote frame-shifting, by selectively

avoiding runs of consecutive G and/or C greater than 6
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nucleotides for half of the variants. Due to the use of Monte-Carlo

sampling in the gene design, all of these variants were highly

divergent in sequence identity from each other. The average

pairwise DNA sequence identity was 79% within the 24 member

scFv dataset and 82% within the 21 member polymerase dataset.

This broadly distributed dataset ensures that most global sequence

variables are sampled, either as a direct consequence of the design,

or as an indirect consequence of the varied dataset. Except where

restriction sites were fixed in the scFv genes, no contiguous string

of nucleotides longer than five nucleotides was conserved

throughout either set. With the exception of codons used

extremely infrequently in E. coli, the frequency use of all individual

sense codons showed high variability across the sets. The complete

sequence alignment of both gene variant datasets is available in

Table S1.

PLS analysis and genetic algorithm variable selection
The frequency of occurrence of each codon was calculated for

each gene variant and compiled for all variants that gave

detectable protein expression. Stop codons were not varied in

frequency and thus were not included in the modeling. For

individual phi29 polymerase and scFv gene models, sense codons

with no or redundant information content were excluded from the

dataset. These included ATG for Met, and TGG for Trp and one

codon for each two-codon amino acid, as, for such amino acids,

the frequencies of the two codons are perfectly inversely

correlated. For modeling of the combined dataset, all sense

codons were included.

We used the PLS Toolbox 5.2 software (Eigenvector Research

Inc., Wenatchee, WA) run in the MATLAB environment

(Mathworks, Inc.) to model the relationship between sequence

variables and protein expression data. For all modeling,

independent (e.g., codon frequency) and dependent (expression)

variables were pre-processed by mean centering and scaling to the

standard deviation of variation among the samples included. For

cross-validation, the dataset was randomly split into 5 subsets of

variants and each subset was predicted by PLS models trained on

the remaining 4 subsets. This process was repeated for ten

iterations with different random data splits. The error in

prediction of left-out data was monitored as a function of the

number of latent variables used. In each case described, the

number of latent variables used was limited to the number that

minimized error in cross-validation models to avoid over-fitting.

As an additional check of sensitivity to over-fitting, we randomly

re-assigned expression data to the samples, such that original and

randomized data were not correlated, and assessed the ability of

PLS to construct a model. For all modeling described, such

randomization prevented construction of any predictive model.

For variable selection a genetic algorithm was used to determine

codon subsets that were most predictive of expression (those that

minimized cross-validation error). For typical codon based

modeling, 256 random codon subsets, each consisting of

approximately 30% of the total codon pool, were chosen. PLS

models were created for random cross-validation subsets of the

samples as described above. Codon sets were then ranked in fitness

according to their cross-validation error in prediction of

expression. Variable sets that showed better than median error

in prediction were chosen as parents and randomly pair-wise

recombined to create new progeny subsets. Along with their

parents, these were then evaluated for prediction and best subsets

again selected. At each generation a low level of mutation (random

substitution of variables at a frequency of 0.01) was allowed to

avoid trapping in local optima. This process was continued until

convergence, defined here as fewer than half of the subsets in the

population being unique (i.e., #128 unique subsets in a population

of 256). The entire evolutionary process was repeated 20 times to

further avoid bias from local optima trapping, creating a

population of codon subsets improved in prediction of expression.

The same selection process was also run after random assignment

of expression data as described above. In each case, randomization

prevented the algorithm from identifying a predictive model.

Results were used in to identify codons most enriched in the

evolution, and thus most critical for explaining expression. The

best evolved subsets were used to create working PLS models.

Gene Sequence Analyses
All RNA structure strengths are optimal predicted structures

calculated using the Vienna RNAfold software package using

parameters from Mathews, et al [46]. CAI estimates were

calculated as the geometric mean for test gene codons of the ratio

of the codon frequency in highly expressed E. coli genes divided by

that of the highest frequency codon for each amino acid in those

genes [7]. Codon frequencies in highly expressed E. coli genes were

taken from EMBOSS [47].

Supporting Information

Table S1 Expression data, sequences, and selected sequence

characteristics of all polymerase and scFv variants. Variants

beginning with ‘‘A’’ are scFv genes. Those beginning with ‘‘P’’ are

polymerase genes. Column 2 shows the calculated average

expression level relative to the highest expressing variant for the

same gene set (set to 3). Columns 3 & 4 show the calculated

absolute expression level and standard error (minimum of 3

independent determinations). Columns 5–7 indicate which

variants were included in datasets used for PLS modeling for the

figures indicated. Columns 8 & 9 show the calculated GC content

and codon adaptation index (CAI) [7], respectively, for each

variant. Columns 10 & 11 show the number of occurrences of

codons used at ,10% per amino acid in naturally highly-

expressed and all E. coli genes [5,47], respectively. Column 12

shows the number of occurrences of contiguous runs of G and/or

C of 7 or more nucleotides. Columns 13 & 14 show the strongest

and average RNA structure strength for all 50 nucleotide frames

along the mRNA open reading frame region. Columns 15 & 16

show calculated mRNA structure strengths for two 59 mRNA

windows, one including sequence from 59 to the ribosome binding

site to 50 nucleotides into the open reading frame (242 to +50)

and one identical to that shown to correlate best with expression of

GFP variants [11]. All RNA structure strengths are optimal

predicted structures calculated using the Vienna RNAfold

software package using parameters from Mathews, et al [46].

Column 17 includes the complete DNA sequences of the variant

open reading frames and those for the 59 and 39 untranslated

regions listed in the bottom three columns of the table.

Found at: doi:10.1371/journal.pone.0007002.s001 (0.14 MB

XLS)

Table S2 Codon Frequency Bias Tables. Two codon frequency

tables were constructed as averages of the frequencies found in the

best variants: FreqA from the 4 genes comprised of the 2 most

highly expressing variants of each set (A1, A21, P19, and P20);

FreqB from 10 of the most highly expressing variants (P19, P20,

A1, A21, A1_14, A17_17_1, A17_1_1, A1_17_1, A1_11_11, and

A_FreqA) and FreqC approximates the bias used to create

polymerase variant P19. A fourth set of frequencies, ‘‘HiCAI’’

used codons that are most common in highly expressed native E.

coli genes.
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Found at: doi:10.1371/journal.pone.0007002.s002 (0.03 MB

XLS)

Table S3 PLS model statistics for combined gene sets Statistics

for the PLS model depicted in Figures 2C, 5, & 6 of the

manuscript. Codons listed are those selected by genetic algorithm

to provide minimal error in cross-validation for prediction of the

dataset (see Materials and Methods). The particular model

includes 5 latent variables, which were determined to yield

minimal error in cross-validation. Mathematical descriptions of

model statistics have been published by Eriksson, et al [15].

Statistics shown apply to the datatset preprocessed as described in

Materials and Methods.

Found at: doi:10.1371/journal.pone.0007002.s003 (0.03 MB

XLS)
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