Design Patterns for Developing Dynamically
Adaptive Systems -

Andres J. Ramirez and Betty H.C. Cheng
Michigan State University
3115 Engineering Building
East Lansing, Michigan 48824
{ramir105, chengb}@cse.msu.edu

ABSTRACT

As applications grow in size and complexity, and computing
infrastructure continues to evolve, it becomes increasingly
difficult to build a system that satisfies all requirements and
constraints that might arise during its lifetime. As a result,
there is an increasing need for software to adapt in response
to new requirements and environmental conditions after it
has been deployed. Due to their high complexity, adaptive
programs are generally difficult to specify, design, verify, and
validate. In addition, the current lack of reusable design ex-
pertise that can be leveraged from one adaptive system to
another further exacerbates the problem. To address this
problem, we studied over thirty adaptation-related research
and project implementations available from the literature
and open sources to harvest adaptation-oriented design pat-
terns that support the development of adaptive systems.
These patterns facilitate the separate development of the
functional logic and the adaptive logic. We present these
design patterns within the context of a modeling-based de-
velopment process for dynamically adaptive systems. In or-
der to address the assurance of these adaptive systems, the
patterns also include templates for formally specifying in-
variant properties of adaptive systems.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: Design Patterns; D.2.10
[Design]: Methodologies

Keywords

Design Patterns, Adaptive Systems, Autonomic Systems

*This work has been supported in part by NSF grants CCF-
0541131, CNS-0551622, CCF-0750787, IIP-0700329, and
CCF-0820220, Army Research Office W911NF-08-1-0495,
and the Department of the Navy, Office of Naval Research
under Grant No. N00014-01-1-0744, Ford Motor Company,
and a grant from Michigan State University’s Quality Fund.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICAC 09 Barcelona, Spain

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION

As applications grow in size, complexity, and heterogene-
ity in response to growing computational needs, it is increas-
ingly difficult to build a system that satisfies all require-
ments and design constraints that it will encounter during
its lifetime. Many of these systems are required to run con-
tinuously, disallowing long downtimes where humans look
for places to modify the code. As a result, it is important
to be able to adapt an application’s behavior at run time in
response to changing requirements and environmental condi-
tions [21]. IBM proposed autonomic computing [16] to meet
this need, where a system manages itself based on high-level
objectives from a systems administrator, thus promoting
self-management and self-reconfiguration. Due to their high
complexity, adaptive and autonomic systems are generally
difficult to specify, design, verify, and validate [32]. In addi-
tion, the current lack of reusable design expertise that can be
leveraged from one adaptive system to another further ex-
acerbates the problem. To address this problem, we studied
over thirty adaptation-related research and project imple-
mentations available from the literature and open sources
to harvest and develop adaptation-oriented design patterns
that support the development of adaptive systems. This pa-
per describes the harvested adaptation design patterns and
how they can be used to construct adaptive and autonomic
systems.

Most adaptive systems, including autonomic systems, com-
prise three key elements: monitoring, decision-making, and
reconfiguration. Monitoring enables an application to be
aware of its environment and detect conditions warrant-
ing reconfiguration; decision-making determines what set of
monitored conditions should trigger a specific reconfigura-
tion response; and reconfiguration enables an application to
change itself in order to fulfill its requirements. Not only
must developers design and implement each of these ele-
ments correctly, they must also carefully determine their
interactions. For instance, if the monitoring process fails to
report a significant environmental change, then the decision-
making process may incorrectly trigger an unnecessary (or
even detrimental) reconfiguration. Unfortunately, until re-
cently, most approaches have addressed adaptation using ad
hoc techniques [10]. To address these concerns, researchers
have developed adaptation-enabling frameworks [2, 9], mid-
dleware [18, 23], and language-based support [28]. These
approaches, however, tend to be tightly coupled with spe-
cific domains or technologies, thus limiting their applicabil-
ity with respect to the problem being addressed. Design
patterns, on the other hand, work at the modeling and de-

sign level of abstraction, thereby potentially increasing the
amount of design reuse when compared to other approaches.

This paper presents twelve adaptation-oriented design pat-
terns to facilitate the reuse of adaptation expertise. In the
spirit of the original design patterns by Gamma et al. [8],
each of the adaptation-oriented design patterns were devel-
oped by generalizing several existing design solutions. For
each design pattern, we use platform-independent models
to represent the solution. In addition, by focusing on the
recurring challenges found in monitoring, decision-making,
and reconfiguration activities, our design patterns separate
the adaptive logic from the functional logic. This separation
of concerns facilitates the reuse of adaptation designs across
multiple applications and domains. Similarly, while harvest-
ing each candidate design, we have observed recurring inter-
actions between monitoring, decision-making, and reconfig-
uration processes. This information enables us to suggest
which design patterns should be used together. Lastly, we
extended the design pattern template introduced by Gamma
et al. [8] with a Behavior and Constraints fields. Constraints
contain specific templates that can be used to specify invari-
ant properties that must be satisfied by state-based models
from the Behavior field once the design pattern is instanti-
ated. Since our approach is compatible with the high assur-
ance model-based development process for adaptive systems
previously introduced by Zhang and Cheng [32], automated
verification techniques can be used to analyze the instan-
tiated design patterns against functional and adaptation-
specific properties.

Harvesting design patterns is a difficult and subjective
task for two main reasons. First, it is impractical to ex-
amine all available systems and research projects associated
with adaptation. Second, some of the surveyed systems had
little to no documentation accompanying their design. To
ensure that the design patterns harvested were sufficiently
mature to aid developers in building adaptive systems, we
performed two forms of validation in this work. First, we
found additional instances of our design patterns in other
adaptive systems. In some cases, information from these
new instances enabled us to further generalize the solutions
and refine the design patterns. Second, we re-engineered
an adaptive news web server, originally developed with an
object-oriented framework for adaptive systems by Garlan
et al. [3], from scratch using our design patterns. This case
study was used to compare and contrast a framework ver-
sus design pattern-based approach for developing adaptive
systems.

From this work, we see that recurring design solutions are
being independently used by the adaptive systems commu-
nity. Our pattern collection provides a resource for devel-
opers to take advantage of this experience. Additionally,
instantiated versions of our design patterns are amenable
to automated analysis to ensure a design satisfies certain
properties. The remainder of this paper is organized as fol-
lows. Section 2 presents background information including
an overview of design patterns and an introduction to the
Zhang-Cheng model-based development process [32]. Sec-
tion 3 presents a survey of related work. Section 4 explains
how we created these patterns, provides a table listing all
patterns found thus far, the adaptation pattern template
and an example pattern. Section 5 presents a proof of con-
cept case study that applies several of our patterns in or-
der to re-engineer an adaptive web server. Section 6 com-

pares our pattern-based approach with a framework-based
approach. Lastly, Section 7 presents our main findings and
discusses future directions of work.

2. BACKGROUND

This section briefly introduces two key topics fundamental
to this paper, design patterns and the model-based develop-
ment process by Zhang and Cheng [32].

2.1 Design Patterns

A design pattern is a general and reusable solution to a
commonly recurring problem in design [8]. A software de-
sign pattern does not provide code, nor can it be directly
transformed into code. Instead, a design pattern identifies
and abstractly models the key aspects of a common design
structure that make it useful for creating a reusable object-
oriented design. Each design pattern has four essential ele-
ments [8]. A pattern name is a handle that can be used to
describe a design pattern, its solutions, and consequences.
The problem describes under what context to apply the de-
sign pattern. The solution describes the elements that make
up the design, their relationships, responsibilities, and col-
laborations. Lastly, the consequences describe the results
and tradeoffs of applying the design pattern. Each of these
four essential elements are organized and presented in the
design pattern template fields.

2.2 Model-based Development Process

Zhang and Cheng [32] previously introduced a model-
based development process with the objective of guiding the
rigorous development of adaptive programs. The process
separates the adaptive behavior and the non-adaptive be-
havior specifications of adaptive programs. By doing so, the
respective models are easier to specify and more amenable to
automated analysis, visual inspection, and modification. As
Figure 1 illustrates, the process starts with high-level system
goals (G) and progresses through design models (M;, M;)
to code. The focus of the process is the specification of key
properties (e.g., ®;, D;) at each of the major development
phases. While the original work used Petri-nets to illustrate
the design phase, the process itself is compatible with other
state-based modeling approaches such as the Unified Mod-
eling Language (UML) [27].

The model-based development process comprises six key
steps (Figure 1):

1. Specify global properties, INV, using a high-level spec-
ification language such as temporal logic.

2. Identify the different domains, D;, or environmental
conditions under which a program with requirements
R; will execute.

3. Using a high-level specification language, specify local
properties, ®; for each domain identified in step (2).

4. Build state-based models (M; and Mj;) of the non-
adaptive programs in each domain. Simulations and
verifications can be applied to verify and validate the
models against both the local (®;, ®;) and global prop-
erties (INV) previously specified.

5. Identify the possible scenarios in which dynamic changes
may occur. Build adaptive models, M; ; and M;;, to

[adaptive models —» refinement
[non-adaptive functional logic ~ ----- transition
/7 constraint to be satisfied =~ -...... » satisfies

Figure 1: Model-based Development Process.

safely transfer execution from a source program to a
target program. Specify transitional properties, ®; ;
and @, ;, to indicate the properties that must be satis-
fied during the adaptation process. As with step (4),
simulations and verifications can be applied to verify
and validate the adaptive models against global and
transitional properties [33].

6. The state-based models can be used to either gener-
ate rapid prototypes or to guide the development of
adaptive programs [32].

3. RELATED WORK

This section overviews selected efforts conducted by re-
searchers to facilitate the development of dynamically adap-
tive software. Although not exhaustive, the techniques and
projects included in this section are the most relevant with
respect to our adaptation-oriented design patterns; some of
these projects served as a resource for our harvesting pro-
cess.

Middleware. Recently, researchers have focused on ex-
tending middleware approaches to provide adaptation ser-
vices [4, 11, 23]. Middleware refers to the various layers of
services that separate applications from operating systems
and network protocols [21]. The different service layers of
adaptive middleware serve as a level of indirection by inter-
cepting and modifying messages as needed. Two examples
of middleware approaches for adaptation include the Mo-
bility and ADaptability enAbling Middleware (MADAM)
[23] and the Adaptive CORBA Template (ACT) [28]. The
MADAM project provides a general component model and
middleware infrastructure that supports various adaptation
styles for mobile applications. ACT enables run time im-
provements to CORBA applications in response to chang-
ing requirements and environmental conditions [28] by weav-
ing adaptive code into an object request broker (ORB) at
run time. One benefit of middleware-based adaptation ap-
proaches, such as MADAM and ACT, is that they shield
developers from dealing with resource distribution, compo-
nent probing, and application reconfiguration, thus alleviat-
ing complex tasks previously relegated to developers. How-
ever, middleware tends to be highly domain-specific and, as
a result, may not be readily applicable for many systems.

Frameworks. Adaptive software research has developed
frameworks for building adaptive systems [2, 9]. A frame-
work is a set of cooperating classes that make up a reusable
design for a specific class of software [8]. Among other
objectives, the framework dictates the overall architecture
of the application and its thread of control, thus leading
to an inversion of control where developers write code that
gets called by the framework. Rainbow is an architecture-
based self-adaptation framework with reusable infrastruc-
ture [3, 9]. Rainbow supports distributed component mon-
itoring, probe and gauge deployment, architectural-based
system representation and adaptation strategies, and effec-
tors to reconfigure the system. A benefit of adaptation-
oriented frameworks is that it provides large amounts of
reusable code, thereby enabling developers to build adap-
tive applications more rapidly. Nevertheless, some creative
freedom is lost because many design decisions have already
been made by the framework developers [8]. Additionally,
framework-based applications are sensitive to changes in the
framework’s interface.

Design Patterns. Gomaa et al. proposed several pat-
terns for dynamically reconfiguring specific types of software
architectures at run time [10]. In particular, they extended
the concepts of dynamic change management introduced by
Kramer and Magee [19] by introducing four design patterns
to specify the behavior required to dynamically reconfig-
ure master/slave, centralized, server/client, and decentral-
ized architectures. Gomaa’s patterns identify when it is
safe to perform a reconfiguration based on inherent char-
acteristics of an application’s architecture. One of the key
contributions of this work is the identification of when it
is safe to perform a reconfiguration based on the inherent
characteristics of an application’s architecture. Gomaa et al.
uses hierarchical UML state diagram templates to depict the
necessary behavior for reconfiguring system architectures in
high-level terms. Although these patterns are helpful to de-
velopers implementing dynamically adaptive systems, their
contents are not organized in Gamma’s template format and
the safeness of when to apply an adaptation is the focus of
their assurance concerns.

4. ADAPTATION DESIGN PATTERNS

This section highlights the main results of our design pat-
tern harvesting efforts. First, we provide a brief overview of
the harvesting process used for developing each of our adap-
tation design patterns. We then present a table of the adap-
tation design patterns harvested thus far, including their
names, classifications, descriptions of their purposes, and a
list of selected sources. Lastly, we present our adaptation
design pattern template and one of our adaptation design
patterns is used to illustrate the intent of each field.

4.1 Harvesting Process

Harvesting design patterns is a difficult and subjective
process for two main reasons. First, there is no standard
methodology for harvesting and developing design patterns
in practice. Second, there is no existing set of metrics that
quantify the quality of a resulting design pattern. As a re-
sult, we do not advocate a particular process for harvesting
design patterns, instead we simply document the process we
used to develop our adaptation design patterns.

Identify Problem. The first step in the harvesting pro-
cess involves identifying and defining a recurring problem

related to adaptation. One way to identify recurring prob-
lems is to analyze research publications with common topics
related to monitoring, decision-making, and reconfiguration.
Once a recurrent problem has been identified, the intent,
context, and motivation for addressing the problem as a de-
sign pattern must also be determined. A clear definition of
these fields will help narrow the search for existing solutions
to the recurring problem. Next, developers need to select
the relevant data sources that will be analyzed and gener-
alized into design patterns. Three types of data sources are
available for this task: commercial applications, open-source
implementations, and research projects. In general, we re-
stricted our sources to include only open-source and research
project implementations given their ease of accessibility.

Generalize Solution. Once a problem has been defined
and various sources of data have been selected, the artifacts
must then be abstracted and generalized into one represen-
tative design pattern solution. Several steps must be taken
to abstract and unify various solutions into a single design
pattern. First, structural and behavioral similarities and
differences must be identified between the various solutions.
These include discovering objects, their interactions, associ-
ations, responsibilities, multiplicities, constraints, etc. Once
various solutions have been unified into model diagrams that
captures the generic solution to the recurring problem, then
this model can be further generalized and put into template
form as more instances are found.

Validate Design. We used two forms of validation to
assess the resulting design patterns. First, we found ad-
ditional instances of our design patterns in other adaptive
systems. Each new instance further strengthened the valid-
ity of the solution as well as provided additional information
for refining and generalizing the design pattern, especially
during the early stages of the harvesting process. Second,
we applied a subset of the harvested design patterns to a
case study application. Instantiating the harvested design
patterns enabled us to assess whether the level of detail pro-
vided in each pattern was sufficient to guide the development
of an adaptive system.

4.2 Catalogue of Design Patterns

Table 1 gives an enumeration of the twelve adaptation de-
sign patterns harvested thus far, their classifications, a brief
descriptions of their purpose, and a list of selected sources
used for harvesting. We have limited the scope of our design
patterns to only address the software side of adaptive sys-
tems because software is more amenable to dynamic adapta-
tion than hardware. Each of our design patterns can be clas-
sified as monitoring (M), decision-making (DM), or recon-
figuration (R) based on their overall objective. In addition,
monitoring and decision-making design patterns can also be
classified as either creational (C) or structural (S), as defined
by Gamma et al. [8]. Likewise, reconfiguration design pat-
terns can also be classified as behavioral (B) and structural
since they specify how to physically restructure an architec-
ture once the system has reached a quiescent or safe state
for adaptation. Although Gomaa et al. previously intro-
duced four software reconfiguration patterns [10], their goal
was to identify states from which various architectures could
be safely reconfigured. While we leveraged two of those
patterns, we significantly extended them. Specifically, we
provided information for them for all the pattern fields, cat-
alogued them in our pattern template, provided several con-

straints that address safety and liveness properties in both
LTL and A-LTL templates, and indicated which related pat-
terns can be used together. We also introduced two new re-
configuration patterns that can be used for structural-based
reconfiguration beyond the architectural styles presented by
the Gomaa patterns [10].

It is important to consider the following issues when eval-
uating the set of adaptation design patterns. First, these
patterns are not intended to be exhaustive. We anticipate
that a number of other domain-specific design patterns are
likely to be harvested as the adaptation technology continues
to mature; for example, the mobile computing domain has
made extensive use of adaptive technology, and, as a result,
it is likely that mobile computing domain-specific design pat-
terns can also be harvested. Second, the set of adaptation
design patterns presented in this paper only includes designs
that have been applied successfully to at least two different
adaptive systems. Third, although most of our adaptation
design patterns can be applied to a wide range of adaptive
systems, some are applicable only to domain-specific adap-
tive systems. The Intent section should be consulted to
determine the applicability of each design pattern given a
particular application and domain. In addition, the Related
Patterns section provides information regarding which de-
sign patterns are commonly used in conjunction. Complete
details for each design pattern, including a more comprehen-
sive list of sources, can be found in [25].

4.3 Adaptation Design Pattern Template

This paper uses a template similar in style to that used
by Gamma et al. [8] in order to facilitate the understanding
and application of the adaptation design patterns. We have
modified a few of the original design pattern template fields
to address the specific needs of adaptive systems. First, the
Known As, Implementation, and Sample Code fields have
been removed. The Known As section is not applicable
as, to the best of our knowledge, the majority of the de-
sign patterns presented in this paper, with the exception
of the Gomaa patterns [10], have not been previously doc-
umented. Likewise, the Implementation and Sample Code
sections are too specific for the design patterns presented in
this paper. Second, the template has been extended with
Behavior and Constraints sections. The Behavior section
presents either sequence and/or state diagrams that illus-
trate sample behavior. The Constraints section uses Linear
Temporal Logic (LTL) and Adapt-Operator LTL (A-LTL)
[31], annotated with textual descriptions to specify proper-
ties that must be satisfied by the instantiated design pat-
terns. Lastly, while Gamma et al. used the Object Model-
ing Technique (OMT) to represent structural and behavioral
diagrams, we used the Unified Modeling Language (UML)
to give structural and behavioral information about each
design pattern. Specifically, structural diagrams are rep-
resented through UML class diagrams (for monitoring and
decision-making patterns) and UML component diagrams
(for reconfiguration patterns). Likewise, UML statecharts
are used to depict a pattern’s behavior.

We now present our adaptation-oriented design pattern
template and the Sensor Factory pattern as an example to il-
lustrate the information presented in the various fields. The
sans-serif font is used to denote the information from the
Sensor Factory pattern. Note that some of the descriptions
have been elided due to space constraints.

Table 1: Catalogue of Adaptation Design Patterns

Name Category | Description Selected
Sources

Sensor Factory M, C Deploy sensors across a distributed infrastructure and probe components. 3,7,9, 24]
Reflective Monitoring M, S Perform introspection on a component and dynamically alter a sensor’s | [1, 5]

behavior.

Content-based Routing | M, S Route monitoring information based on the content of the message. 9, 13, 30]
Case-based Reasoning DM, S Rule-based approach to selecting a reconfiguration plan. 9, 15
Divide & Conquer DM, S Systematically decompose a complex reconfiguration plan into simpler re- | [9, 12

configuration plans.

Adaptation Detector DM, S Interpret monitoring data and determine when an adaptation is required. 15, 20]
Architectural-based DM, S Provide an architecture-based approach for selecting reconfiguration plans. 3, 23
Tradeoff-based DM, S Systematically select a reconfiguration plan that best balances multiple | [3, 23

objectives.

Component Insertion R, S Safely insert and initialize a component at run time. 3, 10, 19
Component Removal R, S Safely remove a component at run time. 3, 10, 19
Server Reconfiguration | R, B Safely reconfigure a server - client component architecture at run time. 3, 10, 17
Decentralized R, B Safely insert and remove components from a decentralized component ar- 10, 19]

chitecture at run time.

Pattern Name: The pattern name uniquely identifies and ResourceManager Registry
describes the pattern. addClient() : bool register(id: String) : void
_ addSensor() : bool remove(id: String) : void

Sensor FaCtory' checkStatus() : bool search(s: String) : bool
Classification: The classification facilitates the organiza- 1 check 1
tion of patterns based on the purpose of the pattern. AbstractSensor] register
-Monitoring, Creational. getDelay() : double i Sensor-Factory

X L getinterval() : double 2ddClient() - bool
Intent: A brief description of the problem(s) that the pat- pop() : double addSensor() - bool
push() : double P

tern addresses. setDelay(t: double): void dep'lr;y(t. %[ent{ : SVOId void

H setinterval(t: double): void register(s: imple ensor) - VoK
-Systematically deploy software sensors across a network to atart() : void remove(s: SimpleSensor) : void
probe distributed components. stop() : void <<realize>> 1 Gploys

0."

Context: Describe the conditions and context in which the : SimpleSensor request

attern may be applied. ! client : String L
p Y PP i <<realizes> target : String poll Client

-The Sensor Factory pattern may be used when components
to be monitored are distributed and each component provides
an interface that can be probed for the required information.

Motivation: A description of sample goals and objectives
of a system that motivate the use of the pattern. Use-
cases and use-case diagrams describe goals of the pattern
application.

-External monitoring mechanisms must effectively collect in-
formation about the running system to properly evaluate a
system's operational status. The objective of the Sensor Fac-
tory design pattern is to manage distributed sensors across a
networked environment such that they may probe distributed
components. The Sensor Factory design pattern captures the
structural relationship between sensors, clients, and compo-
nents. By decoupling sensors from clients and components,
the monitoring infrastructure is flexible and more amenable
to change.

Structure: A representation of the classes and their rela-
tionships depicted in terms of UML class diagrams.

-A UML class diagram for the Sensor Factory pattern can be
found in Figure 2.

Two types of sensors can be found in this pattern. Simple-
Sensors can handle booleans, integers and real data types.
CmoplexSensors can report more complex data types and
aggregate the outputs of SimpleSensors. Both SimpleSensor
and ComplexSensor inherit from the AbstractSensor abstract
class, thereby providing an interface with basic functionality
such as pushing or polling for data.

delay : double S 1 notDone : bool
interval : double - -

id : String 1.7

B ol

1
Comple;(Sensor

Figure 2: UML class diagram of the SensorFactory
Pattern

e Participants: Itemizes the classes and objects that are in-
cluded in the adaptation design pattern and lists their
responsibilities.

-Abstract-Sensor: SimpleSensor and ComplexSensor both
inherit from this abstract class. As a result, these sensors
share an interface to common operations such as pushing
and pulling data.

-Client: This class is used to represent any component that
needs to perform either internal or external monitoring.

-ComplexSensor: This type of sensor comprises more com-
puting resources on-board than a SimpleSensor does. As a
result, a ComplexSensor is capable of reporting complex data
types, aggregating various SimpleSensor data feeds, and per-
forming on-board computations.

-Registry: This class is responsible for tracking deployed sen-
sors across the network. Each entry should at least record
the sensor name, the sensor type, the Client to which it is
providing data, and the component it is monitoring. Addi-
tionally, this class provides a search functionality based on

the available fields.

-ResourceManager: This class has two responsibilities. First,

it determines if an existing sensor can be shared with one or
more clients. A sensor can be shared as long as it does not
violate any existing constraint. Second, it determines if the
system has enough resources to deploy a new sensor across
the network.

-SensorFactory: Clients must interact with this class in or-
der to gain access to a sensor. It regulates the dynamic
access and management of sensors across a network.

-SimpleSensor: The most basic sensor available. It is capa-
ble of reporting boolean, integer, and real data types. Addi-
tionally, it can be configured to poll a component at different
intervals and periods.

e Behavior: Provides an illustrative representation of sce-
narios for class and object interaction. Also gives a de-
scription of the behavior of the pattern by using sample
or high-level, abstract UML state and sequence diagrams.

-Figure 3 shows a UML sequence diagram for an example
of the Sensor Factory pattern in a distributed monitoring
system. The Client requests a SimpleSensor (an active net-
worked sensor) from the SensorFactory. The SensorFactory
determines whether an existing SimpleSensor already pro-
vides the desired information. If not, then SensorFactory
prompts the ResourceManager to determine if another Sim-
pleSensor can be deployed across the network without vio-
lating any quality of service constraints. If so, then Sensor-
Factory instantiates a new SimpleSensor and initializes it to
some default sensor setting. SensorFactor then notifies the
Client that the SimpleSensor is ready for use. Client polls
the SimpleSensor until it is done monitoring.

\Agjs:lru Resource
! Manager
X

Client Sensor-Factory

},44444

addSensor()

search(String s)

<<create>>

i deploy(Client t)

Figure 3: UML sequence diagram example of the
Sensor Factory Pattern

e Consequences: Describes how objectives are supported by
a given pattern and gives the trade-offs and outcomes of
the pattern application.

-This design pattern reuses the provided functionality and
interface of a distributed component to extract the desired
attributes. However, if a component’s interface is excessively
polled, then it could interfere and alter the component’s be-
havior.

-Different types of sensors can be systematically deployed at
run time while providing a flexible monitoring infrastructure
that is amenable to adaptation.

-This design pattern ensures system integrity by accessing a
component’s attributes through its interface.

- To avoid wasting computational resources, Registry and
ResourceManager share existing sensors whenever possible.

- This design pattern introduces a management layer between
a Client and a sensor. This additional overhead may degrade
performance.

- Monitoring is supported only for components that provide
an interface to the required attributes.

e Constraints: Contains LTL and A-LTL templates and a
prose description of the constraints that must be satisfied
by a given design pattern application.

-Propertyl: Omitted here, but discussed in case study.

-Property 2: Globally, it is always the case that if Client
requests a sensor to Sensor-Factory, then Sensor-Factory will
eventually grant access to a sensor.

0 ((Client.request(sensor)) —
O (Sensor-Factory.grant(Client))

This liveness property guarantees that a Client will eventually
get access to a sensor.

e Related Patterns: Additional design patterns that are com-
monly used in conjunction.

-Adapter Design Pattern [8]: This pattern can enable the
interaction between a Client and a sensor whenever their
interfaces are incompatible.

-Reflective Monitoring Design Pattern [25]: This pattern can
be used whenever a component does not provide an interface
to the required attributes. Such values may be accessible
through Introspection.

-Adaptation Detector Design Pattern [25]: This pattern is
responsible for interpreting the results provided by a sensor
and determining when an adaptation is required.

e Known Uses: Lists the sources used to harvest the design
pattern.

-REsource MOnitoring for network-aware applicationS [6],
SNMP4J-Agent [7], Rainbow Adaptation Framework [3, 9],
A Distributed Monitoring Service Architecture (MonALISA)
~ via SNMP [24].

5. EXAMPLE INSTANTIATION

This section presents a proof of concept study in which we
re-engineered an adaptive application from scratch using our
adaptation design patterns. We first describe the adaptive
application and its functional and adaptive requirements.
We then overview our pattern-based design and compare it
against the original framework-based design and implemen-
tation.

5.1 Application Description

The Z.com case study was originally developed using the
Rainbow framework [3]. Z.com is a fictional news site that
uses adaptation to address the “slashdotting effect” where
news sites that are widely publicized are unable to handle
the large number of content requests, and they either suf-
fer from high latency or are unable to serve content alto-

gether. Z.com was modeled as a set of clients and servers
with the overall constraint that latency must fall within a
given threshold. Nonetheless, adaptation concerns for Z.com
are multi-faceted; some of the utility concerns that must be
balanced include cost, latency, and fidelity.

This study uses several of the adaptation design patterns
presented in this paper to re-engineer the Z.com adaptive
web server [3]; to distinguish the two designs, we call the
pattern-based system ZAP.com. Although ZAP.com is im-
plemented through a complementary approach, it exhibits
the same functionality and observable behavior to Z.com,
built with the Rainbow framework. Specifically, ZAP.com is
able to handle the same reconfiguration scenarios as Z.com.
Having two implementations of the same adaptive system
enables us to perform a more comprehensive comparison
of the key differences between the two adaptive design ap-
proaches.

5.2 Application Requirements

The same functional and adaptive requirements of Z.com
apply to ZAP.com. Specifically, the following requirements
were previously identified by Garlan et al. for Z.com [3]:

1. The news server will provide basic HTML functionality
to requesting clients.

2. The operational cost may not be exceeded at any time.

3. The quality of the content should be the best one pos-
sible. Specifically, whenever possible, service client’s
requests in graphical content mode.

4. The system will avoid losing customers due to high
response times if it can somehow provide faster con-
tent. Specifically, if the server’s average response time
is too high, then the content may be switched to tex-
tual mode in order to avoid the costs of transmitting
large files.

Given the objective of minimizing operational costs and
latency, while providing graphical news content whenever
possible, Garlan et al. reasoned about the possible adap-
tation scenarios that might arise for Z.com. For instance,
Z.com will increment its server pool by one integral amount
if the response time is high and the budget will not be ex-
ceeded. Otherwise, Z.com will switch to textual content
mode if it is not already in that mode. Additionally, when
the response time is low, Z.com will decrement its server
pool size by one integral amount if it is near budget limit. If
the response time is low, then the servers will be switched to
graphical mode if they are not already in that mode. Lastly,
when the response time is in the medium range, Z.com will
switch to graphical mode if the mode is textual, while the
server pool size may either be incremented to decrease re-
sponse time or decremented to reduce cost.

5.3 Application Design

We re-engineered the Z.com application in three major
stages to obtain ZAP.com, closely following the model-based
development process for adaptive systems [27, 32]. First, we
modeled and implemented the business logic according to
the local properties and functional requirements identified
for Z.com [3]. Next, based on the possible adaptation sce-
narios, we identified and instantiated a set of monitoring
and decision-making design patterns that were applicable to

ZAP.com. To ensure our design satisfied functional proper-
ties, we analyzed the resulting models against local proper-
ties and invariants before we implemented them. Lastly, we
modeled and implemented the adaptive logic responsible for
reconfiguring the server architecture and integrated it with
the rest of the system.

Functional Logic. ZAP.com is modeled as an object-
oriented multi-threaded server-client architecture. Specifi-
cally, the ZAP.com design comprises a set of classes that ac-
cept incoming HTML requests from different web browsers,
determines the current system workload, and redirects re-
quests in order to balance the overall system workload. The
design models were implemented in the Java programming
language. As such, the ZAP.com implementation is able
to service common HTML requests such as retrieving files
across a network.

Monitoring and Decision-Making Logic. We selected
a set of monitoring and decision-making patterns based on
the context of the Z.com application. Specifically, we applied
the Sensor Factory pattern to periodically monitor the aver-
age latency of Servers for two reasons. First, a distributed
monitoring scheme is required for Z.com’s networked archi-
tecture. Second, our functional logic already provides an in-
terface to the attributes that need to be monitored. Garlan
et al. followed a similar approach based on the observation
that system administrators would have access to monitoring
information from the application’s interface [3]. As Figure 4
illustrates, Rainbow uses a GaugeCoordinator to deploy and
manage RegularPatternGauges, which derive their interface
from the AbstractGauge interface. This subset of Rainbow’s
monitoring infrastructure is similar in purpose, structure,
and behavior to the Sensor Factory pattern.

We used Hydra [22] to automatically translate the state-
based models of ResourceManager, SensorFactory, and Sim-
pleSensor into Promela code. A constraint violation was
found when we attempted to verify the Promela models in
the SPIN model checker [14]. The violated property stated
that if ResourceManager denies a Sensor request, then Sen-
sorFactory will not deploy that Sensor. Specifically,

O ((ResourceManager.deny (Client) —
— Sensor-Factory . createSensor (Client))

The instantiated Sensor Factory pattern allowed the ex-
istence of multiple ResourceManagers. Although this did not
seem problematic at first glance, it enabled the following sce-
nario: “the same Sensor request is denied by instance z of
ResourceManager and granted by instance y of ResourceMan-
ager.” As a result, the Sensor request is granted even though
an existing ResourceManager explicitly denied the request.
To ensure consistency within the monitoring infrastructure
and the deployed Sensors, we revised our instantiated mod-
els of the Sensor Factory pattern to allow only one active
ResourceManager at any time.

We also applied two decision-making patterns to ZAP.com,
Adaptation Detector (typically useful for most adaptive sys-
tems) and Case-based Reasoning. The Adaptation Detector
pattern was selected to process the monitoring data supplied
by SimpleSensors and detect when a reconfiguration was re-
quired. Specifically, a HealthIndicator compared values re-
ported by SimpleSensors with the values stored in Threshold.
If a Threshold was exceeded, then HealthIndicator would cre-
ate a Trigger and send it to the InferenceEngine. As Figure 4
illustrates, Rainbow uses a similar approach to detect when
a reconfiguration is needed. More specifically, Rainbow uses

Rainbow Core |

|_ Manager,

Utility-based
Inference
Engine

é Strategy i‘-—é Tactic E

Ada_ptamn -|

________ Monitoring

................ Decision-Making ———[> implements

= = — Reconfiguration

""Resource
1 Manager

R]
--------------- i Analyzer |
H

e

: ‘Simple |‘ - Observer ,—5 Healthindicator
Sensor 1 :

Business Logic 4—' AdaptationDriver |—>§ Decision |

——— —— —

—— > uses b) ZAP.com

———@ includes

Figure 4: Elided structural models for framework-built Z.com and pattern-based ZAP.com

a ModelManager and an ArchitectureConstraint to map mon-
itoring data against specific constraints in the application.

As with the Sensor Factory pattern, we used Hydra to au-
tomatically translate UML state-based models of HealthIndi-
cator, Analyzer, and Observer into Promela code. We then
used the SPIN model checker to analyze the two properties
specified for the Adaptation Detector design pattern. First,
we wanted to ensure that if Observer received any monitor-
ing value, then it would eventually be compared against its
associated Threshold. Specifically,

O (Observer.getData(Sensor) —
¢ Analyzer. compare (Data, Threshold))
Likewise, we wanted to ensure that if a Threshold was ex-
ceeded, then a Trigger for adaptation would be created. Specif-
ically,
0O (Analyzer.compare(Data) .’True’ —
¢ HealthIndicator.send (Trigger))
The SPIN model checker did not find any violations for these
properties in the instantiated models.

The Case-based Reasoning pattern was chosen to select a
reconfiguration plan based on the available monitoring infor-
mation. Specifically, the InferenceEngine attempts to match
received Triggers against a set of Rules (see Figure 4). If a
Trigger matches a Rule, then the associated reconfiguration
plan is encapsulated in a Decision and sent to the reconfig-
uration infrastructure. In contrast, Rainbow uses a utility-
based approach for selecting reconfiguration plans [3].
Rainbow, reconfiguration steps are encapsulated into Tac-
tics, and sets of Tactics are further encapsulated into Strate-
gies, which form actual reconfiguration plans. Each Strategy
is analyzed by the Utility-based InferenceEngine to select the
reconfiguration plan that will best balance multiple objec-
tives across the system. Although the decision-making logic
in ZAP.com is comparatively simpler, we were able to en-
code reconfiguration plans as a set of “if-then” rules based
on the adaptation analysis performed by Garlan et al. [3].

As with the previous instantiated design patterns, we used
Hydra to translate UML state-based models of InferenceEngine
and FixedRules into Promela code. These Promela models
were then analyzed with the SPIN model checker against
two properties. First, we wanted to ensure that if a Trig-
ger is received, then it is always the case that a Decision is
produced. Specifically,

O (InferenceEngine.trigger (Trigger) —
¢ InferenceEngine.action())

The ZAP.com design includes a default rule and decision
pair to enforce this constraint in the event that no other
pair matches at run time.

Second, we wanted to ensure that if a Decision is produced,
then it is always the case that it is logged. Specifically,

O (InferenceEngine.action() —
O Log.log(Trigger,Rule,Decision))
Logging the reconfiguration Decision and why it was selected
will help developers understand how their system is behav-
ing at run time. Again, the SPIN model checker did not find
any property violations for either of these two properties.

Reconfiguration Logic. At this stage we have designed
the ZAP.com application to support monitoring and decision-
making capabilities. Specifically, we can periodically ob-
serve the average latency, detect when a reconfiguration is
required, and select a reconfiguration plan that will yield
the desired behavior. Garlan et al. identified four possi-
ble reconfigurations for the Z.com adaptive news server [3].
Two of those reconfigurations involve tuning parameters to
alternate between content delivery modes. The two other re-
configurations involve either adding or removing a Server at
run time. In contrast to the parameter reconfiguration, the
adaptive infrastructure must first prepare the system before
a Server is added or removed at run time. That is, the Server
must be guided towards a quiescent state to guarantee that
the reconfiguration process will not leave the system in an
inconsistent state. For Z.com, incoming client requests need
to be queued so they may be processed after the reconfig-
uration is complete. Otherwise, client requests may be lost
as the system is reconfigured.

We used the Server Reconfiguration pattern to safely re-
configure the ZAP.com application in scenarios that involved
the addition or removal of a Server. The Server Reconfig-
uration pattern, in turn, reuses the Component Insertion
and Component Removal reconfiguration design patterns to
safely add and remove components, respectively. For in-
stance, to add a Server at run time, the AdaptationDriver first
loads and initializes a new Server and LoadBalancer (from the
business logic). The AdaptationDriver then inserts a Request
Buffer to store incoming requests during the reconfiguration
procedure. Then the AdaptationDriver sends passivate com-
mands to both the Servers and LoadBalancer so they can be
safely reconfigured. Once these components are passive, the
LoadBalancer can be driven to a quiescent state so it can
be removed from the system. Notifications are then sent by

the AdaptationDriver to activate the affected components.
Finally, once all the queued requests are serviced, the recon-
figuration is complete and the system continues to operate
as normal.

At this stage, the ZAP.com application comprises instanti-
ations of one monitoring pattern, two decision-making pat-
terns, and three reconfiguration patterns. This set of six
adaptation design patterns realizes our ZAP.com applica-
tion with self-adaptive behavior. That is, sensors periodi-
cally probe the Servers for the average latency, and when-
ever substantial change is detected, an adaptation request
is issued. The decision-making determines which reconfigu-
ration plan to apply based on the monitoring information.
The reconfiguration plan is then applied by the Adaptation-
Driver. Specifically, the AdaptationDriver either switches the
content delivery mode to textual/graphical or adds/removes
a server at run time.

When compared to the Rainbow version of Z.com, our
application provides the same observable functionality and
reconfiguration capabilities. For validation purposes, we se-
lected design patterns that most closely captured the design
strategy used for Z.com. We note that in several cases, dif-
ferent design patterns could have been used to account for
new monitoring and decision-making technology. Next we
give comparisons of framework versus design pattern-based
implementations.

6. DISCUSSION

Re-engineering the Z.com application originally presented
by Garlan et al. in [3] enables us to compare and con-
trast the advantages and disadvantages of both approaches.
Our design pattern approach has several advantages over
a framework-oriented approach at developing dynamically
adaptive systems. For instance, our design patterns provide
general models that need to be instantiated and customized
before they are implemented. Since models operate at a
higher-level of abstraction than frameworks, they impose
fewer initial constraints upon the system being developed.
Frameworks, on the other hand, incorporate many design
decisions already made by the framework developers, which
may or may not be compatible with the application’s needs
and requirements. Likewise, design patterns do not entail a
steep learning curve in order to apply them successfully. To
properly use a framework, however, a developer must under-
stand the underlying framework mechanisms and how they
relate to the application being built. In particular, devel-
opers must determine how their application will be recon-
figured by the adaptation framework at run time to ensure
proper system behavior. Additionally, instantiated versions
of our design patterns can be analyzed through formal veri-
fication tools and techniques to ensure a design satisfies cer-
tain key properties before it is implemented. Unless verifi-
cation capabilities were built into the design of a framework,
attempting to verify its correctness is, at best, impractical.
Lastly, with our design pattern approach, developers select
only those adaptation mechanisms their application will re-
quire. In contrast, adaptation-oriented frameworks provide
infrastructure to perform monitoring, decision-making, and
reconfiguration tasks for a wide range of applications within
a domain; the overall infrastructure is needed for the adap-
tive application, even if not all the features are needed or
used.

Framework-oriented approaches, on the other hand, have

several notable advantages over our design patterns for build-
ing dynamically adaptive systems. For instance, adaptation-
enabling frameworks provide large amounts of code that can
be directly reused when building adaptive applications. If
the application and the framework share the same context
and domain, then a large portion of development overhead
can be avoided by reusing the framework’s code. Design
patterns, however, offer no code at all. After the system
is designed and the patterns are instantiated, they must be
implemented by developers. Likewise, adaptation-enabling
frameworks, such as Rainbow [9], tend to support a wide
range of adaptation mechanisms and techniques. With a
pattern-based approach, each desired functionality must be
carefully implemented and integrated with the application.
Lastly, with a pattern-based approach, developers are ex-
posed to some details and complexities of reconfiguring ap-
plications at run time. Specifically, developers must both
identify the quiescent states that are safe for reconfigur-
ing an application as well as implement the mechanisms
for guiding the system towards those states. In contrast,
adaptation-enabling frameworks largely hide the internals
of dealing with specific reconfiguration scenarios from de-
velopers. As a result, developers have limited exposure to
the details and complexities of reconfiguring applications at
run time.

In general, developers should leverage adaptation-oriented
frameworks when the application’s context is compatible
with the framework’s services. If the application’s context
and adaptation needs differ significantly from the existing
adaptation-oriented framework, then our adaptation-oriented
patterns may provide a more convenient development al-
ternative. Moreover, it may be possible to integrate our
adaptation-oriented patterns with existing adaptation-oriented
frameworks depending on the design of the framework.

7. CONCLUSIONS

This paper introduced twelve adaptation-oriented design
patterns to support monitoring, decision-making, and re-
configuration of adaptive systems where, the patterns facil-
itate the separate development of the functional logic and
the adaptive logic. Each design pattern is the product of
studying at least two candidate successful design solutions
and generalizing them so that they may be applied across
different domains. We extended the pattern template used
by Gamma et al. [8] for describing design patterns with
Behavioral and Constraints fields. The information pro-
vided in the template enables developers to understand the
consequences and trade-offs incurred by applying a pattern.
Furthermore, the use of a design pattern template enforces
the uniform organization of every adaptation design pattern,
thus facilitating their use. For each pattern, we have also
identified sets of related patterns that are frequently applied
together in practice. To assess their maturity, we validated
each design pattern against instances in adaptive systems
that were not used in the harvesting process. In addition,
we successfully applied a subset of the patterns in the de-
velopment of an adaptive web server. This example helped
illustrate how our adaptation-focused design patterns inte-
grate with the model-based development process [27, 32] for
adaptive systems to construct self-adaptive and autonomic
computing systems.

Several directions for future work are possible. First, addi-
tional design patterns for both domain-specific and domain-

independent adaptation could be identified and integrated
with the set of design patterns presented in this paper [26].
Second, we are examining how these design patterns can be
inserted into a non-adaptive application through the use of
aspect-oriented techniques [29]. Lastly, we are exploring the
use of digital evolution techniques to determine how adapta-
tion design patterns can be automatically instantiated and
integrated into legacy systems to meet adaptation needs.

8. REFERENCES

(1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture: A
System of Patterns. Wiley, 1996.

[2] J. Cdmara, C. Canal, J. Cubo, and J. M. Murillo. An
aspect-oriented adaptation framework for dynamic
component evolution. Electron. Notes Theor. Comput. Sct.,
189:21-34, 2007.

[3] S.-W. Cheng, D. Garlan, and B. Schmerl.
Architecture-based self-adaptation in the presence of
multiple objectives. In Proceedings of the 2006
International Workshop on Self-adaptation and
Self-Managing Systems, pages 2—8, New York, NY, USA,
2006. ACM.

[4] G. Coulson, P. Grace, G. Blair, W. Cai, C. Cooper,

D. Duce, L. Mathy, W. K. Yeung, B. Porter, M. Sagar, and
W. Li. A component-based middleware framework for
configurable and reconfigurable grid computing. Concurr.
Comput. : Pract. Exper., 18(8):865-874, 2006.

[5] D. Dawson, R. Desmarais, H. M. Kienle, and H. A. Muller.
Monitoring in adaptive systems using reflection. In
Proceedings of the 2008 International Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, pages 81-88, Leipzig, Germany, 2008. ACM.

[6] T. Dewitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste,
J. Subhlok, and D. Sutherland. Remos: A resource
monitoring system for network aware applications, 1997.

F. Fock. The SNMP API for java.

http://www.snmp4j.org/index.html.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 195.

[9] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. Computer, 37(10):46-54, 2004.

[10] H. Gomaa and M. Hussein. Software reconfiguration
patterns for dynamic evolution of software architectures. In
WICSA’0/: Proceedings of the Fourth Working
IEEE/IFIP Conference on Software Architecture, page 79,
Washington, DC, USA, 2004.

[11] P. Grace, G. Coulson, G. Blair, B. Porter, and D. Hughes.
Dynamic reconfiguration in sensor middleware. In
MidSens’06: Proc. of the Intl. workshop on Middleware for
sensor networks, pages 1-6, New York, NY, USA, 2006.
ACM.

[12] M. Hans. The control architecture of care-o-bot ii. E.
Prassler et al (Eds.): Advances in Human-Robot
Interaction, pages 321-330, 2004.

[13] D. Heimbigner and A. Wolf. Definition, deployment and use
of gauges to manage reconfigurable component-based
system. Technical Report A082924, University of Colorado,
2004.

[14] G. J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279-295, 1997.

[15] G. Kaiser, P. Gross, G. Kc, and J. Parekh. An approach to
autonomizing legacy systems. In Proceedings of the first
Workshop on Self-Healing, Adaptive, and Self-MANaged
Systems, 2002.

[16] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41-50, 2003.

[17] T. Kindberg. Reconfiguring client-server systems. In

[7

(18]

(19]

20]

(21]

(22]

23]

24]

[25]

(26]

27]

28]

29]

(30]

(31]

(32]

33]

International Workshop on Configurable Distributed
Systems, 1993.

F. Kon, M. Romén, P. Liu, J. Mao, T. Yamane, C. Magalh,
and R. H. Campbell. Monitoring, security, and dynamic
configuration with the dynamictao reflective orb. In
Middleware’00: IFIP/ACM Intl. Conf. on Dist. Sys.
Platforms, pages 121-143. Springer-Verlag, 2000.

J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans. on
Soft. Eng., 16(11):1293-1306, 1990.

A. Lau. Design patterns for software health monitoring. In
Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computing Systems, pages
467-476, Washington, DC, USA, 2005. IEEE Computer
Society.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and Betty
H.C. Cheng. Composing adaptive software. Computer,
37(7):56-64, 2004.

W. E. McUmber and Betty H.C. Cheng. A general
framework for formalizing uml with formal languages. In
ICSE’01: Proc. of the 23rd Intl. Conf. on Soft. Eng., pages
433-422, Washington, DC, USA, 2001. IEEE Computer
Society Press.

M. Mikalsen, N. Paspallis, J. Floch, E. Stav, G. A.
Papadopoulos, and A. Chimaris. Distributed context
management in a mobility and adaptation enabling
middleware (madam). In SAC’06: Proc. of the 2006 ACM
symposium on Applied Computing, pages 733-734, New
York, NY, USA, 2006. ACM.

H. Newman, I. Legrand, P. Galvez, R. Voicu, and

C. Cistoiu. MonALISA: A Distributed Monitoring Service
Architecture. In Proceedings of the 2003 Conference for
Computing in High Energy and Nuclear Physics, March
2003.

A. J. Ramirez. Design patterns for developing dynamically
adaptive systems. Master’s thesis, Michigan State
University, East Lansing, MI 48823, 2008.

A. J. Ramirez and Betty H.C. Cheng. Design patterns for
monitoring adaptive uls systems. In Proceedings of the 2nd
International Workshop on Ultra-Large-Scale Software
Systems-Intensive Systems, pages 69-72, New York, NY,
USA, 2008. ACM.

A. J. Ramirez and Betty H.C. Cheng. Verifying and
analyzing adaptive logic through uml state models. In Proc.
of the 2008 IEEE Intl. Conf. on Soft. Testing, Verification,
and Validation, pages 529-532, Lillehammer, Norway, 2008.
S. M. Sadjadi and P. K. McKinley. ACT: An adaptive
CORBA template to support unanticipated adaptation. In
Proceedings of the IEEE International Conference on
Distributed Computing Systems, pages 74-83, 2004.

S. M. Sadjadi, P. K. McKinley, and Betty H.C. Cheng.
Transparent shaping of existing software to support
pervasive and autonomic computing. In DEAS’05: Proc. of
the 2005 workshop on Design and Evolution of Autonomic
Application Software, New York, NY, USA, 2005. ACM.
A. Zeidler and L. Fiege. Mobility support with REBECA.
In Proceedings of the 23rd International Conference on
Distributed Computing Systems, Washington, DC, USA,
2003. IEEE Computer Society.

J. Zhang and Betty H.C. Cheng. Specifying adaptation
semantics. In WADS’05: Proceedings of the 2005 workshop
on Architecting dependable systems, pages 1-7, New York,
NY, USA, 2005. ACM.

J. Zhang and Betty H.C. Cheng. Model-based development
of dynamically adaptive software. In Proceedings of the
28th International Conference on Software Engineering,
pages 371-380, New York, NY, USA, 2006. ACM.

J. Zhang, H. J. Goldsby, and Betty H.C. Cheng. Modular
verification of dynamically adaptive systems. In Proceedings
of the Eighth International Conference on Aspect-Oriented
Software Development, 2009.

