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Design Patterns for Teaching Type Checking  
in a Compiler Construction Course 

 

Francisco Ortin, Daniel Zapico, Juan Manuel Cueva 

Abstract. A course in compiler construction seeks to develop an understanding of 

well-defined fundamental theory and typically involves the production of a language 

processor. In a graduate degree in software engineering, the development of a 

compiler contributes significantly to the developer’s comprehension of the practical 

application of theoretical concepts. 

Different formal notations are commonly used to define type systems, and some 

of them are used to teach the semantic analysis phase of language processing. In 

the traditional approach, attribute grammars are probably the most widely used 

ones. This paper shows how object-oriented design patterns represented in UML 

can be used to both teach type systems and develop the semantic analysis phase of 

a compiler. The main benefit of this approach is two-fold: better comprehension of 

theoretical concepts because of the use of notations known by the students (UML 

diagrams), and improvement of software engineering skills for the development of a 

complete language processor. 

Keywords: Compiler construction, design pattern, type checker, type system, 

software engineering, semantic analysis. 
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I. Introduction 

A course in compiling techniques is an important part of computing core curricula [1]. 

The process of compiler construction is supported by well-defined theory and exploit 

concepts, principles, and software development skills drawn from other related 

disciplines, such as programming, software engineering, computer architecture and 

organization, and operating systems [1]. The teaching of compiling techniques is usefully 

augmented by a realistic example of the systematic construction, or software 

engineering, of a compiler as exemplified by computer science curricula [2]-[3]. Software 

engineering techniques can help students understand concepts that underpin the 

compilation process. 

The Compiler Construction course at the University of Oviedo (Spain) is taught in the 

first year of a software engineering graduate program. This course is offered to graduate 

students over two quarters in the classical “phase order” of the compilation process seen 

in so many compiler texts [4]. The first quarter covers an introduction followed by 

analysis issues, such as lexical analysis, syntax analysis (or parsing), and semantic 

analysis. The second quarter covers symbol tables, runtime-memory organization, code 

generation, and interpreter implementation. 

The prerequisite knowledge expected of students in the graduate course include 

sufficient programming experience with object-oriented programming languages (Java or 

C++) and object-oriented technologies, and the ability to read and reason about UML 

diagrams, data structures, and object-oriented design. The course comprises two hours 

per week of lectures, plus three hours per week of practical work which includes a 

weekly assignment and a final assessed project. 
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The graduate program emphasizes software engineering techniques and seeks to 

develop the practical skills necessary to design and implement larger-scale software 

systems. A course in compiling techniques, within the context of a program intended to 

develop software engineering abilities, involves the systematic construction of a compiler 

by practical application of the underlying theory to each phase of compiler design and 

implementation. 

This paper focuses on the importance of type systems as a basis for developing a 

better understanding of the semantic analysis phase of the compilation process. Several 

formalisms are commonly used in the design and verification of the type systems of 

programming languages, but they are not applied in the commercial implementation of 

compiler type checkers [5]. The main reasons are two-fold: first, (1) formal methods are 

focused on proving properties of type systems rather than implementing typecheckers; 

second, (2) the code generated by these tools is inefficient and usually difficult to debug 

and trace, because the generated code comes from a general translation of 

mathematical specifications. 

First, concepts such as type expression, type coercion, type equivalence, 

polymorphism and overriding are introduced to the students. Later, the design of each 

concept is presented using design patterns in UML and implementations of the designs 

are shown in different object-oriented programming languages. Java and C++ are the 

two programming languages known by the students. Depending on the undergraduate 

courses which he or she undertakes, a student might feel more confident in one of these 

two languages than the other one. C++ is the programming language of choice for the 

examples presented in this paper. 
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The rest of the paper is structured as follows. Section 2 shows different approaches 

to modeling type expressions. Section 3 presents type expression equivalence. An 

object-oriented design to reduce memory and CPU consumption is described in Section 

4. Methods for developing type coercion features and parametric polymorphism are 

described in sections 5 and 6, respectively. Section 7 compares this course to a 

traditional approach and Section 8 analyzes the evaluation of this course. The 

conclusions are presented in section 9. 

II. Type Expressions 

Typechecking is the analysis that detects semantic inconsistencies and anomalies, 

guarantees that entities match their declaration and establishes this analysis compliance 

with a given type system; the algorithm that performs type checking is implemented by a 

type checker [6]. A language processor typically implements a type checker in its 

semantic (contextual) analysis phase [4]. The main benefits of static (compile-time) type 

checking are [7] error detection, abstraction, performance, safety, and documentation. 

A language processor has to represent the types of the language internally when 

implementing a type checker. A type expression is an internal (and also external in the 

case of the ML language) representation of the type of a language syntactic construction 

[4]. Therefore, any language processor must model all the type expressions of the 

language being processed in order to perform type checking apart from the rest of 

translation tasks. 

Type expressions are based on the constructive definition of types: a type is either a 

set of basic types (also known as predefined or built-in types) or a constructed type, 

composed from other types. A basic type is an atomic type whose internal structure 
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cannot be modified (specified) by the programmer (e.g., integer, float, or boolean). A 

constructed type is built by the programmer, applying type constructors (e.g. record, 

array, set, or class) to other types, either basic or constructed ones. 

A. Representation of Type Expressions 

Internal representation of type expressions could vary depending on the features of 

both the language to be processed and the language used to implement the compiler. 

For example, representing type expressions of a language that only has built-in types 

would be as easy as using integer, enumerable, or even character variables. This 

representation, however, would not be valid if the language to be processed supports 

type constructors. The type constructor, e.g., “pointer to type T” could create an infinite 

number of type expressions.  

When type constructors are present, a schema to model infinite type expressions is 

needed. One feasible solution might be using character strings to represent type 

expressions, via some kind of type expression language. An example of this approach is 

detailed in [4]. The most serious disadvantage of this approach is the need to process 

the string as a program to extract component types of a constructed type, at the 

expense of too many computational resources. 

A simpler and more efficient solution is using recursive data structures by means of 

objects. This structure is easier to manipulate than character strings and requires less 

computational power when processing a compound type expression. Some routines are 

common to most type expression, and particular routines are necessary for specific type 

expressions. By using object orientation, these common and specific routines can be 

properly set to each type expression by means of classes and polymorphism. 
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B. The Composite Design Pattern 

The problem of representing recursively composite structures in a hierarchal way 

appears in several contexts in computer science. The object-oriented Composite 

pattern [8] is used to model and solve this sort of problem. This pattern models both 

primitive and recursively composed structures, offering a uniform way to manipulate 

these heterogeneous structures. An example of the Composite design pattern is 

represented by the class diagram in Fig. 1. The elements of the Composite design 

patterns are as follows. 

1. Component (TypeExpression). A (usually abstract) class that declares the 

interface of all the elements (simple and compound) defining their uniform 

processing. Every method can offer a default implementation (asterisk, 

squareBrackets, brackets, and dot) or be declared abstract to be implemented by 

the Component subclasses (getBytes and typeExpression). 

2. Leaf (Character, Integer, Void, Boolean, and Error). These elements represent 

leaf nodes in the hierarchical structure. A leaf object does not own a “child” type. 

The methods of the Leaf class define the concrete operations for this specific 

node. 

3. Composite (Pointer, Array, Struct, and Function). This element models 

structures built by composition of others, managing references to the types to 

which the type constructor was applied. The Composite implements its methods 

taking into account the referred types, even obtaining partial results from the 

operations implemented by each of the Composite child nodes. 
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C. Implementation of Type Expressions 

When applying the Composite design pattern to implement type expressions, every 

built-in type will be a leaf node, and every compound type will be a separate Composite 

class. The TypeExpression class will hold operations of the semantic analysis phase; 

that is, operations common to all types (equivalence, coercion, inference, or unification). 

TypeExpression will also hold operations for the code-generation phase (size or low-

level representation). Placing these methods in the root class of the hierarchy implies a 

uniform treatment of all types according to the interface of the Component class, 

regardless of their internal structure. 
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Figure 1. Class diagram to model some type expressions of the C programming language. 

When most types have the same behavior for a specific operation, that behavior will 

be implemented as a method of the TypeExpression class. Then, if required, each 

subclass could override the general operation defined in the TypeExpression class; 

otherwise, the default behavior will be inherited. Moreover, every sub-class can define 

specific methods according to the type expression each class represents, without 
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declaring those specific methods in the base class. That is, these methods define 

messages of that specific type expression, and they are not applicable to the rest of the 

existing types. 

Figure 1 shows the preliminary design of type expressions of part of the C 

programming language, following the Composite design pattern. The Component role is 

played by the TypeExpression abstract class, defining the general behavior of all type 

expressions. Some of the messages accepted by the TypeExpression class have a 

default implementation. These sample messages are as follows. 

− asterisk, squareBrackets, brackets, and dot. These methods have two 

responsibilities. First is inferring the resulting type when a language operator is 

applied to an expression. Many methods receive other type expressions as 

parameters. For instance, a function invocation (brackets) requires the type of each 

argument to infer the returning type. The second responsibility is type checking, 

which needs to know whether a language operator could be applied to an 

expression. If the operation makes no sense for a specific type expression (a type 

error is committed), an Error type expression will be returned. The new instance of 

the Error class created will store the error description. 

The default implementation of all of these methods indicates that such operations 

are not semantically defined for the corresponding type, giving back an Error object 

to the caller. For each operator that can be syntactically applied to a type, the 

programmer will have to override the corresponding method. For example, the type 

Pointer class implements the asterisk method because the “*” operator is allowed 
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over pointers. This method returns a type expression representing the type the 

pointer references. 

− typeExpression. Returns a character string representing the type expression of the 

type modeled, using a notation employed in many compilers [4]. This method 

facilitates debugging tasks at the same time as reducing memory consumption. 

Further explanation is given in the next section. An example of a C++ implementation 

of this method for the Function class is shown in Fig. 2. In this example, a type 

expression that represents a function with two arguments, a pointer to an integer and 

a real, and returns nothing, will be translated to the string “(Pointer(Integer),Float)-

>Void”. 

− getBytes. Returns the number of bytes needed to hold a variable of each type. This 

message is an example of how the types of the language can also represent 

responsibilities of the code generation phase. 

 

string Function::typeExpression() const { 
 ostringstream o; 
 if (parameters.size()) { 
  o<<"("; 
  for (unsigned i=0;i< parameters.size();i++) 
   o<< parameters [i]->typeExpression()<< 
    (i<parameters.size()-1 ? ',' : ')'); 
 } 
 o<<"->"<<returnType->typeExpression(); 
 return o.str(); 
} 

Figure 2. Sample implementation for computing type expressions. 

Compound types have associations with base types; a pointer requires the type the 

pointer points to (to); an array requires the type the array “collects” (of); a struct requires 

a collection of its fields (fields), qualified by the name of each field (string); a function 

requires an association with the type of the value(s) the function returns (returnType) 

and a collection of its parameters qualified by name (parameters). Since all the 
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associations point to the root class of the hierarchy, compound types can be composed 

of any type, including themselves, by means of polymorphism. 

Additionally, this design facilitates type construction using existing analysis tools, 

such as lex/yacc, Antlr, and JavaCC. Type expressions are built in a syntax-directed 

manner by means of type constructors. Basic types are created first and later used to 

build more complex types in the semantic routines of analysis tools. 

D. An Example of Use 

This section introduces a sample scenario of the design presented above, 

representing type expressions for a subset of the C programming language. Lexical and 

syntactic features have been specified by means of lex and yacc, respectively, and the 

remaining parts of the processor have been implemented in ISO/ANSI C++. When a 

variable is defined (lines 1 to 9 in Fig. 3), the variable is associated with its type 

expression (a pointer to the TypeExpression class) in a symbol table. In these semantic 

routines, types are created by invoking the appropriate type constructors so that 

complex types are composed while yacc is performing reductions. 

Although this example is of a single-pass compiler, this design is also suitable for 

multi-pass compilers. In that case, type expressions would be constructed by executing 

the visit methods of the Visitor design pattern [8]-[9]. 

Function statements are sequences of expressions. Each expression has a type, i.e., 

a pointer to TypeExpression. For every reduction performed by yacc, the type of the 

sub-expression is inferred by applying the suitable operator. This inference is processed 

by sending the appropriate message to the type of the sub-expression. 
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Figure 3 shows a trace of all of the type expressions inferred in each statement of the 

main program. Source code with its line numbers is shown in the left part; whereas, the 

string returned when sending the message typeExpresssion to each inferred type can be 

seen in the right part of Fig. 3. For example, a Pointer type is obtained from the first sub-

expression in line 13 (pointer variable); the asterisk is invoked in the next reduction so 

that the pointed type is inferred (Integer); the next step is getting the type of vector from 

the symbol table; then, the squareBrackets message is passed to Array (the type of 

vector), using the Integer type expression (previously inferred) as an argument; the final 

type inferred is Integer. 

 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
 
12: 
13: 
14: 
15: 
16: 
17: 

int vector[10]; 
int *pointer; 
int **doublePointer; 
char **v[10]; 
char *w[10]; 
struct Date { int day, month, year; }; 
struct Date date; 
int *f(int,char*); 
void p(int*); 
int main() { 
  date;                 Struct((day x Integer)x 
                            (month x int)x(year x Integer)) 
  v;                    Array(10,Pointer(Pointer(Character))) 
  vector[*pointer];     Integer 
  **v[**doublePointer]; Character 
  w[*f(3,w[1])];        Pointer(Character) 
  p(f(date.day,w[2])); 
} 

Figure 3. Type inference trace of an example program. 

The processes of type inference and type checking are offered in a uniform way. 

Namely, dissimilar algorithms can be applied without distinguishing between different 

type expressions. All the type expressions are treated uniformly, obtaining 

heterogeneous behavior through polymorphism. Figure 4 illustrates this uniformity 

feature using yacc in a single-pass compiler. The asterisk, squareBrackets, and dot 

messages are responsible for this heterogeneous functionality, regardless of the type 

expression that is being used. 
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 exp: '(' exp ')'   { $$=$2; } 
    | '*' exp    { $$=$2->asterisk(); } 
    | exp '[' exp ']'  { $$=$1->squareBrackets($3); } 
    | exp '.' ID   { $$=$1->dot($3); } 
    | INT_LITERAL   { $$=new Integer($1); } 
    | CHAR_LITERAL   { $$=new Character($2); } 
    | ID    { $$=symbolTable.find($1); } 

Figure 4. Uniform type inference and type checking with yacc. 

III. Type Equivalence 

In the semantic analysis phase of a compiler, the use of equivalent types should be 

verified each time a type needs to be checked. Hence, a key issue in the design of a 

type system is the formulation of the conditions that two objects must satisfy to be 

considered equivalent. 

Different approaches of type equivalence are offered by several programming 

languages, mainly classified into two families [10]. 

1) Structural equivalence. Two types are structurally equivalent only if they have 

the same structure; that is, either they are the same basic type, or they have been 

built applying the same type constructor to structurally equivalent types. 

Languages, such as ML, Algol-68 and Modula 3, employ a type system based on 

structural equivalence. C++ implements structural equivalence, except for 

classes, structs, and unions. 

2) By-name equivalence. Every type has a unique name. Hence, two types are 

equivalent only if they have the same name. Ada and Java are two languages 

that use by-name equivalence. 

The design of the second family is easier than the first one because by-name 

equivalence is as simple as comparing unique identifiers of each type. However, with 
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structural equivalence the structure of each of the types should be recursively 

compared. 

A. Implementation of Type Equivalence 

Using the presented design, the implementation of a structural equivalence algorithm 

becomes a relatively simple task. Since every type should be comparable, an 

equivalentTo method is added to the TypeExpression class. This method checks 

whether or not each type is equivalent to the one passed as a parameter.  

In the case of simple types, the equivalentTo method simply checks if the type of the 

parameter is the same as the implicit object –the default implementation of the method 

in the TypeExpression root class. 

In the case of complex types, the type equivalence process should also verify that 

both types have been built using the same type constructor. In addition, a recursive 

comparison of each child type expression should be performed. A C++ implementation 

of both cases is shown in Fig. 5. 

 

bool TypeExpression::equivalentTo(const TypeExpression *te) const { 
 return typeid(*this)==typeid(*te); /* Runtime Type Information */   
} 
bool Struct::equivalentTo(const TypeExpression *te) const { 
 const Struct *record=dynamic_cast<const Struct*>(te); 
 if (!record) return false; 
 if (fields.size()!=record->fields.size()) return false; 
 map<string, TypeExpression*>::const_iterator it1,it2; 
 for (it1=fields.begin(),it2=record->fields.begin(); 
    it1!=fields.end();++it1,++it2) { 
   if (it1->first!=it2->first) return false; 
   if (!it1->second->equivalentTo(it2->second)) return false; 
 } 
 return true;   
} 

Figure 5. Example implementation of structural equivalence. 

Using the RunTime Type Information (RTTI) provided by the standard ISO/ANSI C++ 

programming language, a default implementation returns whether or not the two type 
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expressions are the same class. In the case of Struct, type structures should have the 

same number of fields; each field name must match; and all of the field’s type 

expressions need to be structurally equivalent. 

IV. Type Representation by Means of Directed Acyclic Graphs 

Applying the class diagram showed in Fig. 1, type expressions may be created with a 

tree-like object structure. Tree structures duplicate type representation for different 

syntactic constructions with the same type. This object duplication could become critical 

when creating complex type expressions for real programs, involving an unacceptable 

number of duplicated objects at program compilation. This high memory consumption 

and the excessive computation needed to create and explore these object structures 

requires the redesign of type expressions. 

A. The Flyweight, Builder, and Singleton Design Patterns 

These design problems can be solved by applying the Flyweight design pattern [8]. 

This pattern is based on identifying objects that are shared simultaneously in many 

contexts, representing shared object states apart from particular object states. As the 

number of objects increases, their shared state (Flyweight) is represented by a single 

object; whereas, other instances of smaller size represent individual information of each 

particular object. 

The distinction between shared and particular states is straightforward when 

representing type expressions. In a source code input, a language processor will 

recognize a considerable number of symbols of the same type. Symbol information is 

individual; each variable must have an associated offset in memory, a scope, a type, 
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and an identifier. However, information held by a type could be shared by symbols and 

syntactic constructions of the same type. Types manage responsibilities such as size, 

equivalence, coercion, inference, and low level representation. 

As a result, separating symbols from type expressions and reusing the second ones 

will offer a better processor throughput and lower memory consumption. The Flyweight 

design pattern provides a model to avoid redundant creation of objects –in this case, 

type expressions. A type factory is responsible for getting and creating (when needed) 

type expressions of every syntactic construction, thus releasing the language processor 

programmer from this task. 
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n
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Figure 6. Adding a types table (Flyweight design pattern). 

To summarize, the TypesTable class (Fig. 6) creates type expressions following the 

next criteria. 

1. Encapsulation of type access. The getType method of TypesTable will be the 

only way to access a specific type. A char string that represents the type 

expression with a textual notation is passed to this method as a parameter. This 
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method is responsible for locating the object associated with each type 

expression and creating the necessary instance if the corresponding object has 

not been created before. Thus, the use of this method guarantees that no 

duplicate types are present, returning a pointer to the correct TypeExpression 

instance. 

2. Prohibition of creation and destruction of types. To guarantee that no type 

duplication exists, the construction and destruction of type instances will not be 

allowed. In C++, this prohibition can be achieved by declaring the constructors 

and destructors of all the types as protected, and making TypesTable a friend 

class of every type. In other programming languages like Java, this 

implementation is easily obtained by using the package information-hiding level. 

In case the language requires explicit destruction of objects (as C++ does), the 

types table will be responsible for deleting all the types when the table is 

released. 

3. Heterogeneous construction of type expressions. The process of creating the 

appropriate type from a char string that represents a type expression is not a 

trivial task. The string should be analyzed and the appropriate type constructors 

must be invoked to compose the recursive object structure. This process is only 

performed in type expression construction. Afterwards, whenever an existing type 

is needed, a pointer to TypeExpression is obtained directly by hashing the type-

expression string. The creation of type expressions is performed with another 

design pattern called Builder that separates the construction of complex objects 

[8]. Classes that represent compound types will implement a class (static) method 
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responsible for building the compound types of the type expressions. For 

instance, the buildFunction method will parse the string “(Pointer(Integer),Float)-

>Void” and will construct the Function type expression from the types from which 

the function is composed, “(Pointer(Integer),Float)” and “Void”. This process is a 

mutual recursive process, i.e., these methods will use the getType method that 

has been previously invoked, obtaining the “Pointer(Integer)”, “Integer”, and 

“Float” type expressions. 

4. A unique instance for each simple type. To ensure that only one instance of 

each simple type is created, the Singleton design pattern [8] is also used (notice 

that composite objects do not have to be unique since they depend on their 

aggregate types). 

By using the Flyweight design pattern, the object structure that represents types of 

the language will not be a tree-like structure with repeated structures anymore. Instead, 

type expressions will be represented by Directed Acyclic Graphs (DAG) that guarantee a 

fully shared term representation [11]. Symbols of the example program in Fig. 3 will now 

be represented with the DAG shown in Fig. 7. 
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Symbol
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Figure 7. Type expressions object diagrams using a DAG structure. 

B. Implementation of Structural Equivalence Using DAGs 

Since uniqueness in type expressions is guaranteed by the design described above, 

the implementation of structural equivalence –the equivalentTo method– is strongly 

simplified. Now no longer need to be recursively compared type instances of the 

TypeExpression class. Object identity will provide this equivalence. In the C++ 

programming language is as easy as comparing object’s memory addresses instead of 

their structures; in Java this comparison should be done between references using == 

instead of the equals method (Fig. 8). Hence, two type expressions will be equivalent if 

they are exactly the same object. The computing time for this process is extremely low in 

comparison with the time needed to compare the structure of two trees [12]. 

 

bool TypeExpression::equivalentTo(const TypeExpression *te) const { 
  return this == te;  
} 

Figure 8. Implementation of structural equivalence using DAG structures. 
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V. Type Coercion 

Programming languages usually allow conversions of the inferred types, either 

explicitly (performed by the programmer) or implicitly (performed by the compiler). 

Implicit conversions are also called coercion, promotion, or implicit cast. Most of the 

languages provide type coercion in contexts where the conversion means no information 

loss. For example, implicit casting from integer to real is done in C++, Pascal, Java, and 

C#; whereas, Modula-2 does not offer coercion at all. 

Type coercion extends the definition of type equivalence in a slight way. For 

example, two types can be non-equivalent, but a promotion could exist so that they 

would become compatible. Language specifications state explicitly the places where 

coercion can be applied and under which circumstances. Two common examples are 

arguments passed to a function and the expression on the right hand side of an 

assignment. 

A. Implementation of Type Coercion 

A new coercion method will be placed in the root class of the hierarchy 

(TypeExpression). This message returns whether or not the implicit object type could 

coerce to the type passed as a parameter. The returning type expression is the coerced 

type, or null to indicate that no coercion is possible. 

The coercion operation is implemented extending the equivalentTo functionality. 

Type equivalence will be the default implementation (Fig. 9); and if a type defines type 

coercion differently from type equivalence, this method should be overridden. Then, 

every coercion method of the derived type expressions will specify types to which each 

object can promote. As an example, an array that collects elements of type T in C++ can 
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be promoted to a pointer to elements of type T. Since a function defines no coercion, the 

default definition (type equivalence) is appropriate. Fig. 9 shows two sample 

implementations of different type coercions. 

 

const TypeExpression *TypeExpression::coercion( 
     const TypeExpression *te) const { 
 return this->equivalentTo(te)?te:0; // * Default type coercion 
} 
const TypeExpression *Array::coercion(const TypeExpression *te) const {  
 const TypeExpression *tc=TypeExpression::coercion(te); 
 if (tc) return tc; // * Type equivalence 
 const Pointer *pointer=dynamic_cast<const Pointer*>(te); 
 if (pointer && of->equivalent(pointer->getTo()) ) 
  return pointer; 
 return 0; 
} 

Figure 9. Default type coercion and the specific implementation of the Array type. 

Type coercion depends on the language being processed, but with this design, any 

modification of coercions is easily adapted from one language to another. The code that 

implements type coercion is placed in each coercion method of the hierarchy. Modifying 

promotion rules becomes simple and straightforward. Another typical scenario where 

type coercion should be defined is sub-type polymorphism. In those type systems that 

offer inheritance, every class must permit coercion to its super-class(es). 

VI. Type Polymorphism 

Universal or parametric polymorphism is a language property that permits part of a 

program to have different types [6]. Polymorphism occurs when a variable or a function 

can be defined with a set of types. By means of inheritance, many object-oriented 

languages provide polymorphism restricted to type hierarchies; this kind of 

polymorphism is commonly defined as inclusion polymorphism (or sub-type 

polymorphism) [13]-[14]. Object-oriented languages commonly refer to universal 

polymorphism as generics. 
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A. Type Variables and Unification 

The main addition of polymorphic type systems are type variables. A type variable 

represents any type expression as an instance of the type variable. A type variable can 

be any type inside another type expression. ML, Haskell, and OCaml are functional 

languages that provide polymorphism; C++, Eiffel, Java 5, and C# 2.0 are object-

oriented languages that implement polymorphism as well. 

A language processor that provides polymorphism has to implement a unification 

algorithm; the process of finding a substitution for each type variable with another type 

expression, according to the use of a polymorphic operator or function [15]. An example 

is a function that receives a parameter of generic type and returns the address of the 

parameter. If this function is invoked with an integer as parameter, the return type 

should be inferred as a pointer to an integer. This inference mechanism is performed by 

a unification algorithm. 

Only polymorphism features of the C++ and Java 5 type systems (languages known 

by all the students) are described here. Both are basic polymorphic type systems, but 

more complex type systems of languages such as ML (that require the implementation 

of occur check) could also be developed following the same design criteria. The code in 

Fig. 10 is an example of a valid input for a C++ processor. 

 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

int vector[10]; 
template <typename T> struct Record { T field; }; 
template <typename T> struct List {  
 T one;  
 T* many; }; 
template <typename T> T *f(T); 
template <typename T> T g(T,T); 
template <typename T1, typename T2> T2 *h(T1,T2); 
struct Record<bool> recordBool; 
struct List<int> intList; 
int main() { 
 f(3);                     Pointer(Integer) 
 g(3,'3');                 Integer 
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14: 
15: 
16: 

 h(3.3,vector);            Pointer(Array(10,Integer)) 
 f<int>(true);             Pointer(Integer) 
} 

Figure 10. Input program using polymorphism. 

This C++ program requires a process of unification to infer types. For example, in 

line 14 the h function is invoked with two parameters; the types of both arguments 

should be inferred; and the resulting types must be unified to the type variables T1 and 

T2. Afterwards, the type checker could infer that the type returned by the function is a 

pointer to an array of integers (a pointer to T2). Apart from unification, type coercion is 

also used in lines 13 and 15. 

B. Implementation of Type Polymorphism 

Following the designs presented in this paper, a new kind of type expression will be 

added, TypeVariable. This class must have an attribute to indicate the name of the type 

variable, necessary in the unification algorithm. In addition, a unify method will be added 

to all of the elements of the hierarchy. This method receives a pair of parameters: a type 

expression to unify, and the list of substitutions –an association of type variables with 

type expressions. The unified type is returned by the method. 

To implement the unify method in each class, it must be taken into account that 

1. simple types do not hold type variables. They will simply return an invocation to 

the coercion method. Thus, this implementation will be the default behavior in 

TypeExpression. 

2. compound types must check if they represent the same type constructor. If so, 

they will invoke the unify method of each component type. As a result, a type 

expression with the same constructor type, composed of the unifications of each 

child type, will be returned. 
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3. the type variable should find its substitution. The type variable will search for itself 

into the substitutions list (second parameter). If the variable is found, the 

unification of the type expression associated with this type variable is returned. 

Otherwise, the type to unify (first parameter) is assigned to the type variable and 

returned. 

The unify method will be invoked during type checking every time a function is called. 

Type variables can also be explicitly set by the programmer (lines 9, 10, and 15 of Fig. 

10). 

VII. Comparison with the Traditional Approach 

A. The Attribute Grammar Approach 

In a typical compiler course, attribute grammars are the main formalism used to 

describe type checkers of programming languages [4], [16]. Attribute grammars are 

introduced to the students after the syntax analysis topic. An attribute grammar is a 

formal system that allows a user to define attributes in an augmented, context-free 

grammar and the relationships to be established among them [17]. 

Before using attribute grammars, instructors should describe to the students some 

topics, such as notation, inherited and synthesized attributes, well-defined (non-circular) 

attribute grammars, S-attributed and L-attributed grammars, and translation to 

imperative programs [18]. The explanation of these topics is not a trivial task because 

attribute grammars are declarative languages, and students are accustomed to 

programming in imperative languages. 
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The problem of the traditional approach is two-fold. First, many exercises must be 

performed because the students are not accustomed to programming in declarative 

languages; second, no tools are available to translate full-featured attribute grammars to 

object-oriented imperative languages [5]. 

Attribute grammars are high-level mechanisms to describe type features in a syntax-

directed way. However, the implementation of type checkers could not be directly 

obtained from this formalism, involving an important drawback in a software engineering 

compiler construction course. As an example, if a one-pass compiler is going to be 

developed using yacc, a non-circular attribute grammar should be translated to an 

equivalent S-attributed grammar; yacc is an imperative LALR syntax-directed parser 

generator that only supports synthesized attributes. Afterwards, declarative rules of 

attribute grammars must be translated to imperative action routines in yacc.  

The S-attributed grammar in Fig. 11 is an example of the type checker implemented 

in yacc, previously shown in Fig. 4. Following this approach, type equivalence, coercion, 

and polymorphism are features that are really difficult to express [4]. 

Grammar  Rules 

exp → ( exp1 ) exp.type := exp1.type

exp → '*' exp1 exp.type := if exp1.type = pointer(t) then t 
            else error

exp → exp1 [ exp2 ] exp.type := if exp1.type =array(s,t) and  
               exp2.type = integer then t 
            else error 

exp → exp1 . ID exp.type := if exp1.type = record(α ×(s × t)× β) and 
               ID.name = s then t 
            else error 

exp → INT_LITERAL exp.type := integer 

exp → CHAR_LITERAL exp.type := char 

exp → ID exp.type := find(ID.name)

Figure 11. Classical example of type inference using attribute grammars [4]. 
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B. The Design Patterns Approach 

The approach presented in this paper substitutes UML design patterns to specify 

type systems for the high-level syntax-directed formalism of attribute grammars. Both 

are high-level notations, but since UML is not syntax-directed, separation of language’s 

syntax from type checking issues is easier. Therefore, instructors can focus their 

explanations on type checking. Following this scheme, type checking could be 

performed both in a syntax-directed way (as the one pass compiler in Fig. 4) and 

following a multi-pass scheme by means of the Visitor design pattern [8]-[9]. 

At the higher level, design patterns facilitate the comprehension, abstraction, 

encapsulation, reutilization, and modularization of type checking algorithms, being 

directly applicable to practical compiler construction. At the lower level, example 

implementations of methods clarify type inference and type checking algorithms, the 

responsibilities of the semantic analysis phase, and how different topics of type systems 

are interconnected. 

Other formalisms, such as typed lambda calculi and operational semantics [19], are 

rarely used to teach type systems in a compiler construction course. These notations 

are mainly oriented to design type systems rather than to implement type checkers. 

VIII. Assessment 

The effectiveness of the compiler course presented in this paper has been evaluated 

after assessing students’ feedback, students’ performance, and the features of the 

compiler developed as the final project. 
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A. Students Feedback 

In an anonymous survey, 33 students completed the questionnaire of ten items 

(Table 1), using a five-point scale (where 1 = strongly agree and 5 = strongly disagree). 

The survey is aimed at evaluating if, in their opinion, the designs presented in this paper 

facilitate the comprehension of type system concepts and the implementation of a 

compiler, and improving their software engineering skills. The survey also asked the 

students if they think the practical development of a compiler applying object-oriented 

techniques strengthens the abilities related to other subjects. 

With some variation, the majority of students agreed that the objectives of the 

presented approach were achieved. The average evaluation (4.27) showed that the 

effectiveness of this work was notably successful; the agreement evaluation of almost all 

the topics was over four. The students expressed that design patterns help implement a 

compiler and facilitate the comprehension of theoretical concepts, and provide good 

practice to improve their software engineering skills. 

1 UML design patterns have facilitated the comprehension of the theoretical concepts  4.45
2 Object-oriented design patterns have made the development of a compiler an easy task 4.61
3 UML design patterns have been appropriated to implement the semantic analysis of the 

compiler 
4.33

4 The practical development of a compiler has strengthened other subjects’ objectives 4.03
5 Design patterns have helped produce more maintainable code 4.67
6 The development of a compiler is a good practice to improve software engineering skills 4.42
7 The development of a compiler is a good practice to improve programming skills 4.12
8 Analyzing object-oriented type system design patterns reduces the time necessary to 

develop a type checker 
4.27

9 Interesting and significant less time explaining theoretical issues provides more time to 
develop a compiler 

3.73

10 Learning to apply compiler lessons in the development of a complete compiler is more 
important than understanding and practicing formal notations 

4.06

 Average: 4.27

Table I: Results of the survey. Strongly disagree (1), disagree (2), neutral (3), agree (4), strongly agree 
(5). 
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The only question that had an assessment lower that four (almost agree) was 

question nine. Probably this result came from some students’ opinions that the design-

level abstraction is enough to implement a compiler. 

B. Students Performance 

The course was originally taught using attribute grammars to describe type systems 

[4]. In 2003, the design patterns described in this paper were introduced in the course 

together with attribute grammars. This year, the students developed a single-pass 

compiler using yacc. In 2004, attribute grammars were suppressed from the course, 

developing a multi-pass compiler using the Visitor design pattern [8]-[9]. Table II shows 

the performance evolution of students in these years. 

Student performance has improved over the years. In 2002, the percentage of 

students that passed the compiler course was 70.65%. This rate has gradually 

increased to 98.55% obtained in the last course. A numeric grading system with a four-

point scale has been used: brilliant (4), very good (3), notable (2), pass (1) and fail (0). 

Average student grades have also increased from 1.8 to 2. Interestingly, students in 

2003, obtained the worst marks; this was the year that both attribute grammars and 

design patterns were taught. 

Year of 
Study 

With attribute 
grammars 

With design 
patterns 

Student pass 
rate (%) 

Average student 
grades (0-4) 

Hours used in 
compiler construction 

2002 √  70.65 1.82 119.22 

2003 √ √ 87.62 1.78 117.14 

2004  √ 92.65 2.07 114.6 

2005  √ 98.55 2.05 110 

Table II: Evolution of student performance from 2002 to 2005. 

The estimated number of hours for a student to develop the final project is based on 

the complexity of the compiler. To avoid plagiarism, the number of features students 
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should implement is gradually increased in each examination. Therefore, presenting the 

compiler in the June exams implies 90 hours, 120 hours if presented in September, and 

150 hours at the end of the year. As Table II shows, hours used by students in their final 

project has been gradually reduced (from 119 to 110). 

These results may represent that object-oriented design patterns are an adequate 

mechanism to teach type systems. The improvement of the pass rates and grades of 

students may be a result of a better comprehension of concepts. At the same time, the 

practical approach presented in this paper seems to facilitate the development of the 

final project, lowering the number of hours taken by the students. Although, these results 

might be also from other causes, no plagiarism between students has been detected, 

and no other relevant factor has been introduced in the course. 

C. Qualitative Benefits 

Since UML designs have been used for teaching both type system theory and 

implementation issues, a better use of time and a better comprehension of the concepts 

have been achieved. Time saved by using UML instead of attribute grammars has been 

employed to enhance the quality of the compiler to be developed. Therefore, in years 

2005 and 2006, new features such as type coercion, type equivalence, and basic type 

polymorphism, were included. Moreover, the architecture was changed from old single-

pass compiler to present multi-pass compiler [20]-[21], doubly improving the software 

engineering exercise of developing a real language processor. 
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IX. Conclusions 

In a graduate program centered in the software engineering area, the main objective 

of a compiler course is the development of a language processor as a practical exercise 

in compiler and software construction. In the design, and verification of programming 

languages type systems, several formalisms were used but most of them are unknown 

to graduate students. When teaching type checking using object-oriented design 

patterns, theoretical concepts are specified as responsibilities of classes and methods. 

This approach facilitates the comprehension of type checking issues and the compiler 

development process. Designs are based on concepts, such as type expression, 

primitive type, type constructor, type equivalence, type coercion, and type 

polymorphism. These concepts do not belong to a specific paradigm and appear in most 

type systems. 

The object-oriented design patterns presented in this paper can be implemented in 

any programming language that supports classes, encapsulation, inheritance, and 

polymorphism. They can be used both in dynamic and static type systems, with existing 

compiler generation tools, and with both single-pass and multi-pass compilers. 

This approach has been applied to a compiler course of a graduate degree in 

software engineering, obtaining a gradual increase of student performance and an 

encouraging feedback. Besides learning traditional type systems concepts, the students 

implement a real type checker, and they strengthen their software engineering and 

programming skills. This approach seems to be a satisfactory combination of compiler 

theory and practice. 
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