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Abstract. The Hidden Field Equations (HFE) Cryptosystem as pro-
posed by Patarin is one of the best known and most studied multivariate
schemes. While the security of the basic scheme appeared to be very
weak, the HFEv- variant seems to be a good candidate for digital sig-
nature schemes on the basis of multivariate polynomials. However, the
currently existing scheme of this type, the QUARTZ signature scheme,
is hardly used in practice because of its poor efficiency. In this paper we
analyze recent results from Ding and Yang about the degree of regularity
of HFEv- systems and derive from them design principles for signature
schemes of the HFEv- type. Based on these results we propose the new
HFEv- based signature scheme Gui, which is more than 100 times faster
than QUARTZ and therefore highly comparable with classical signature
schemes such as RSA and ECDSA.
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1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [28], DSA [19] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers arrive. The rea-
son for this is Shor’s algorithm [29], which solves number theoretic problems
like integer factorization and discrete logarithms in polynomial time on a quan-
tum computer. Therefore, one needs alternatives to those classical public key
schemes, based on hard mathematical problems not affected by quantum com-
puter attacks.
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Besides lattice, code and hash based cryptosystems, multivariate cryptogra-
phy is one of the main candidates for this [1]. Multivariate schemes are in general
very fast and require only modest computational resources, which makes them
attractive for the use on low cost devices like smart cards and RFID chips [5,6].
Additionally, at least in the area of digital signatures, there exists a large number
of practical multivariate schemes [10,20].

In 2001, Patarin and Courtois proposed a multivariate signature scheme
called QUARTZ [24], which is based on the concept of HFEv-. While QUARTZ
produces very short signatures (128 bit), the signature generation process is very
slow (at the time about 11 seconds per signature [6]). The main reason for this
is the use of a high degree HFE polynomial (for QUARTZ this degree is given
by D = 129), which makes the inversion of the central map very costly.

At the time of the design of the QUARTZ scheme, very little was known
about the complexity of algebraic attacks against the HFE family of systems, in
particular, the HFEv- schemes. Therefore, the authors of QUARTZ could not
base their parameter choice on theoretical foundations. Recently, there has been
a fundamental breakthrough in terms of understanding the behavior of algebraic
attacks on the HFE family of systems [9,11], which gives an upper bound on the
degree of regularity of Gröbner basis attacks against those schemes.

In this paper, we review and analyze the results of Ding and Yang and derive
from these results design criteria for HFEv- based signature schemes. In par-
ticular we show that we can, by increasing the numbers a of Minus equations
and v of Vinegar variables, achieve adequate security even for low degree HFE
polynomials and that the upper bound on the degree of regularity given by Ding
and Yang is reasonably tight. Based on our analysis, we propose the new HFEv-
based signature scheme Gui1, which uses HFE polynomials of very low degree,
namely D ∈ {5, 9, 17}. This enables us to speed up the signature generation
process by a factor of more than 100 compared to QUARTZ, without weakening
the security of the scheme. By doing so, we create a highly practical multivariate
signature scheme, whose performance is comparable to that of classical signature
schemes such as RSA and ECDSA.

The rest of this paper is organized as follows. In Sect. 2 we give an introduc-
tion into the area of multivariate cryptography and in particular Big-Field signa-
ture schemes. Section 3 introduces the HFEv-signature scheme and the changes
made to this scheme by Patarin and Courtois when defining QUARTZ. Further-
more, in this section, we discuss the performance and the security of HFEv-
based signature schemes. In Sect. 4 we analyze the results of Ding and Yang on
the behaviour of direct attacks on HFEv- schemes by performing a large number
of experiments and present the design criteria we derive from that. Based on
these principles, we propose in Sect. 5 our new multivariate signature scheme
Gui. Section 6 gives details on the implementation of the scheme and compares
the efficiency of Gui with that of some standard signature schemes. Finally,
Sect. 7 concludes the paper.

1 We call our new scheme Gui, referring to earthenware pottery dating back to the
4000-year-old Longshan culture [31].
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2 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials (see Eq. (1)).
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The security of multivariate schemes is based on the

MQ Problem: Given m multivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
in n variables x1, . . . , xn as shown in Eq. (1), find a vector x̄ = (x̄1, . . . , x̄n) such
that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic
polynomials over the field GF(2) [15].

To build a public key cryptosystem based on the MQ problem, one starts
with an easily invertible quadratic map F : F

n → F
m (central map). To hide the

structure of F in the public key, one composes it with two invertible affine (or
linear) maps S : F

m → F
m and T : F

n → F
n. The public key is therefore given

by P = S ◦ F ◦ T . The private key consists of S, F and T and therefore allows
to invert the public key.

Note: Due to the above construction, the security of multivariate schemes is
not only based on the MQ-Problem but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the composition of P.

In this paper we concentrate on multivariate signature schemes of the Big-
Field family. For this type of multivariate schemes, the map F is a specially
chosen easily invertible map over a degree n extension field E of F. One uses an
isomorphism Φ : F

n → E to transform F into a quadratic map

F̄ = Φ−1 ◦ F ◦ Φ (2)

from F
n to itself. The public key of the scheme is therefore given by

P = S ◦ F̄ ◦ T = S ◦ Φ−1 ◦ F ◦ Φ ◦ T : F
n → F

n. (3)

The standard signature generation and verification process of a multivariate
BigField scheme works as shown in Fig. 1.
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Fig. 1. General workflow of multivariate BigField signature schemes

Signature generation: To generate a signature for a message h ∈ F
n, one com-

putes recursively x = S−1(h) ∈ F
n, X = Φ(x) ∈ E, Y = F−1(X) ∈ E,

y = Φ−1(Y ) ∈ F
n and z = T −1(y). The signature of the message h is z ∈ F

n.

Verification: To check the authenticity of a signature z ∈ F
n, one simply com-

putes h′ = P(z) ∈ F
n. If h′ = h holds, the signature is accepted, otherwise

rejected.
A good overview on existing multivariate schemes can be found in [8].
Two widely used variations of multivariate BigField signature schemes are

the Minus variation and the use of additional (Vinegar) variables.

Minus variation: The idea of this variation is to remove a small number of
equations from the public key. The Minus-Variation was first used in schemes
like SFLASH [25] to prevent Patarins Linearization Equations attack [26] against
the Matsumoto-Imai cryptosystem [23].

Vinegar variation: In this variation one parametrizes the central map F by
adding (a small set of) additional (Vinegar) variables. In the context of multi-
variate BigField signature schemes, the Vinegar variation can be used to increase
the security of the scheme against direct and rank attacks.

3 The HFEv- Signature Scheme

In this section we introduce the HFEv- signature scheme, which is the basis of
both QUARTZ and our new signature scheme Gui (see Sect. 5).

Let F = Fq be a finite field with q elements and E be a degree n extension
field of F. Furthermore, we choose integers D, a and v. Let Φ be the canonical
isomorphism between F

n and E, i.e.

Φ(x1, . . . , xn) =

n∑

i=1

xi · Xi−1. (4)
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The central map F of the HFEv- scheme is a map from E×F
v to E of the form

F(X) =

qi+qj≤D∑

0≤i≤j

αij · Xqi+qj

+

qi≤D∑

i=0

βi(v1, . . . , vv) · Xqi

+ γ(v1, . . . , vv), (5)

with αij ∈ E, βi : F
v → E being linear and γ : F

v → E being a quadratic
function.

Due to the special form of F , the map F̄ = Φ−1 ◦ F ◦ Φ is a quadratic
polynomial map from F

n+v to F
n. To hide the structure of F̄ in the public

key, one combines it with two affine (or linear) maps S : F
n → F

n−a and
T : F

n+v → F
n+v of maximal rank.

The public key of the scheme is the composed map P = S ◦ F̄ ◦ T : F
n+v →

F
n−a, the private key consists of S, F and T .

Signature generation: To generate a signature for a message h ∈ F
n−a, the signer

performs the following three steps.

1. Compute a preimage x ∈ F
n of h under the affine map S.

2. Lift x to the extension field E (using the isomorphism Φ). Denote the result
by X.
Choose random values for the vinegar variables v1, . . . , vv ∈ F and compute
FV = F(v1, . . . , vv).
Solve the univariate polynomial equation FV (Y ) = X by Berlekamp’s algo-
rithm and compute y′ = Φ−1(Y ) ∈ F

n.
Set y = (y′||v1|| . . . ||vv).

3. Compute the signature z ∈ F
n+v by z = T −1(y).

Signature verification: To check the authenticity of a signature z ∈ F
n+v, one

simply computes h′ = P(z) ∈ F
n−a. If h′ = h holds, the signature is accepted,

otherwise rejected.

3.1 QUARTZ

In 2001, Patarin and Courtois proposed the multivariate signature scheme
QUARTZ [24], which is based on the concept of HFEv-. Indeed, the public
and private maps of QUARTZ are HFEv- maps with the parameters

(F, n,D, a, v) = (GF(2), 103, 129, 3, 4).

Due to this choice, the public key P of QUARTZ is a quadratic map from F
107

to F
100. The public key size of QUARTZ is 71 kB, the private key size 3 kB.

The input length of QUARTZ is only n−a = 100 bit. Therefore, it is possible
for an attacker to use a birthday attack to find two different messages m1 and
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m2 which map to the same input value h ∈ F
100 and therefore to the same

signature.
To prevent this kind of attack, Patarin and Courtois developed a special

procedure for the signature generation process of QUARTZ. Roughly spoken, one
computes four HFEv- signatures (for the messages h, H(h||0x00), H(h||0x01)
and H(h||0x02)) and combines them to a single 128 bit signature of the message
h. Analogously, during the signature verification process, one has to use the
public key P four times.

3.2 Performance

The most costly step during the signature generation process of HFEv- based
signature schemes such as QUARTZ is the inversion of the univariate polyno-
mial equation FV over the extension field E. This step is usually performed by
Berlekamp’s algorithm, whose complexity can be estimated by [27]

O(D3 + n · D2). (6)

As can be seen from Eq. (6), the complexity of inverting FV and therefore of
the signature generation process of HFEv- based schemes is mainly determined
by the degree D of the HFE polynomial. Due to the high degree of the HFE
polynomial used in QUARTZ, the inversion of FV is very costly. Furthermore, we
have to perform this step four times during the signature generation of QUARTZ.
Additionally, the design of QUARTZ requires the central equation FV (Y ) = X
to have a unique root. Since, after choosing random values for Minus equations
and Vinegar variables, FV can be seen as a random function, this happens with
probability about 1

e . Altogether, we therefore have to run Berlekamp’s algorithm
about 4 ·e times during the signature generation process of QUARTZ. Thus, the
QUARTZ signature scheme is rather slow and it takes about 11 seconds to
generate a signature [6].

3.3 Security of HFEv- Based Schemes

The most important attacks against signature schemes of the HFEv- type are

– the MinRank attack and
– direct algebraic attacks.

The MinRank Attack on HFE. In this paragraph we describe the attack of
Kipnis and Shamir [21] against the HFE cryptosystem. For the simplicity of our
description we restrict ourselves to homogeneous maps F and P.

The key idea of the attack is to lift the maps S, T and P to functions S⋆,
T ⋆ and P⋆ over the extension field E. Since S and T are linear maps, S⋆ and
T ⋆ have the form

S⋆(X) =

n−1∑

i=1

si · Xqi

and T ⋆(X) =

n−1∑

i=1

ti · Xqi

, (7)
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with coefficients si and ti ∈ E. The function P⋆ can be expressed as

P⋆(X) =

n−1∑

i=0

n−1∑

j=0

p⋆
ijX

qi+qj

= X · P ⋆ · XT , (8)

where P ⋆ = [p⋆
ij ] andX = (Xq0

, Xq1

, . . . , Xqn−1

) . Due to the relation P⋆(X) =

S⋆ ◦ F ◦ T ⋆(X) we get S⋆ −1 ◦ P⋆(X) = F ◦ T ⋆(X) and

P̃ =

n−1∑

k=0

sk · G⋆k = W · F · WT (9)

with g⋆ k
ij = (p⋆

i−k mod n,j−k mod n)qk

, wij = sqi

j−i mod n and F being the n × n
matrix representing the central map F . Note that, due to the special structure
of F , the only non zero entries in the matrix F are located in the upper left r×r
submatrix (r = ⌊logq D − 1⌋ + 1).

Therefore, the rank of the matrix W · F · WT is less or equal to r, which
means that we can determine the coefficients sk of Eq. (9) by solving an instance
of the MinRank problem.

In the setting of HFEv-, the rank of this matrix is, for odd characteristic,
bounded from above by [11]

Rank(P̃ ) ≤ r + a + v. (10)

Under the assumption that the vinegar maps βi look like random functions, we
find that this bound is tight.

For fields of even characteristic we eventually have to decrease this rank by
1, since over those fields, the matrix P̃ is always of even rank. The complexity of
the MinRank attack against HFEv- based schemes is therefore given roughly by

ComplexityMinRank = O(qn·(r+v+a−1) · (n − a)3). (11)

In the paper [18] the authors showed that, due to the symmetry of the solutions
of the equations for the MinRank problem in the Kipnis-Shamir attack and the
fact that we work over a large extension field, the complexity of the Kipnis-
Shamir attack is actually exponential in terms of the number of variables in
the HFE system using known MinRank methods, and not polynomial as was
originally stated. Though the theoretical argument underlying this observation
does not apply directly to the generic MinRank problem, it demonstrates that
the Kipnis-Shamir attack, for which one needs to solve a non-generic MinRank
problem, has a much higher complexity than originally estimated. We therefore
conclude, that the complexity of a MinRank attack against an HFEv- based
signature scheme is, in practice, higher than the above estimation.

There is one other formulation of the MinRank problem. According to [13],
solving a MinRank problem with n×n matrices to a rank of r′ involves computing
a Gröbner basis with degree of regularity r′(n − r′) + 1, where the rank is given
by r′ = r + v + a − 1 . When we raise the rank r′ (by increasing a + v), this
means that the attack complexity of the MinRank attack is much higher than
that of a direct attack.
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Direct Attacks. For the HFE family of schemes, the direct attack, namely the
attack by directly solving the public equation P(x) = h by an algorithm like XL
or a Gröbner basis method such as F4 [12] is a major concern due to which hap-
pened to HFE challenge 1. At the time of the design of QUARTZ, very little was
known theoretically about the complexity of algebraic attacks against the HFE
family of systems, in particular, the HFEv- schemes. The authors of QUARTZ
did not actually give an explanation for their selection of the parameters and
therefore the parameter selection of their scheme was not supported by theoret-
ical results. We need to point out that, as has been shown by experiments [22],
the public systems of HFEv- based schemes can be solved easier than random
systems.

Recently, there has been a fundamental breakthrough in terms of under-
standing how algebraic attacks on the HFE family of systems work [9,11]. In
particular, we now have a solid insight what happens in the case of HFEv-.
An upper bound for the degree of regularity of a Gröbner Basis attack against
HFEv- systems is given by [11]

dreg ≤

{
(q−1)·(r−1+a+v)

2 + 2 q even and r + a odd
(q−1)·(r+a+v)

2 + 2 otherwise
, (12)

where r is given by r = ⌊logq(D − 1)⌋ + 1.

Note: In [7] Courtois et al. estimated the complexity of a direct attack on
QUARTZ by 274 operations. However, they underestimated the degree of regu-
larity of solving an HFEv- system drastically.

4 Design Principles for HFEv- Based Signature Schemes

The theoretical breakthrough mentioned in the previous subsection indicates
that it might be possible to substantially improve the original design of QUARTZ
without reducing the security of the scheme, if we adapt the number of Minus
equations and Vinegar variables in an appropriate way. By reducing the degree
of the central HFEv- polynomial we can speed up the operations of Berlekamp’s
algorithm and therefore the signature generation process of the HFEv- scheme.
In this section, we analyze by experiments the behavior of direct attacks against
HFEv- schemes and the tightness of the upper bound given by Eq. (12). From our
results we derive design principles for the construction of HFEv- based signature
schemes, which we later apply to our new signature scheme Gui presented in the
next section.

In particular, we answer in this section the following questions.

1. Equation (12) shows a tradeoff between the degree D of the HFE polynomial
and the sum a+v of minus equations and vinegar variables. This would enable
us to use low degree HFE polynomials in the construction of HFEv- based
signature schemes and therefore to improve their performance drastically. Can
we verify this by experiments?
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2. Is the ratio between a and v important for the security of the scheme?
3. Is the upper bound on the degree of regularity given by equation (12) rea-

sonably tight?
4. Does it help to guess some variables before applying a Gröbner basis algorithm

to the system P (Hybrid Approach)?

To answer these questions, we performed a large number of experiments with the
F4 algorithm integrated in MAGMA. As we found, adding the field equations
{x2

i −xi} to the system makes a huge difference regarding the degree of regularity
and the running time of the attack.

4.1 Can We Use HFE Polynomials of Low Degree D?

To improve the efficiency of the signature generation process we are interested
in decreasing the degree of the HFE polynomial in use as far as possible without
weakening the security of the scheme. Doing so will reduce the complexity of
Berlekamp’s algorithm (see Eq. (6)) and therefore improve the performance of
the scheme significantly. So, the first question we have to answer in this context
is the following.

How should we choose the degree D of the HFE polynomial in order to
obtain secure and efficient HFEv- based schemes?

– D = 2, 3: Such small values of D would lead to matrices F of rank 2. We
therefore do not think that these schemes can be secure.

– D = 5: Although the plain HFE scheme with an HFE polynomial of degree 5
(r = 3) is highly insecure, we believe that the modified HFEv- scheme provides
adequate security.

– D = 9, 17: Other promising values for the degree of the HFE polynomial in
use are D = 9 and D = 17, which lead to values of r of 4 and 5 respectively.

In the first row of experiments we analyzed the behavior of direct attacks against
HFEv- systems over GF(2) with different values of D. For this, we fixed the
number of equations in the system. For different values of D, a and v we created
HFEv- systems and fixed a + v variables randomly to get determined systems.
After adding the field equations {x2

i −xi} we solved the systems using MAGMA’s
implementation of the F4 algorithm. For each parameter set we performed 10
experiments.

Table 1 shows the results of our experiments with determined HFEv- systems
of 20 and 25 equations respectively. The degree of regularity of a random system
of this size is 5 and 6 respectively. The table shows, for different values of D,
the minimal values of a and v needed to reach this degree. Although, because of
memory restrictions, we could not perform our experiments for larger values of
n, we expect that similar results hold for arbitrary numbers of equations.
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Table 1. Experiments with F4 on determined HFEv- systems with 20 and 25 equations

D r 20 equations 25 equations

Minimal a,v dreg Time (s) Memory (MB) Minimal a, v dreg Time (s) Memory(MB)

129 8 a = v = 0 5 2.74 109.7 a = v = 1 6 276.2 7,621

65 7 a = 0, v = 1 5 2.73 110.2 a = v = 2 6 276.0 7,681

33 6 a = v = 1 5 2.75 109.7 a = 2, v = 3 6 273.4 7,762

17 5 a = 1, v = 2 5 2.72 109.7 a = v = 3 6 275.7 7,751

9 4 a = v = 2 5 2.73 109.9 a = 3, v = 4 6 276.4 7,693

5 3 a = 2, v = 3 5 2.73 109.6 a = v = 4 6 272.8 7,680

Random system 5 2.85 110.8 6 286.3 7,683

From the above experiments we obtain the following important observation

Let d be the degree of regularity of a direct attack against an HFEv-
system with parameters D1, n, a1, v1 and let D2 < D1.
By choosing large enough values for a2 and v2, we can obtain an HFEv-
scheme with parameters D2, n, a2, v2, such that the degree of regularity
of a direct attack against this system is d, too.

From this observation we derive our first design principle for the construction of
HFEv- based signature schemes.

Design Principle 1:
For the construction of HFEv- based signature schemes we use for

efficiency reasons HFE polynomials of small degree D, namely
D ∈ {5, 9, 17}. We then increase the numbers of Minus equations a

and Vinegar variables v to obtain a secure scheme.

4.2 Is the Ratio Between a and v Important for the Security of the
Scheme?

To answer this question, we performed experiments of the following type. For a
fixed degree D of the HFE polynomial, a fixed number of equations and a fixed
value s we created HFEv- systems with a ∈ {0, . . . , s} and v = s − a. After
fixing v + a variables to get a determined system and adding the field equations
{x2

i − xi} we solved the systems by the F4 algorithm integrated in MAGMA.
For each parameter set we performed 10 experiments. The results are shown in
Tables 2 and 3.

As the tables show, in particular for HFEv- schemes with low degree D, the
number v of vinegar variables should not be too small. Especially, v = 0 (i.e.
HFE-) seems to be a bad choice.

On the other hand, very high values of v do not increase the security of the
scheme and increase the public key size of the scheme drastically. To achieve a
good security and a moderate public key size, we therefore formulate our second
design principle for HFEv- based signature schemes as follows.
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Table 2. Experiments with F4 on determined HFEv- systems with 20 equations

D=5, a+v=5 D=9, a+v=4 D=17, a+v=3

a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB)

0 5 5 2.76 109.7 0 4 5 2.77 109.7 0 3 5 2.75 110.7

1 4 5 2.77 109.7 1 3 5 2.78 110.8 1 2 5 2.77 109.7

2 3 5 2.76 110.7 2 2 5 2.76 110.7 2 1 5 2.74 110.8

3 2 5 2.77 110.8 3 1 5 2.75 110.8 3 0 5 2.73 109.7

4 1 5 2.75 109.8 4 0 5 2.79 108.7 —

5 0 4 1.01 32.6 — —

Table 3. Experiments with F4 on determined HFEv- systems with 25 equations

D=5, a+v=8 D=9, a+v=7 D=17, a+v=6

a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB)

0 8 6 246.6 7,582 0 7 6 248.9 7,582 0 6 6 247.0 7,581

1 7 6 246.2 7,579 1 6 6 247.4 7,582 1 5 6 247.6 7,581

2 6 6 246.6 7,580 2 5 6 248.0 7,580 2 4 6 247.6 7,581

3 5 6 248.1 7,581 3 4 6 246.4 7,593 3 3 6 248.3 7,579

4 4 6 247.1 7,581 4 3 6 248.3 7,578 4 2 6 246.5 7,580

5 3 6 248.3 7,582 5 2 6 248.5 7,579 5 1 6 248.8 7,580

6 2 6 248.3 7,554 6 1 6 247.3 7,581 6 0 6 247.9 7,581

7 1 5 99.3 1,317 7 0 5 99.5 1,380 —

8 0 5 88.3 1,509 — —

Design Principle 2:
In the design of HFEv- based signature schemes we choose the

number of Minus equations a and the number of Vinegar variables v
to be as equal as possible, i.e. v − a ≤ 1.

4.3 Is the Upper Bound on dreg Given by Eq. (12) Reasonably
Tight?

In this section we check by experiments if the upper bound on the degree of
regularity given by Eq. (12) is tight. Due to memory restrictions, we can show
the tightness of Eq. (12) only for some small values of D, a and v. However, for
all values of D used in our scheme Gui (D ∈ {5, 9, 17}) we could find parameter
sets for which the bound (12) is tight (see Table 4).

For most of the other parameter sets, we missed the upper bound on the
degree of regularity given by Eq. (12) only by 1. We believe that, by increasing
the number of equations in the systems, it would be possible to reach the upper
bound for arbitrary values of (D, a, v). However, due to memory restrictions, we
could not perform experiments with more than 38 equations.

Furthermore, as shown in Table 5, we could, for all of the proposed values of
D, reach a degree of regularity of at least 7. These results are the basis of our
parameter choice for Gui (see Sect. 5).
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Table 4. Parameter sets, for which the upper bound (12) is tight

D a v Upper bound for dreg (12) dreg (experimental)

5 0 0 3 3 for n ≥ 10

1 1 4 4 for n ≥ 23

9 0 1 4 4 for n ≥ 23

1 1 4 4 for n ≥ 21

17 0 0 4 4 for n ≥ 15

0 1 4 4 for n ≥ 12

Table 5. Parameter sets which lead to dreg ≥ 7

D a v dreg (experimental) Upper bound for dreg (12)

5 6 6 7 for n ≥ 38 9

9 5 5 7 for n ≥ 37 8

17 4 4 7 for n ≥ 37 8

4.4 Does it Help to Guess Some Variables Before Applying a
Gröbner Basis Algorithm?

In the case of multivariate signature schemes such as HFEv- the public key P
is an underdetermined system of quadratic equations. In our case this system
consists of n − a quadratic equations in n + v variables. For the experiments
presented in the previous subsections we fixed a + v of the variables of the
system to create a determined system before applying the F4 algorithm.

However, for some multivariate systems, it is a good strategy to guess some
additional variables before applying the Gröbner basis algorithm (Hybrid App-
roach [4]). The goal of this strategy is to create overdetermined systems which
hopefully will be significantly easier to solve. When guessing k variables one has,
to find a solution of the original system, to solve qk instances of the simpli-
fied system, where q is the cardinality of the underlying field. To check whether
this Hybrid approach helps to solve the public systems of the HFEv- scheme
faster, we performed a number of experiments. For the three parameter sets
(D, a, v) ∈ {(5, 6, 6), (9, 5, 5), (17, 4, 4)} and varying numbers of n and k we
created HFEv- systems and solved them with the F4 algorithm integrated in
MAGMA. Table 6 shows, for k ∈ {0, . . . , 5}, the minimal value of n needed to
reach a degree of regularity of 7.

As the table shows, we could, for each of the above parameter sets and each
value k ∈ {0, . . . , 5}, create a HFEv- system offering a good level of security,
simply by increasing the number of equations in the system. In fact, the degree
of regularity of a direct attack against such a system of n−a quadratic equations
in n − a − k variables will be at least 7.

We therefore assume that, for large enough n, all the multivariate systems
which have to be solved in the course of a direct/hybrid attack against our
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Table 6. Experiments on HFEv- systems with the Hybrid Approach

# k of guessed variables Minimal value of n to reach dreg ≥ 7

D =5, a =v=6 D =9, a =v=5 D =17, a =v=4

0 38 37 37

1 39 38 38

2 40 40 39

3 42 41 41

4 43 43 42

5 44 44 44

schemes, will have a degree of regularity of at least 7. This is the basis for our
parameter selection presented in the next section.

5 The New Multivariate Signature Scheme Gui

Based on our experiments presented in the previous section we propose three
different versions of our HFEv- based signature scheme Gui over the field GF(2):

– Gui-96 with (n,D, a, v) = (96, 5, 6, 6) with 90 equations in 102 variables,
– Gui-95 with (n,D, a, v) = (95, 9, 5, 5) with 90 equations in 100 variables and
– Gui-94 with (n,D, a, v) = (94, 17, 4, 4) with 90 equations in 98 variables.

The complexity of direct attacks against these schemes can be estimated as
follows.

According to our experiments (see Table 6), the degree of regularity of the
F4 algorithm (even with the Hybrid Approach) against these schemes will be at
least 7.

For the complexity of a direct attack against one of our schemes (with guess-
ing k variables) we have

ComplexityF4/F5
≥ 3 · τ · T 2, (13)

where T is the number T of top-level monomials in the solving step of the F4
algorithm and τ is the number of non zero elements in each equation. We get

ComplF4/F5
≥ 3 · τ · T

2
= 2

k
· 3 ·
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2

)

·
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·
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· 2
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·
(n − a − k) · (n − a − k − 1)

(n − a) · (n − a − 1)
·

(
(n − a − k) · . . . · (n − a − k − dreg + 1)

(n − a) · . . . · (n − a − dreg + 1)

)
2

︸ ︷︷ ︸

≥1

≥ 3 ·
(n − a

2

)

·
(n − a

dreg

)2

≥ 3 ·
(90

7

)

·
(90

2

)

= 2
80.7

. (14)



324 A. Petzoldt et al.

Note that this number is very optimistic since we assume that the degree of
regularity will not rise above 7.

Additionally, for better comparison to standard signature schemes, we pro-
pose a fourth version of Gui, Gui-127, with the parameters (n,D, a, v) =
(127, 9, 4, 6), providing a security level of 120 bits.

5.1 Signature Generation

The central component of the signature generation process of Gui is inverting
the HFEv- core map.

To compute a pre-image of a (n − a) bit digest h, one first has to choose
random values for the Minus equations and the Vinegar variables. In our con-
crete implementation, these values are the last a + v bits of SHA-256(h).
After that, one computes recursively x = S−1(h), X = Φ(x), Y = F−1

V (X),
y = (Φ−1(Y )||v1|| . . . ||vv) and z = T −1(y) (see Fig. 2).

For the parameters of Gui, the length of the digest h is only n − a = 90 bits.
To prevent birthday attacks, we therefore have to perform the above process
several times (for different values of h). We denote this repetition factor by k
and set k = 3 for Gui-96 and Gui-95. For Gui-94 and Gui-127 the value k is
chosen to be 4.

The signature generation process of Gui works as shown in Algorithm 1 and
Fig. 3.

We initialize the n − a vector S0 to be 0 and compute the SHA-256 hash
value h of the message. Let D1 be the bitstring consisting of the first (n − a)
bits of h. We compute the pre-image of D1 under the HFEv- core (see above)
and split the result into an (n − a) bit string S1 and an a + v bit string X1.

We set D2 to be the string consisting of the first (n − a) bits of SHA-256(h)
and compute the HFEv- pre-image of D2 ⊕S1. Again, the result is split into the
two parts S2 (n − a bits) and X2 (a + v bits). This process is repeated, until we
have values Si, Xi for i = 1, . . . , k.

The final signature of the message is given by σ = (Sk||Xk|| . . . ||X1). The
resulting signature sizes for our schemes can be found in Table 7.

A detailed description, how the inversion of the central HFEv- map is per-
formed in our implementation, can be found in Sect. 6.2. Due to some flaws in
the SHA-1 algorithm, we replace the SHA-1 hash function used in the original
QUARTZ design by SHA-256.

5.2 Signature Verification

To check the authenticity of a signature σ ∈ GF(2)
(n−a)+k(a+v)

we parse σ into
Sk, Xk, . . . , X1 and compute D1, . . . , Dk as shown in Sect. 5.1. For i = k−1 to 0
we compute recursively Si = P(Si+1||Xi+1) ⊕ Di+1. The signature is accepted,
if and only if S0 = 0 holds.

By the above construction of the signature generation and verification process
we prevent birthday attacks as follows. We consider an adversary A who wants
to find two messages m1 and m2 which lead to the same signature σ.
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Fig. 2. Core operations of HFEv-

Algorithm 1. Signature Generation Process of Gui

Input: Gui private key (S, F , T ) message d, repetition factor k

Output: signature σ ∈ GF(2)(n−a)+k(a+v)

1: h ← SHA-256(d)
2: S0 ← 0 ∈ GF(2)n−a

3: for i = 1 to k do

4: Di ← first n − a bits of h

5: (Si, Xi) ← HFEv-−1(Di ⊕ Si−1)
6: h ← SHA-256(h)
7: end for

8: σ ← (Sk||Xk|| . . . ||X1)
9: return σ

Algorithm 2. Signature Verification Process of Gui

Input: Gui public key P, message d, repetition factor k, signature σ ∈
GF(2)(n−a)+k(a+v)

Output: TRUE or FALSE

1: h ← SHA-256(d)
2: (Sk, Xk, . . . , X1) ← σ
3: for i = 1 to k do

4: Di ← first n − a bits of h

5: h ← SHA-256(h)
6: end for

7: for i = k − 1 to 0 do

8: Si ← P(Si+1||Xi+1) ⊕ Di+1

9: end for

10: if S0 = 0 then

11: return TRUE

12: else

13: return FALSE

14: end if
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Fig. 3. Signature generation process of Gui

Table 7. Key and signature sizes of Gui-94, Gui-95, Gui-96, and Gui-127

Scheme Core map HFEv-
(n, D, a, v)

Public key size (byte) Private key
size (byte)

Repetition
factor k

Signature
size (bit)

Gui-96 (96, 5, 6, 6) 63036 3175 3 126

Gui-95 (95, 9, 5, 5) 60600 3053 3 120

Gui-94 (94, 17, 4, 4) 58212 2943 4 122

Gui-127 (127, 9, 4, 6) 142576 5350 4 163

QUARTZ (103, 129, 3, 4) 75515 3774 4 128

For the plain HFEv- signature scheme it would be enough to find two mes-
sages m1 and m2 such that SHA-256(m1)i = SHA-256(m2)i for the first n − a
bits. If (n − a) ≤ 160, the adversary can find m1 and m2 by a birthday attack.

In the context of our scheme Gui, the adversary now has to find messages
m1 and m2 which lead to the same values of D1, . . . , Dk. For our values of the
repetition factor k, this corresponds to finding a collision for a hash function of
length 270, 360 and 492 bit (Gui-95/96, Gui-94 and Gui-127 respectively). This
is, in general, assumed to be infeasible.

6 Implementation and Comparison

In this section we present the details of our implementation of the Gui signature
scheme and compare the performance of our scheme with that of the original
QUARTZ and other standard signature schemes.

6.1 Arithmetics Over Finite Fields

The first step in our implementation of the Gui signature scheme is to provide
efficient arithmetics over the large binary fields in use. To speed up these compu-
tations, we use a set of new processor instructions for carry-less multiplication:
PCLMULQDQ [30].

The instruction set PCLMULQDQ allows the efficient multiplication of two 64-
bit polynomials over GF(2) resulting in an 128-bit polynomial. The PCLMULQDQ

instructions are available on some new processors of Intel and AMD. Performance
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Table 8. Performance of PCLMULQDQ on different platforms (source: [14,17])

Processor type Latency cycles Throughput cycles/multiplication

Intel Sandy Bridge 14 8

Ivy Bridge 14 8

Hashwell 7 2

AMD Bulldozer 12 7

Piledriver 12 7

Steamroller 11 7

data of PCLMULQDQ can be found in Table 8. In the case of Gui, the extension
field E has less than 2128 elements. We represent an element of the field E as a
polynomial over GF(2) which can be divided into two 64-bit polynomials.

A multiplication over the large field E is divided into two phases, namely a
multiplication and a reduction phase.

In the multiplication phase, the multiplication of two 128-bit polynomials can
be performed by 4 calls of PCLMULQDQ. With the help of the Karatsuba algorithm,
we can avoid one call of PCLMULQDQ and therefore its long latency (see Table 8).
To square an element of E, we need only two calls of PCLMULQDQ since we are
operating over a field of characteristic 2.

The reduction phase of the field multiplication heavily depends on the field
representation. For the original QUARTZ scheme over the field GF(2103) the
authors used GF(2103) := GF(2)[x]/(x103 + x9 + 1) [24]. For Gui, we choose the
field representations

– GF(294) := GF(2)[x]/(x94 + x21 + 1),
– GF(295) := GF(2)[x]/(x95 + x11 + 1),
– GF(296) := GF(2)[x]/(x96 + x10 + x9 + x6 + 1) and
– GF(2127) := GF(2)[x]/(x127 + x + 1) respectively.

The baseline for the reduction phase is two calls of PCLMULQDQ since, after the
multiplication phase, the degree of the polynomial will be greater than 2 × 64.
The irreducible polynomials above are chosen to contain only few terms of low
degree. With few terms in the irreducible polynomials, we may replace the use
of PCLMULQDQ by a few logic shifts and XOR instructions.

In the GF(2127) case, for example, the reduction can be performed by only
two 128-bit shifts for the x128 part and one conditional XOR for the x127 term,
avoiding at least two calls of PCLMULQDQ while reducing the high 128 bit register.

Another technique is to represent elements as 128-bit polynomials while
avoiding full reduction. This allows us to perform the reduction of degree 128–191
and 192–255 terms using only two calls of PCLMULQDQ without data dependency.
In the GF(296) case, for example, we can perform the reduction phase by multi-
plying the degree 128–191 terms by x128 = x42 + x41 + x38 + x32 and the degree
192–255 terms with x192 = x20 + x18 + x12 + 1. All the polynomials in use have
degree ≤ 64, and we can perform the reduction by two calls of PCLMULQDQ.
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The proposed implementation provides time-constant multiplication for pre-
venting side channel leakage, since, regardless of the input, the same operations
are performed. The same strategy is also applied to the calculation of multiplica-
tive inverses. For example, for the sake of time-constant arithmetics, the inverse
of an element x ∈ GF(2127) is calculated by raising x to x2127−2 instead of the
faster extended Euclidean algorithm.

6.2 Inverting the HFEv- Core

In this section we describe how we can perform the inversion of the central
HFEv- equation FV (Y ) = X efficiently. During the signature generation process
of Gui we have to perform this step several times to avoid birthday attacks (see
Sect. 5.1). Therefore it is extremely important to perform this step efficiently.

To invert the central HFEv- equation, we have to perform Berlekamp’s algo-
rithm to find the roots of the polynomial FV (Y ) − X. Since the design of
QUARTZ and Gui requires FV (Y ) − X to have a unique solution, we only have
to perform the first step of Berlekamp’s algorithm, i.e. the computation of

gcd(FV (Y ) − X,Y 2n

− Y ). (15)

We have

gcd(FV (Y ) − X, Y 2n

− Y )

= gcd(FV (Y ) − X,
∏

i∈F2n ,i�=0

(Y − i)) =
∏

i:FV (i)=X

(Y − i).

Therefore the main process in creating a signature consists in computing gcd(FV (Y )−
X, Y 2n

− Y ). The number of roots of FV (Y ) − X (as well as the only solution when
that happens) can obviously be read off from the result.

Probability of a Unique Root. Every time we choose the values of Minus equa-
tions and Vinegar variables, we basically pick a random central equation FV (Y )−X =
0. The probability of this equation having a unique solution is about 1/e. Therefore, in
order to invert the HFEv- central equation, we have to perform the gcd computation
about e times.

The repeated computation of the gcd (see Eq. 15) is probably the most detectable
side channel leakage of our scheme. However, there are no known side channel attacks
on big field schemes or HFEv- which use the information that one particular equation
in the big field has no, respectively two or more solutions.

How Do We Optimize the Computation of the GCD? The main com-
putation consumption in this step comes from the division of the extreme high power
polynomial Y 2n

− Y mod FV (Y ). A naive long division is unacceptable for this pur-
pose due to its slow reduction phase. Instead of this, we choose to recursively raise the
lower degree polynomial Y 2m

to the power of 2.

(Y 2m

mod FV(Y))∈ mod FV(Y)

=(
∑

i<2m

biY
i)2 mod FV(Y) = (

∑

〉<∈�

⌊∈
〉 Y∈〉) mod FV(Y)
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By multiplying Y to the naive relation Y D =
∑

0≤i≤j,2i+2j<D aijY
2i+2j

, we can

prepare a table for Y 2i mod FV(Y) first. The rest of computation of the raising process
is to square all the coefficients bi in Y 2m

mod FV(Y) and multiply them to the Y 2is
in the table.

Although the starting relation FV (Y ) = Y D+
∑

0≤i≤j,2i+2j<D aijY
2i+2j

is a sparse
polynomial, the polynomials become dense quickly in the course of the raising process.
However, the number of terms in the polynomials is restricted by D because of
mod FV(Y). We expect the number of terms to be in average D during the com-
putation.

We implemented Berlekamp’s algorithm in such a way that it takes the same num-
ber of iterations in the main GCD loop and the same number of operations in the big
field for each run at very low cost. Therefore it runs, independently from the input, at
constant time.

The number of field multiplications needed to compute the Y 2i table is O(2·D2). To
raise Y 2m

to Y 2n

we need O((n−m) ·D) squarings and O((n−m) ·D2) multiplications.
We can further reduce the number of computations needed for raising Y 2m

by using a

higher degree Y i table. For example, if we raise Y 2m

to Y 24m

in one step, we need only
O((n−m)·D) squarings and O( (n−m)

2
·D2) multiplications. However, the computational

effort for preparing the Y i table increases. Table 9 shows the time needed to compute
gcd(Y 2n

− Y, F(Y )) on three different CPUs.

6.3 Experiments and Comparison

Table 10 shows key and signature sizes as well as the running times of signature gen-
eration and verification of Gui and compares these data with those of some standard
signature schemes. The data are benchmarked according to specifications given by the
eBACS project [3].

We should note that the timings for Gui given by Table 10 are for C programs
with a few intrinsic function calls of PCLMULQDQ. The PKCs benchmarked in the eBACs
project also do not represent optimal implementations of RSA and ECC. We present
these numbers in an effort to compare apples to apples by using only reference imple-
mentations.

Table 9. Key sizes of HFEv- schemes and running time of gcd(X2n

− X, F(X ))

Scheme Security Public key Private key Time needed for inverting

level (bit) size (kB) size (kB) F (kilo-cycles)

HFEv- (96, 5, 6, 6) 80 61.6 3.1 72/76/55a

HFEv- (95, 9, 5, 5) 80 59.2 3.0 159/135/79

HFEv- (94, 17, 4, 4) 80 56.8 2.9 533/453/274

HFEv- (127, 9, 4, 6) 120 139.2 5.2 170/156/128

HFEv- (103, 129, 3, 4) 80 71.9 3.1 25,793/20,784/12,630
a AMD Opteron 6212, 2.5 GHz (Bulldozer)/Intel Xeon CPU E5-2620, 2.0 GHz (Sandy
Bridge)/Intel Xeon E3-1245 v3, 3.4 GHz (Hashwell)
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Table 10. Comparison between Gui and standard signature schemes

Scheme Security Public key Private key Signature Signing time Verification

level (bits) size (Bytes) size (Bytes) size (bits) (k-cycles)a time (k-cycles)a

Gui-96 (96, 5,

6, 6)

80 63,036 3,175 126 603/569/238 97/70/62

Gui-95 (95, 9,

5, 5)

80 60,600 3,053 120 1,417/1,441/602 91/60/58

Gui-94 (94, 17,

4, 4)

80 58,212 2,943 124 5,800/5,480/2,495 118/74/71

Gui-127 (127,

9, 4, 6)

120 142,576 5,350 163 2,368/2,183/1,080 220/121/122

QUARTZ (103,

129, 3, 4)

80 73,626 3,174 128 302,882/315,716/128,736 145/84/86

RSA-1024 80 128 128 128 2,080/1,058/1,073 74/32/33

RSA-2048 112 256 256 256 8,834/5,347/4,625 138/76/61

ECDSA P160 80 40 60 320 1,283/558/588 1,448/635/652

ECDSA P192 96 48 72 384 1,513/773/697 1,715/867/779

ECDSA P256 128 64 96 512 830/388/342 2,111/920/816
a AMD Opteron 6212, 2.5GHz (Bulldozer)/Intel Xeon CPU E5-2620, 2.0GHz (Sandy Bridge)/Intel Xeon

E3-1245 v3, 3.4GHz (Hashwell)

6.4 Platforms Without PCLMULQDQ

We also optimized the arithmetics over large finite fields by SIMD table-lookup instruc-
tions for platforms without PCLMULQDQ. SIMD table-lookup instructions are common
in contemporary CPUs, e.g., PSHUFB (Packed Shuffle Byte) on x86 and VTBL (Vector
Table Lookup) on ARM platforms. For this we used an ARM Cortex-A9 processor with
NEON instruction set, which is currently the most common version in smart phones.
We use PSHUFB and VTBL as general table-lookup instructions with 4-bit index (although
VTBL is capable of 5-bit indices), not necessarily restricted to the x86 platform. Since
the length of indices in these instructions is only 4 or 5 bit, PSHUFB and VTBL were so
far only applied to implementations over small fields, e.g., GF(16) and GF(256) [6]. For
applying PSHUFB and VTBL to large finite fields, we have to represent the large field as
an extension of the small field. In our case, we use for the implementation the following
representation of GF(296)

– GF(16) := GF(2)[y]/(y4 + y + 1),
– GF(296) := GF(16)[x]/(x24 + y3x3 + x + y).

The multiplication in GF(16) is performed with PSHUFB and the multiplication in
GF(296) corresponds to a polynomial multiplication over GF(16). Furthermore, we use
Karatsuba’s technique for the computation of coefficients in different registers. To pre-
vent the scheme from side channel leakage, we implement the multiplication in GF(16)
with logarithm/exponential tables instead of multiplication tables, except for the mul-
tiplication with fixed values in the reduction phase of the polynomial multiplication.
With logarithm tables, the multiplication in GF(16) is performed by an addition in
the exponents of a multiplicative generator and therefore consists of two table lookups,
addition and reduction. Although there is only one table lookup in a normal imple-
mentation of multiplication tables, an intentional cache miss would result in a time
difference since the tables are loaded with the values of input operands.
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Table 11. Average number of cycles for the arithmetics in GF(296) and GF(2127) for
various implementations.

Implementation Multiplication Square Inversion

GF(296) 64-bit variables, school book 624/3392a 624/3384 68,752/357,728

128-bit register, PSHUFB/VTBL 138/731 87/424 11,242/48,825

128-bit register, PCLMULQDQ 12/- 8/- 2,489/-

GF(2127) 64-bit variables, school book 743/4,009 735/3,997 105,235/546,881

128-bit register, PSHUFB/VTBLb 318/813 187/531 28,565/77,703

128-bit register, PCLMULQDQ 15/- 9/- 3,257/-
a Intel Xeon E3-1245 v3, 3.4 GHz (Hashwell)/Xilinx Zynq 7020, 667 MHz (ARM
Cortex-A9)
b GF(2128)

Performance data of these implementations as well as a reference implementation
of school book multiplication for 64-bit variables, which is applicable to all platforms
without these SIMD instructions, can be found in Table 11. Note that, in the sixth
row of Table 11, we use the field GF(2128) := GF(16)[x]/(x32 + x3 + x + y) instead of
GF(2127), since the shape of this field contains some restrictions in the extension from
GF(16).

Our ARM implementation takes on average 1,14 ms to invert the central map
FV (Y ) = X. Performance data for the implementation of Gui-96 on ARM platforms
can be found in Table 12. As one can see, we are able to generate about 300 Gui
signatures per second on a standard smart phone.

6.5 Grover’s Algorithm and Potential Extension to Larger Fields

By Grover’s algorithm [16] it might be possible to cut down the complexity of a brute-
force search in an n-bit space to O(2n/2). We believe that this is no major threat to
HFEv- and in particular to Gui because of the large number of quantum bits (qubits)
needed in this case: While we need only 1024 qubits to solve Discrete Logarithms on a
256-bit prime modulus elliptic curve and 6000 qubits to factorize 3000-bit RSA numbers
using Shor’s Algorithm, the number of qubits and quantum gates needed to attack Gui
by Grover’s algorithm is in the order of a million (n3), since it implies the evaluation
of n quadratic polynomials in n variables. Therefore, quantum algorithms can be used
much more easy for the cryptanalysis of schemes such as RSA and ECC than for that
of multivariate schemes such as Gui and we do not consider Grover’s algorithm to be
a major problem for our scheme. However, even if we have to take Grover’s algorithm
into account, there is an easy way to prevent this kind of attack, namely by choosing

Table 12. Performance data for Gui on ARM platforms (timings in 10−6 s)

Scheme Key generation Signature generation Signature verification

Gui-96(96, 5, 6, 6) 99,555 3,291 102
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the parameter n about twice as large while keeping all other parameters constant.
In the implementation, this means an extra layer of the Karatsuba algorithm in the
multiplication phase and therefore a factor of 3 slowdown. Furthermore, this increases
the public key size by a factor of 8.

7 Conclusion and Future Work

In this paper, we analyzed the behavior of direct attacks against HFEv- based signature
schemes. Experiments show that, even for low degree HFE polynomials in use, we can
obtain adequate security levels by increasing the numbers a and v of Minus equations
and Vinegar variables. Furthermore we find that the upper bound on the degree of
regularity proposed by Ding and Yang in [11] is relatively tight. From our results we
derive design principles for the construction of HFEv- based signature schemes, which
lead to both secure and efficient schemes. We apply these principles to the construction
of our new HFEv- based signature scheme Gui, which is more than 100 times faster
than the original QUARTZ scheme. Furthermore we show that the performance of our
scheme is highly comparable to that of standard signature schemes, including signatures
on elliptic curves.

As future work we want to analyze the influence of the numbers a of Minus Equa-
tions and v of Vinegar variables on the security of HFEv- schemes further. Furthermore
we plan to create for every common existing platform an optimal implementation of
HFEv- (Gui) and compare it with some of the best optimized code for ECC and RSA,
such as Ed25519 [2]. Another approach would be to verify such optimal Gui code for
formal correctness. In short, we believe that there is still much work to be done on the
HFEv- digital signature schemes.
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son, D., López, J.: Software implementation of binary elliptic curves: impact of
the carry-less multiplier on scalar multiplication. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 108–123. Springer, Heidelberg (2011)

31. http://en.wikipedia.org/wiki/File:CMOC Treasures of Ancient China exhibit
white pottery gui 1.jpg

http://en.wikipedia.org/wiki/File:CMOC_Treasures_of_Ancient_China_exhibit_white_pottery_gui_1.jpg
http://en.wikipedia.org/wiki/File:CMOC_Treasures_of_Ancient_China_exhibit_white_pottery_gui_1.jpg

	Design Principles for HFEv- Based Multivariate Signature Schemes
	1 Introduction
	2 Multivariate Cryptography
	3 The HFEv- Signature Scheme
	3.1 QUARTZ
	3.2 Performance
	3.3 Security of HFEv- Based Schemes

	4 Design Principles for HFEv- Based Signature Schemes
	4.1 Can We Use HFE Polynomials of Low Degree D?
	4.2 Is the Ratio Between a and v Important for the Security of the Scheme?
	4.3 Is the Upper Bound on dreg Given by Eq.(??) Reasonably Tight?
	4.4 Does it Help to Guess Some Variables Before Applying a Gröbner Basis Algorithm?

	5 The New Multivariate Signature Scheme Gui
	5.1 Signature Generation
	5.2 Signature Verification

	6 Implementation and Comparison
	6.1 Arithmetics Over Finite Fields
	6.2 Inverting the HFEv- Core
	6.3 Experiments and Comparison
	6.4 Platforms Without PCLMULQDQ
	6.5 Grover's Algorithm and Potential Extension to Larger Fields

	7 Conclusion and Future Work
	References


