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Enlarging Physics, Math, Engineering

• Since Newton:

Mathematization of inanimate nature

• 21st century:

Additionally: Mathematization of animate nature
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Man : A Dynamical System

Diseases caused or expressed by malfunction of dynamical processes
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Systems Biology

Understanding biomedical systems by data-based

mathematical modelling of their dynamical behavior

Based on but more than ...

• ... Mathematical Biology: Data-based

• ... Bioinformatics: Dynamics

• ... o.p./g. – o.p.: System

• ... another omics: Mathematics
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Why Modelling in Cell Biology?

• Basic Research

– Genomes are sequenced, but ...

– ... function determined by regulation

– Regulation = Interaction & Dynamics

– Function: Property of dynamic network

– ”Systems Biology”

• Application

– Drug development takes 10 years and 1 bn $/e

– Reduce effort by understanding systems
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Two Differences between Physics and Biology

• Fundamental laws of nature vs. principles

• In biology there is ”function” due to evolution

Physics in biology:

Apply mathematics to understand function
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Bacterial Chemotaxis – The Phenomenon

• Bacteria sense nutrient gradients over four orders of

magnidute of absolute concentration

• Detect relative changes of 2 %

• Robust against pertubations

Chemotaxis: One of the best investigated biological

systems
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Bacterial Chemotaxis – The Strategy

• Bacteria too small to compare front to end

• Strategy:

– Change direction from time to time (tumble)

– If concentration increases: reduce tumbling frequency

– If concentration decrease: increase tumbling frequency

• Sense spatial gradients by temporal changes
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Chemotaxis – Tumble and Swim

Random walk vs. biased random walk

10



Chemotaxis in E. coli
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Chemotaxis – Flagella

Movement by rotating corkscrew-flagella

• counter-clockwise: form bundle: swim by marine propeller

• clockwise: rotate radially: tumble
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Chemotaxis – The Task

Tumbling/Swimming depends on phosphorylated CheY

Important: A small working range
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Chemotaxis – Adaptation

• Motor has a small range of sensitivity

• Cell is chemotactic for a large range of concentrations

=⇒ System has to be adaptive:

Steady state of CheYp must be independent from

absolute concentration of ligand
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Chemotaxis – The Task

Input: Nutrient concentration Output: Tumbling frequency

System performs a kind of differentiation
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The Players and their Roles

• T: Receptors

• CheR: Methyltransferase, adds CH3

• CheB: Methylesterase, removes CH3

• CheA: Kinase, adds PO4

• CheZ: Phosphatase, removes PO4

• CheY: Signaling protein

Phosporylation, Methylation = Chance of state
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Barkai/Leibler Model – Graphical Version
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Barkai/Leibler Model – Mathematical Version

Probability for activating methylated receptor by ligand L:

p =

„

1−
L

KL + L

«

Concentration of activated receptors Ta :

Ta = p Tm

Methylation/demethylation dynamics of receptors:

Ṫm = kRR− kBB
Ta

KB + Ta

Dynamics of Ap:

Ȧp = kA(Atot − Ap)Ta − kY Ap(Ytot − Y p)

Dynamics of Y p:

Ẏ p = kY Ap(Ytot − Y p)− γY Yp
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Perfect Adaptation

Steady state of Ta from

Ṫm = kRR − kBB
Ta

KB + Ta

= 0

yields

T ss
a = KB

kRR

kBB − kRR

• Independent from ligand concentration L

• Steady state is stable

• The same holds for Y p

Barkai & Leibler, Nature 387:913, 1997
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The Mechanism: Ta = p(L) Tm(Ta)

• Increasing L leads to fast decrease of Ta

• Ap & Y p are fastly dephosphorylated

• Tm is slowly increased

• Turns Ta and Ap & Y p back to steady state

• Integral negative feedback control

In words:

Degree of methylation compensates/remembers absolute
concentration of ligand
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But ...

... this model is not realised by nature
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Nature’s E. Coli
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Sources of Variability

• Intrinsic noise

Differences between identical reporters within one cell

– Stochasticity of reactions

• Extrinsic noise

Differences between identical reporters in different cells

– Expression level of signaling proteins

– Number of ribosomes

Cell-to-cell variability
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Quantification of Variability

Colman-Lerner et al. Nature 437:699, 2005
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Results

E. coli and yeast:

• Extrinsic noise is larger than intrinsic noise

• Protein concentrations fluctuate in a correlated manner
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Fluctuations and Chemotaxis

• Cell-to-cell fluctuations up to factor of ten

• Correlated fluctuations are dominant
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A Robustness Principle

The functionality of a pathway must be robust against

fluctuations of protein levels.

For chemotaxis:

• Steady state level Y p in [2.2 µM, 4.3 µM]

• For correlated fluctuation:

Steady state invariant under transformation: Xi → λXi

Important quantities may only depend on ratios of concentrations

• For uncorrelated fluctuations:

Use feedback-loops to attenuate noise
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Application to Barkai/Leibler Model
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Robustness of Barkai/Leibler Model

Steady states (with some approximations):

T ss
a = KB

kRR

kBB − kRR
o.k.

Apss
≈

kAT ss
a

kY

Atot

Ytot

o.k.

Y pss =
kyApss

kY Apss + γY

Ytot not o.k.

Cure: Y p must have a phosphatase (CheZ)

Y pss =
kyApss

kZ

Ytot

Ztot

o.k.
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Extension of the Model
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Robustness Against Correlated Fluctuations

• Y p must have a phosphatase (CheZ)

• Methyltransferase CheR has to work at saturation

• The pathway must be weakly activated, Xp ≪ Xtot
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Robustness Against Uncorrelated Fluctuations

Diminish uncorrelated noise by a classical feedback

• Methylesterase B can be phoshorylated by Ap

• Only Bp can demethylate receptors

∆Y p = −

∂f
∂Ta

∂Ta
∂R

α + β
∂Bp

∂Ap

∆R

• Robustness against correlated fluctuations:

=⇒ Bp must not have a phosphatase
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Final Model

And this is how E. coli looks like
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In silico Biology

• Choose different pathway topologies

• Parameters known experimentally

• Protein concentrations from experimental distributions

Compare chemotactic behaviour of in silico mutants to

E. coli for different expression levels of proteins
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Cartoons of Perfect Adaptive

Pathways
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Results: in vivo vs. in silico

red: Barkai/Leibler, black: final model, cyan: without feedback

blue: CheR not in saturation, green: CheBp with phosphatase
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Impossible Experiments

wild type: 0.4 wild type: 0.2

red: BL, black: fm, blue: w/out fb, green: mcm
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Conclusions

• E. coli has to be adaptive and robust

• E. coli seems to be optimised to deal with fluctuations:

– Uncorrelated noise: Feedback control

– Correlated noise: Phosphatase here, saturation there

• E. coli is as complex as necessary but as simple as possible
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