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Abstract 
 
Background  
Molecular networks are of current interest, particularly with the publication of 
many large-scale datasets. Previous analyses have focused on topologic structures of 
individual networks. 
  
Results  
Here, we present a global comparison of four basic molecular networks: regulatory, 
co-expression, interaction, and metabolic. In terms of overall topologic correlation - 
whether nearby proteins in one network are close in another - we find that the four 
are quite similar. However, focusing on the occurrence of local features, we 
introduce the concept of composite hubs, namely hubs shared by more than one 
network. We find that the three ‘action’ networks (metabolic, co-expression, and 
interaction) share the same scaffolding of hubs, whereas the regulatory network 
uses distinctly different regulator hubs. Finally, we examine the inter-relationship 
between the regulatory network and the three action networks, focusing on three 
composite motifs - triangles, trusses, and bridges - involving different degrees of 
regulation of gene pairs. Our analysis shows that interaction and co-expression 
networks have short-range relationships, with directly interacting and co-expressed 
proteins sharing regulators. However, the metabolic network contains many long-
distance relationships: far-away enzymes in a pathway often have time-delayed 
expression relationships, which are well coordinated by bridges connecting their 
regulators. 
  
Conclusions  
We demonstrate how basic molecular networks are distinct yet connected and well 
coordinated. Many of our conclusions can be mapped onto structured social 
networks, providing intuitive comparisons. In particular, the long-distance 
regulation in metabolic networks agrees with its counterpart in social networks 
(namely, assembly lines). Conversely, the segregation of regulator hubs from other 
hubs diverges from social intuitions (as managers often are centers of interactions). 
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Introduction 
 
Traditionally, each protein has been studied individually as a fundamental functioning 
element within the cell. In the post-genomic era, however, proteins are often viewed and 
studied as interoperating components within larger cooperative networks [1]. Biological 
networks are topics of great current interest. With the publication of a number of large 
genome-wide expression, interaction, regulatory and metabolic datasets, especially in 
yeast [2-9], we can now construct four networks representing these four processes (see 
Methods and materials, and Figure 1A). 
 

Importance of the four networks 
 
We chose these four networks because they are the most commonly studied networks in 
yeast and because they can be easily related to the central dogma of molecular biology, 
which describes the basic (genetic) information flow in a cell. There are also other types 
of biological networks, such as synthetic lethal networks and chromosomal order 
networks [10, 11]. However, these networks do not overlap with the central dogma and 
are therefore not the focus of this paper. Furthermore, most of these networks are not 
suitable for large-scale topological analysis because we do not have enough information 
on them. 
 
Another important reason for us to choose these four networks is that there are many 
appealing analogies between these biological networks and corresponding social 
networks [12-14]. Because people have clear intuition for social networks, based on daily 
experiences, these analogies can make molecular networks easier to comprehend.. For 
example, social hierarchy networks resemble the regulatory networks in that they define 
who has to obey orders from whom. Social acquaintance networks describe who is 
known to whom in the society and are therefore similar to interaction networks in biology 
[13, 14]. Finally, enzymes at different steps of the metabolic network can be considered 
as workers at different steps of the assembly line in a factory.  
 

Composite features in combined networks 
 
Individual networks have been globally characterized by a variety of graph-theoretic 
statistics (supplementary materials), such as degree distribution, clustering coefficient (C), 
characteristic path length (L) and diameter (D) [12, 15, 16]. Barabási and colleagues 
proposed a “scale-free” model in which most of the nodes have very few links, with only 
a few of them (hubs) being highly connected [12]. In addition to topological statistics and 
hubs, network motifs provide another important summary of networks. These are 
overrepresented sub-graph patterns in networks, and they are considered as basic building 
blocks of large-scale network structures [17]. Recently, Yeger-Lotem et al. combined the 
interaction and regulatory networks in yeast and searched for patterns in the combined 
network [18].  
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Here, we build on previous network studies and extend them in novel directions by 
combining all four networks in our analysis. Our goal is to examine the topological 
features of our combined network. We call these “composite features” to distinguish 
them from those in single networks (see Methods and materials). By analyzing these in 
all four networks, we were able to find some basic principles characterizing biological 
networks. For example, previous studies have shown most biological networks are scale-
free, having only a few hubs as the most important and vulnerable points [12, 15].  It is 
quite reasonable to assume that our four networks will share the same set of hubs as 
explained in detail below. However, we analyzed the composite hubs among the four 
networks and showed that the regulatory network tends to use a distinctly different set of 
hubs as compared to the other three networks. Furthermore, one fundamental question in 
biology is how the cell uses transcription factors (TFs) to regulate and coordinate the 
expression of thousands of genes in response to internal and external stimuli [8, 19-21]. 
Through examining composite motifs, we could potentially shed some light on the 
answers to this question. In particular, we showed that the expression of enzymes at 
different steps of the same pathway tends to have time-delayed relationships mediated by 
inter-regulating TFs.  
 

Results and discussion 

Overall comparisons of all four networks 
 
We calculated many topological statistics in all four networks, which are summarized in 
Figure 1A. All four networks display “scale-free” and “small-world” properties. However, 
the regulatory network is different from other networks in that its clustering coefficient is 
exceptionally small. This is because most of the target genes are not TFs. Therefore, the 
target genes of the same regulator tend not to inter-regulate one another. Moreover, since 
the regulatory network is directed, it is divided into regulator and target sub-networks 
when calculating the degree distribution. It has been shown that the regulator network is a 
scale-free network. But, the target network might have an exponential degree distribution, 
instead [22]. This means that there are no hubs in the target network. Therefore, when we 
examined the hubs and composite hubs in the regulatory network, we focused only on the 
regulator population. Biologically, this makes sense, too, because we are more interested 
in how gene’s expression is regulated in different networks; the regulators (i.e. TFs) are 
the ones that carry out the regulatory functions.  
 
Furthermore, we analyzed the relationships between different networks. Since the relative 
position of nodes in a network is one of the most important features of the network, we 
examined the relationships between networks using their distance matrices, i.e., distances 
between all protein pairs. We divided all pairs of proteins in a network into three groups: 
(1) connected pairs; (2) close pairs (distance=2); and (3) distant pairs (distance≥3). We 
used Cramer’s V, a measurement derived from χ2 statistics, to examine the association 
between networks, i.e., whether pairs of proteins in one group of a network tend to be in 
the same group of another network. Our calculations confirm that all networks are indeed 
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significantly related to each other (Fig.1B). We also tried many other metrics of 
relatedness -- e.g. Pearson correlation coefficient, mutual information, contingency 
coefficient, and association score. They all show similar results (see Supplementary 
materials and Supplementary Table.1). 

Composite hubs tend to be more essential than hubs in single 
networks 
 
Previous studies have shown that hubs are the scaffolding of scale-free networks with 
great importance for their stability [12]. In particular, hubs in interaction networks tend to 
be essential [15], and they tend to be more conserved through evolution than non-hubs 
[23]. Therefore, we next examined the fraction of essential genes among hubs and non-
hubs in different networks. Not surprisingly, hubs in all networks tend to be essential 
(Fig.2A; here we only consider the regulator population within the regulatory network). 
The results agree well with previous studies [15, 24]. Furthermore, we analyzed the 
essentiality of composite hubs. Figure 2B clearly shows that, while hubs in single 
networks (i.e., normal hubs) tend to be essential compared with non-hubs, composite 
hubs have an even higher tendency to be essential than normal hubs. Due to the 
essentiality of normal hubs, composite hubs should be more essential (Supplementary 
materials), which agrees well with our observation. Because of the limited statistics, we 
cannot determine whether there are additional reasons for the increased tendency of 
composite hubs to be essential (Supplementary Fig.1).  
 
In our analysis, composite hubs can be either bi-hubs (hubs in two of the four networks) 
or tri-hubs (hubs in three of the four networks). We identified hubs and composite hubs in 
all four networks (Fig.3A). Considering only the regulator population of the regulatory 
network, we were able to identify 334 bi-hubs and 23 tri-hubs. For example, GCN4 is a 
tri-hub involving interaction, co-expression, and regulatory networks. Gcn4p is a master 
regulator of amino acid biosynthetic genes in response to starvation and stress with 111 
known targets [25]. It is known to interact specifically with RNA polymerase II 
holoenzymes, Adap-Gcn5p co-activator complex, and many other proteins (16 in total) 
[26]. GCN4 is also co-expressed with 134 other genes in Cho’s cell-cycle experiments [6]. 
No proteins are hubs in all four networks, because most enzymes are not TFs. Finally, we 
can show that the structure of biological networks in yeast is very different from the most 
obviously corresponding structures in social networks. 
 

Scaffolding of the regulatory network is different from other 
networks 
 
Because all four biological networks are scale-free (Fig.1A; here we only consider the 
regulator population within the regulatory network), it can be shown that they should 
share the same hubs by chance alone due to hubs’ essentiality (Supplementary materials). 
It is interesting to see whether this is indeed the case for biological networks, i.e., 
whether they are built on the same scaffolding.  
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Our calculation shows that the scaffolding of three networks (metabolic, interaction and 
co-expression) tends to be the same, i.e., hubs in one network tend to overlap with those 
in another when compared to random expectation (Fig.3B). The results agree with 
previous studies showing that interacting proteins tend to be co-expressed [27-30]. 
Furthermore, we calculated the random expectation by taking into consideration the fact 
that hubs tend to be essential [15, 24]. We found that the hub overlap between networks 
could not be explained by simply considering the essentiality of hubs (Supplementary 
Fig.2). 
 
Surprisingly, hubs in the regulator network do not have the tendency to be hubs in other 
networks. Though counter-intuitive, this observation is reasonable in that most TFs and 
their targets do not tend to be co-expressed [31], and most TFs are unlikely to interact 
with their targets. Therefore, we divided the four networks into two classes: regulation 
and action. The action networks include the interaction, co-expression and metabolic 
networks. It is clear that the cell separates the regulatory network from the action 
networks. Since all action networks are governed by the regulatory network as discussed 
below, the separation potentially could provide stability to the cell (Supplementary Fig.5). 
 
Here we have excluded the comparison between regulator and metabolic networks 
because the two networks only share one common protein. It is possible to argue that our 
definition of hubs is somewhat arbitrary. But all results remain the same even when we 
used different cutoffs to define hubs. We further tested the functional composition of the 
overlapping proteins among networks, which is similar to that of each individual network 
and random expectation (Supplementary Figures 3 and 4). 

Neighboring pairs in all action networks are co-regulated 
 
Above, we separated the regulatory network from the others; now we show that the three 
action networks can be further subdivided into two groups (i.e., short-range and long-
range) based on how the genes in them are regulated by TFs. We investigated this 
through looking at composite motifs within combined regulatory-action network. We 
focused on a few key motifs, which we call triangles, trusses, and bridges (see Methods 
and materials). 
 
In a triangle, two genes (P1 and P2) are co-regulated by the same regulator (TF). 
Therefore, triangles should tend to occur between co-expressed gene pairs (Fig.4A). 
Since interacting proteins and co-enzymes are known to be co-expressed [20, 30], we 
expected to see that triangles are enriched between the connected pairs in all three 
combined networks. Our results confirmed this expectation in that the percentage of 
triangles between connected pairs in all three networks are significantly higher than 
random, while the percentage between disconnected pairs is equal to or even lower than 
random (Fig.4A). In other words, connected pairs  in all three networks tend to be co-
regulated, which is in agreement with our expectation and with previous studies [20, 30, 
31]. 
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In a truss, two proteins share the same Feed-Forward Loop (FFL; Fig.4B). FFLs are 
robust against noise [32]. Previous work has also shown that genes co-regulated by more 
than one regulator tend to be tightly co-expressed [31]. Therefore, trusses are designed to 
maintain stable co-expression between gene pairs. Their biological function is similar to 
that of triangles. 
 
We examined the distributions of the enrichment of trusses in all three combined 
networks. As expected, the three distributions share similar patterns with that of triangles 
(Figures 4A and B). In all distributions, only connected pairs show enrichment of trusses, 
which further confirms the biological function of trusses. Given the fact that the 
regulatory network in yeast is far from complete, we believe that many actual trusses are 
missed by our analysis because some of the edges are missing in our dataset. To confirm 
this, we also looked at semi-trusses. A semi-truss is a truss with only one FFL (Fig.4C). 
We believe that many of these semi-trusses are actually full trusses given the incomplete 
nature of our dataset. Figure 4C shows highly similar results to those in Figure 4B, thus 
providing support for our conclusion. 
 
Interestingly, it has been shown experimentally that triangles and trusses can also 
generate temporal programs of expression by having serial activation coefficients with 
different targets, which is quite intuitive and reasonable [33, 34]. It should also be noted 
that some FFLs (“incoherent FFLs”) could provide pulses and speeding responses, 
although the majority of FFLs are coherent, acting as “persistence detectors” [35, 36].  

Distant enzymes in the same pathway tend to have delayed 
expressions mediated by regulator bridges 
 
In a bridge, protein P1 and regulator T2 are co-regulated by T1 and, thus, should be co-
expressed. Only after the gene of T2 is expressed (transcribed) and translated can the 
protein product of T2 then bind to P2 and activate its expression. Therefore, the 
expressions of P1 and P2 should not be simultaneous, but rather have a time delay 
(Supplementary Fig. 9). We expected that bridges would tend to occur between gene 
pairs that are closely functionally related, but not necessarily co-expressed. We calculated 
the distributions of the occurrence of bridges between gene pairs with different distances 
in all three combined networks, which are shown in Figure 5A. The results are rather 
surprising, since, in interaction and co-expression networks, the tendency of forming 
bridges between protein pairs decreases as their distance increases. However, the 
tendency of forming bridges remains the same for enzymes with different distances in the 
same metabolic pathways. The tendency stays significantly higher than random even for 
far-away pairs (Supplementary Table 3). Clearly, genes in the interaction and co-
expression networks only have short-range regulatory relationships, whereas genes in the 
metabolic networks have long-range ones. (Another unlikely but possible hypothesis for 
this result is that there is a subtle bias in the metabolic network since it was mapped 
mostly based on small-scale experiments unlike interaction and co-expression networks.) 
 
We then analyzed the composite motifs in the combined metabolism-co-expression 
network. Figure 5B shows that co-enzymes tend to be co-expressed, and the tendency of 
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co-expression decreases as the distance between the enzymes increases. On the other 
hand, enzymes in different steps of the same pathway tend to have expression 
relationships other than co-expression, typically time-delayed relationships 
(Supplementary Fig.7C). This tendency increases as the distance increases. The 
likelihood for far-away enzymes in the same pathway to have other expression 
relationships is significantly higher than random expectation. This observation shows that 
enzymes in the same pathway are not necessarily co-expressed; nevertheless, their 
expression needs to be well-coordinated for the whole pathway to function normally. 
This is the reason why bridges are enriched in disconnected enzyme pairs in the 
metabolic network (Fig.5A). Similar results were also found in other time-course 
expression experiments [37], but not in the interaction network (Supplementary 
materials). This conclusion is further supported by a specific case study in E. coli amino 
acid biosynthesis pathways [33]. As we mentioned above, metabolic pathways in the cell 
are very similar to assembly lines in a factory. It is reasonable to assume that, without 
decreasing the efficiency of the whole assembly line, workers at downstream steps of the 
line do not have to show up for work until those at upstream steps have finished their job. 
Similarly, in terms of metabolic pathways, we observed that enzymes at downstream 
steps tend to be expressed after those at earlier steps. The bridge motifs are designed to 
manage such expression relationships between enzymes, and therefore to maintain 
normally-functioning metabolic pathways in the cell. 

Discussion and conclusions  
 
Here, we examined the four most commonly studied networks in yeast. Previous work 
has shown that social networks share common characteristics with biological 
networks[12-14]. Our results further confirm this. In particular, many common social 
networks are related. We also found that biological networks, even though seemingly 
quite different, are clearly related to each other. In social networks, people under the 
same supervisor normally know each other, and, as such, may be said to be connected in 
acquaintance networks. Accordingly, in the biological networks we observed that 
connected pairs in action networks tend to be co-regulated. More interestingly, distant 
enzymes in the same pathway show a surprising tendency to have delayed expression 
coordinated by regulator bridges. Although this phenomenon is readily understandable 
through an analogy to assembly lines, it is still striking to see it so strongly manifest in 
real biological networks. However, the structure of biological networks obviously has 
some differences from social networks. In a normal social context, it is reasonable to 
assume that a supervisor knows his or her staff. Therefore, supervisors with large staffs 
(i.e., hubs in the social hierarchy) tend to be hubs in acquaintance networks. This is not 
the case for biological networks: the regulatory network uses a different set of hubs than 
the action networks. 
 
Recently, Mazurie et al. also analyzed the composite network motifs in the combined 
regulatory and interaction network. They used a similar approach as Yeger-Lotem et al. 
and examined the composite motifs that are over-represented in a strictly mathematical 
sense. However, they found that the overabundance of these network motifs “does not 
have any immediate functional or evolutionary counterpart.” [38] These findings confirm 
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that we should not only look at the most mathematically overrepresented motifs, but that 
we should also focus on key, obviously functionally relevant ones, further highlighting 
the importance of our approach. In our analysis, we first identified composite motifs that 
could potentially have biological functions and examined the enrichment of these motifs 
in the combined network. Our results have clearly shown that the enrichment of some 
composite motifs is closely related with their function. For example, bridges are only 
enriched between far-away enzymes in the same pathway because the expression of these 
enzymes needs to be well coordinated.  
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Methods and materials 

Biological networks 
 
(1) The regulatory network was created by combining five different datasets [8, 9, 22, 31, 
39, 40]. A link in the network is defined as a TF-target pair. We excluded DNA-binding 
enzymes (e.g., PolIII) and general TFs (e.g., TATA-box-binding Protein) from the 
regulatory network.  
 
(2) The co-expression network was created using Cho’s microarray dataset [6]. A link 
here is defined as a co-expressed gene pair with a correlation coefficient larger than or 
equal to 0.8. It is possible to argue that the cutoff (0.8) here is somewhat arbitrary. We 
repeated all relevant calculations using different cutoffs ranging from 0.5 to 0.9. All 
results remain the same (Supplementary materials).  
 
(3) The interaction network was created by combining various databases and large-scale 
experiments [2-5, 41-43]. Because large-scale experiments are known to be error-prone 
[44], we only considered high-confidence protein pairs as true interacting pairs 
(likelihood ratios ≥ 300, P-value < 10-200 as estimated by the hypergeometric distribution; 
likelihood ratios measure the enrichment of interacting protein pairs with certain genomic 
features [45]; see supplementary materials for a detailed discussion).  
 
(4) The metabolic network was downloaded from the KEGG database [7]. However, the 
metabolic network is different from the other networks in that the nodes in the network 
are small molecules and they are connected by the enzymatic steps between them. In 
order to compare the metabolic network to others, we transform the network in the 
following way: each enzyme is considered a node in the network, and enzymes working 
on adjacent steps are considered “connected”. Whenever there is more than one enzyme 
in the same enzymatic step (i.e., co-enzymes), we also consider all co-enzymes as 
“connected”. Only main substrates and products were used to perform the transformation. 
Most co-factors and carriers (e.g., ATP and H2O) were removed from all reactions. 
 
All four networks are available through our supplementary website [46]. 

Composite topological features 
 
Composite hubs: We define hubs in a single network as the top 20% of the nodes with 
the highest degrees [19, 24]. Accordingly, composite hubs are defined as the nodes that 
are hubs in more than one network.  
 
Composite motifs: Yeger-Lotem et al. defined composite motifs operationally as 
overrepresented patterns in the combined network as compared to a randomized control. 
Using this criterion, they exhaustively searched through the combined network and were 
able to detect 1 two-node, 5 three-node and 63 four-node composite motifs [18]. A 
similar study has also been performed by Zhang et al. [47]. Instead of automated 
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detection of new composite motifs, we manually selected five basic composite motifs for 
further analysis because, as discussed below, these composite motifs summarize the most 
basic biological relationships between protein pairs within the four networks. Our 
analysis covered all four biological networks. We analyzed not only nearest neighbors, 
but also protein pairs that are further apart in each network.  Most importantly, we were 
able to gain significant insights into the biological functions of the five composite motifs 
by comparing their patterns of occurrence in the combined networks. 

Definition of five composite motifs 
 
We first examined the regulatory relationships between protein pairs in action networks 
and created three combined networks by combining the regulatory network with each of 
the other three networks. We defined three biologically-meaningful composite motifs in 
all three combined networks, based on the fact that co-regulation (i.e., that two proteins 
share the same regulator) and inter-regulation (i.e., that the regulator of one protein 
regulates the regulator of another protein) are the two most basic regulatory relationships 
between a pair of proteins.  The three basic composite motifs that we defined are: co-
regulation motifs (triangles); integrated FFLs (trusses); and bridging motifs (bridges) 
(Supplementary Fig.6). Yeger-Letem et al. determined that triangles and trusses are 
significantly overrepresented motifs, but bridges are not [18]. However, we are able to 
show the biological importance of bridges in the main discussion (see above). 
 
We also created another combined network by combining the co-expression and 
metabolic networks. Qian et al. developed a local clustering method to detect four 
expression relationships between gene pairs: co-expressed, time-shifted, inverted, and 
inverted time-shifted [48]. Using the local clustering method, we defined two composite 
motifs in this combined network (Supplementary Fig.7):  (1) Co-expression motif: a pair 
of enzymes at distance k in the metabolic network that are co-expressed; and (2) Shifted 
motif: a pair of enzymes at distance k in the metabolic network that have expression 
relationships other than co-expression. Most of these pairs have time-shifted relationships. 
 
For each of the above composite motifs, we determined its degree of enrichment at 
different distances in different action networks in the following way: We first counted the 
number of protein pairs at a certain distance k in each of the three action networks. Then, 
we calculated the fraction of pairs that are within a certain composite motif.  

Calculations of the random expectation of hub overlaps 
 
To calculate random expectation of hub overlaps, we first created randomized networks 
for each biological network by randomly shuffling node degrees among proteins 
throughout the whole network. In this manner, the degree distributions of the original 
networks are conserved in randomized networks. Then, we calculated the overlap of hubs 
between the randomized networks of the two original networks. The procedure was 
repeated for 1000 times. The average overlap is considered as the random expectation. 
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An observed enrichment in hub overlap can be partly explained by the fact that hubs tend 
to be essential. In order to take into consideration hub essentiality, we created 
randomized networks by shuffling degrees only among genes that are either essential or 
non-essential. In this manner, the tendency for hubs to be essential is conserved in 
randomized networks. Other steps are the same as above.  
 
Similarly, an observed enrichment in essentiality of composite-hubs compared to hubs in 
a single network can be at least partly explained by the fact that hubs generally tend to be 
essential.  To prove this, we again created randomized networks where the tendency for 
hubs to be essential is conserved. We then compared observed essentiality enrichment in 
composite-hubs with calculations based on the randomized networks.  
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Additional data file 
The following additional data are available with the online version of this paper. 
Additional data file 1 is a PDF file containing the supplementary materials to the main 
manuscript. 
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Figure captions 
 
Figure 1. (A) Topological statistics of all four networks. Because the degrees in the 
metabolic network are not divided into outward and inward degrees, we treated the 
metabolic network as an undirected network when calculating the average degree. (B) 
Association diagram between all four networks. The association between networks is 
measured by Cramer’s V. The thickness of the line between two networks is proportional 
to the corresponding V. P values are calculated using standard χ2 tests.  
 
Figure 2. (A) Comparison of the percentages of essential genes in hubs and non-hubs in 
different networks. P values measure the significance of differences between the 
percentages for hubs and non-hubs. (B) Comparison of the percentages of essential genes 
in non-hubs, hubs and composite hubs. In this figure, we excluded all composite hubs 
when calculating the percentage for hubs. Due to the limited number of tri-hubs, we 
combined them with bi-hubs. P values measure the significance of the differences 
between neighboring bars. For all subsequent figures, the following notation will be used 
to abbreviate the four networks: Met, the metabolic network; Int, the Interaction network; 
Exp, the co-expression network; and Reg, the regulatory network (in Figures 2 and 3, we 
only consider the regulator population in the regulatory network). 
 
Figure 3. (A) Venn diagram describing hub overlaps between networks. Shaded areas 
represent composite hubs. (B) Fold enrichments of hub overlaps (O) between two 
networks relative to random expectation. The bars above the line (where O = 1) show that 
overlapping hubs between the two networks are more than expected. The schematic 
above the first three bars shows that action networks tend to share the same hubs. One of 
the tri-hubs is Idh1p, an isocitrate dehydrogenase involved in the tricarboxylic acid cycle 
connecting a number of different pathways [7]. It is also involved in a number of 
complexes, and is thus co-expressed with many other genes [5, 6, 40, 49]. In this 
schematic, the solid circle represents the composite hub; open circles represent different 
proteins; black solid lines represent interaction relationships; red dashed lines represent 
co-expression relationships; green dashed arrows represent metabolic reactions. The 
schematic above the last two bars shows that the regulatory network uses a distinct set of 
hubs. For example, Swi4p is a major TF regulating the yeast cell cycle [50]. However, it 
is not a hub in any of the action networks. In this schematic, the solid square represents 
the regulatory hub; open circles represent different proteins; black solid arrows represent 
regulatory relationships. P values measure the significance of the differences between the 
observed overlaps and the random expectation. The random expectation was calculated as 
described in methods and materials. P values in this figure and all following figures were 
calculated using the cumulative binomial distribution (Supplementary materials).  
 
Figure 4. Fraction (F) of all P1-P2 pairs at distance k in a given combined network in a 
particular composite motif. Horizontal dashed lines indicate the random expectation. 
Vertical dashed lines indicate connected pairs in combined networks. (A) Triangles. The 
schematic shows that a triangle consists of three proteins: the common regulator TF 
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regulates both P1 and P2. In all schematics, circles represent TFs, and rectangles 
represent non-TF genes. For example, ADE5, 7 and ADE8 are two subsequent enzymes 
in the purine biosynthesis pathway [7]. They are co-regulated by BAS1 [51]. (B) Trusses. 
The schematic shows that a truss consists of four proteins: T1 regulates T2, P1 and P2; 
T2 regulates P1 and P2. For example, Cln1p and Cln2p are two subunits of the CDC28-
associated complex [4]. They are co-regulated by Mbp1p and Swi4p [52]. Mbp1p also 
regulates SWI4 [8, 53]. (C) Semi-trusses. A semi-truss is an incomplete truss. Either T2 
does not regulate P1, or T1 does not regulate P2. For example, RPL3 and RPL9A, 
components of the ribosome large subunit, are co-expressed[6]. They are co-regulated by 
Bdf1p [54].  Rap1p regulates both RPL3 and BDF1 [8, 55].We also examined the 
occurrence of triangles and trusses between protein pairs connected in more than one 
network, termed highly-combined networks. We only considered semi-trusses to get 
better statistics, since the number of full trusses in highly-combined networks is too small 
to be used. In all highly-combined networks, triangles and semi-trusses are enriched 
between protein pairs connected in more than one network (Supplementary Fig.8). 
 
Figure 5. Fraction (F) of all P1-P2 pairs at distance k in a given combined network in a 
particular composite motif. Horizontal dashed lines indicate the random expectation. (A) 
Bridges. The schematic shows that a bridge consists of four proteins: T1 regulates T2 and 
P1; T2 regulates P2. For example, Fol2p and Pho8p are two subsequent enzymes 
involved in the folate biosynthesis pathway [7]. FOL2 is regulated by Yox1p [9]. PHO8 
is regulated by Pho4p [56]. Yox1p also regulates PHO4 [9]. The P-value in the figure 
indicates the significance of the different between the fraction of bridges between all 
disconnected enzyme pairs and the random expectation (Supplementary Table.3). The 
regression equation for Met-Reg: F=0.003k+0.18; R=0.56; P<0.01. The regression 
equation for Int-Reg: F=-0.01k+0.19; R=0.74; P<10-3. The regression equation for Exp-
Reg: F=-0.01k+0.24; R=0.93; P<10-9. P-values here measure the significance of the 
correlation (R) in regression. (B) Composite motifs in the combined network of Met-Exp 
(i.e. co-expression motifs and shifted motifs). The schematic shows that composite motifs 
in Met-Exp consist of two proteins: P1 and P2. P1 and P2 have a distance of k in the 
metabolic network. They also have an expression relationship (co-expressed or others) in 
the co-expression network. The P value indicates that the fraction of protein pairs in 
shifted motifs in Met-Exp is significantly higher than expected. The regression equation 
for Met-Exp: F=0.002k+0.0037; R=0.92; P<10-8.  
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