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Abstract 

Spaninks, J.A.M. (1979) Design procedures for solid-liquid extractors and the effect of 
hydrodynamic instabilities on extractor performance. Agric. Res. Rep. (Versl. land-
bouwk. Onderz.) 885, ISBN 90 220 0693 X, (xi + 100 p., 44 figs, 10 tables, 155 refs, 
8 app., Eng. and Dutch summaries. 
Also: Doctoral thesis, Wageningen. 

A design method is proposed for countercurrent mass transfer cascades with cross-
flow stages, and unsteady operated fixed beds in a countercurrent arrangement. The 
separation performance of these cascades is calculated from mathematical models and 
compared with a purely countercurrent extractor. The models are based on simple 
equations describing mass transfer in a single stage fixed bed. The results are presented as 
concise correlations between the number of true and exterior apparent transfer units. 

Asymptotic values of the mass transfer coefficient for transient diffusion processes in 
cocurrent and countercurrent extractors are calculated for particles with simple geome-
try. Comparing the extraction efficiency calculated from the exact solutions of the 
diffusion equations and the values obtained from the asymptotic mass transfer coeffi-
cient shows that differences are small under normal operating conditions for counter-
current extraction. The use of the asymptotic values in design calculations is discussed. 

Due to the commonly observed viscosity and density gradients in the solvent phase, 
non-uniform flow of liquid through the layer of solids subjected to extraction can occur. 
Then some fraction of the solids is not efficiently contacted with the solvent. Experi-
ments show that a concentration gradient rather than a concentration jump in the liquid 
flowing through an inert packing material reduces the effect of channelling. The effect of 
mass transfer between the packing and the surrounding liquid on flow stability is stud-
ied. The results indicate that channelling can reduce the extraction efficiency in solid-
liquid extractors. 

Free descriptors: leaching, extraction efficiency. 

BIBLIOTHEEK LH. 

2 8 ME11979 

0NTV. TfJDSCHR. ADM. 

This thesis will be published as Agricultural Research Reports 885. 

© Centre for Agricultural Publishing and Documentation, Wageningen, 1979. 

No part of this book may be reproduced and/or published in any form, by print, photoprint, micro-
film or any other means without written permission from the publishers. 



N/J fóo/ ^ z 

Stellingen 

1. De gebruikelijke indeling van vast-vloeistof-extractieapparatuur naar percolatie- en im-
mersietype is niet zinvol. 

Dit proefschrift, hoofdstuk 2. 

2. Ten onrechte stelt Genie dat de eerste-termbenadering van de oplossing van de dif-
fusievergelijking niet toelaatbaar is voor het ontwerp van vast-vloeistofextracteurs. 

Genie, G.V., 1973. Int. Sugar J. 75: 67-70. 
Dit proefschrift, hoofdstuk 3. 

3. Als gevolg van slecht gedefinieerde begincondities ondervond Rein moeilijkheden bij 
de interpretatie van zijn experimenten gericht op verificatie van zijn model voor de ex-
tractie van suikerriet. Deze problemen konden voorkomen worden door de experimenten 
uit te voeren analoog aan de in Appendix E van dit proefschrift beschreven methode. 

Rein, P.W. & E.T. Woodburn, 1974. Chem. Eng. J. 71: 41-51. 

4. Terecht stelt Mikhailov dat het oplossen van warmte- en stofdiffusievergelijkingen 
vaak minder tijdrovend is dan het opzoeken van de oplossing in de bestaande literatuur. 
Het valt echter te betwijfelen of de door deze auteur gepubliceerde 'algemene oplos-
singen' een bruikbaar alternatief stellen. 

Mikhailov, M.D., 1972. Int. J. Eng. Sei. 10: 577-591. 
Mikhailov, M.D., 1977. Int. J. Heat Mass Transfer 20: 1409-1415. 

/• 

5. Het dispergeren van gassen in oplossingen heeft een nadelige invloed op de aromareten-
tie tijdens het vriesdrogen van deze oplossingen: dit is het gevolg van de manier waarop de 
gasbellen in de ijs-vaste-stofmatrix worden ingebouwd. 

Spaninks, J.A.M., 1974. Afstudeerverslag Afdeling Scheikundige Technologie, TH Eindhoven. 

6. De door Hanna gesuggereerde analogie tussen dragreductie door het toevoegen van 
polymeren in gepakte bedden en in pijpen geldt slechts voor volledig turbulente stroming. 

Hanna, M.R., W. Kozicki & C. Tiu, 1977. Chem. Eng. J. 13: 93-99. 

7. Bij het concentreren van eiwithoudende oplossingen zoals wei met behulp van omge-
keerde osmose wordt de economie van het proces sterk beïnvloed door de kosten van 
membraanreiniging. Dit kostenaspect wordt onvoldoende onderkend. 



8. De door Hayakawa gepubliceerde eigenwaarden voor molekulair stof- en warmte-
transport zijn praktisch van weinig waarde. 

Hayakawa, K., 1975. Lebensm. Wiss. u. Technol. 8: 231-233. 

9. Het nut van het gebruik van blokschema's ter verduidelijking van computerprogram-
mateksten in programmeertaal moet worden betwijfeld. 

10. Behalve economische redenen zijn er uit het oogpunt van verkeersveiligheid vol-
doende argumenten om onder de huidige omstandigheden niet te streven naar de pro-
duktie van automobielen met een gebruiksduur langer dan tien jaar. 

Proefschrift van J.A.M. Spaninks 
Design procedures for solid-liquid extractors and the effect of hydrodynamic instabilities 
on extractor performance. 
Wageningen, 6 juni 1979. 
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V volume (m3 ) 
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x,y,z distance coordinates (m) 

? dimensionless coordinate x/L (1) 
T? separation efficiency, Eqn 1.4 (1) 
6 dimensionless time, Eqn 2.11 (1) 
0 dimensionless variable, Eqn 2.26 (1) 
K permeability (m2) 
Xj eigenvalue 
X wavelength perturbation (m) 
A extraction factor (1) 
Aj A for countercurrent extraction; — A for cocurrent extraction (1) 
p viscosity (kg/ms) 
ß eigenvalue 
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| dimensionless coordinate r/R (1) 
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1 Introduction 

1.1 Solid-liquid extraction in the food industry 

Solid-liquid extraction is a unit operation aiming at the selective removal of soluble 
components from a solid matrix in a solvent phase. Many synonimus names for this 
process are used in the literature, such as leaching, washing and lixiviation. Sometimes 
these names are used in relation to the mechanism that is responsible for the solute 
transfer. This mechanism can be simple washing of adhering liquid from the surface of a 
solid matrix. This occurs for example in the first stage of the extraction of oil from flaked 
soybean, after the cells containing the oil have been broken in the pretreatment stage. In 
other mechanisms, solute diffuses through a permeable barrier. In the extraction of sugar 
from sugar-beet, the cell walls are deliberately kept intact to prevent the transfer of 
colloidal components. Some examples of solid-liquid extraction processes relevant to 
food industry are given in Table 1. The examples in this table show that for most of the 
important applications the liquid extract is the major product stream from an extraction 
plant. When the process is directed towards the removal of undesirable trace components, 
the solid phase is the important product. In some cases, both the solid and liquid stream 
are subjected to further processing. In the extraction of oil from soybean for example, 
the upgrading of the extracted solids is of paramount importance for the economy of the 
process. 

Table 1. Some examples of solid-liquid extraction processes in the food industry. 

Component to be extracted 

Sugar 

Oils and Fats 

Protein 
Coffee solubles 
Tea solubles 
Chichory 
Licorice 

Removal of trace components 

Aflatoxin 
Caffeine 

Solid carrier 

Beets 
Cane 
Fruits 
Oil seeds (soybeans, cotton, 
peanuts, palm fruit, rapeseed), 
fish 
Vegetable seeds, green leaves 
Roast and ground coffee beans 
Tea leaves 
Chichory root 
Licorice root 

Cereals, seeds 
Green coffee beans 

References 

Silin, 1964 
Brüniche Olsen, 1969 , 
Wucherpfenning, 1976 
Hutchins, 1976 

Bergv.d., 1972 
Sivetz, 1963 

Molyneaux, 1975 

US Patent 4055674, 1977 
Bichsel, 1976 
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In this work attention will be focussed on solid-liquid extraction in the food industry, 
though most of the results have general applicability. The main reason is the growing 
interest in this unit operation. In the last decades, the extraction of vegetable oil shifted 
from mechanical pressing to solvent extraction. For oil seeds with a high oil content, the 
press cake obtained after mechanical prepressing by expellers is subjected to solvent 
extraction. Even direct solvent extraction has been proposed (Bernardini, 1976). Also 
there is a growing interest in solid-liquid extraction or diffusion for the production of 
sugar from cane (Rein, 1976), instead of the classical imbibition process. Sugar from beet 
has been produced by diffusion for several decades. Further, protein and carbohydrate 
extraction from vegetable food sources will become of increasing importance in the near 
future. 

Compared with other unit operations such as liquid-liquid extraction, limited atten-
tion has been given in the literature to the design of solid-liquid extractors. Even though 
the leaching of metal ores is one of the oldest applications of this unit operation, solid-
liquid extraction is of relatively minor importance to the chemical and petrochemical 
industries compared with distillation and liquid-liquid extraction, for example. On the 
other hand, in the food industry, where this process is of major importance, an overdesign 
of the extraction equipment normally has little impact on the final costs of the product 
as long as the overdesign does not increase the variable costs. For production of sugar and 
soybean oil, the capital cost involve only some percent of the total production costs. In 
the near future, with rising energy prices and an increasing scale of operation, it can be 
expected that a more accurate design of the extractors will be necessary. 

The specific features of the solid-liquid extraction process can be elucidated by an 
inspection of the operation principle of the equipment used. Solid-liquid extractors are 
designed to transport a solid phase with a specified velocity through the extraction 
section. During the time that the solids reside in this part, an intensive contact between 
the particles and the solvent is assured to promote mass transfer. Finally, the apparatus 
must separate the phases efficiently before they are withdrawn from the extractor. In 
order to make efficient use of the solvent, the overall phase contact generally is in 
countercurrence. The mechanical problems associated with processing of large amounts of 
raw material under the conditions just mentioned have been solved more or less satis-
factorily and have resulted in many widely differing designs. 

In the literature, solid-liquid extractors are often classified as extractors of the percola-
tion type and immersion type, operating in batch or continuous flow (Rickles, 1965; 
Milligan, 1976; Silin, 1964; Bernardini, 1976). Although this classification highlights only 
one specific feature of the appartus considered, it will be followed here for a description 
of solid-liquid extraction systems. However, it must be kept in mind that this differen-
tiation does not provide any insight in the stage efficiencies that can be expected in a 
certain extractor. This disadvantage is overcome in an alternative classification that is 
proposed in Section 2.1. The extractortypes mentioned in the following paragraphs have 
been described in some detail by the authors just mentioned. 

In immersion extractors the solids do not form a densely packed bed, but they are 
more or less dispersed in a pool of solvent. In this kind of equipment very finely ground 
solids can be processed, as well as particles that disintegrate upon extraction. This disinte-
gration would certainly choke the bed of solid particles in a percolation type extractor. 
Normally these extraction systems are designed to operate in continuous countercurrent 



flow. Examples are the Hildebrand extractor, that was in use for the extraction of oil 
from soybean in the 1950s, the Bonotto extractor and the BMA diffusor. The latter is 
used primarily for the extraction of sugar from beet. In some cases intermittent drainage 
of the solids is achieved by lifting the solids periodically out of the solvent. This principle 
is followed in the DDS and Niro diffusors, which are predominantly used for the extrac-
tion of sliced sugar-beet, and in the Kennedy extractor. The main advantages of the 
immersion type extractors are their insensitivity to the pretreatment of the solids, and the 
ease of operation as the extractor accomodates a wide range of solid-liquid flow ratios, 
i.e. extraction factors. Disadvantages are a low solids holdup in the system and a consider-
able entrainment of fines by the extract flow. 

In a percolation extractor the solids are transported on a perforated support as a 
compact bed. The liquid flow is distributed over the bed, percolates downwards by the 
action of gravity, and leaves the bed dripping through the perforations in the structure 
supporting the bed of solids (e.g. a perforated belt). The relatively high solid phase 
holdup makes this extractor attractive for large scale extraction of for example oil from 
oil seeds and of sugar from cane. They are also in use for extraction of components from 
fishmeal, spices, and solubles from tea leaves. 

The Bollman extractor is a well-known example of a percolation type extractor that 
was used in Europe and the US for the extraction of soybean oil. Most of them, however, 
have been replaced by extractors with a more modern design such as De Smet and Lurgi, 
where the solids are transported laterally through the extractor on a perforated belt, or 
similar types with perforated throughs connected to an endless chain. Also extractors 
with rotating cells provided with a perforated bottom such as Rotocell and Caroussel, or 
with spargers rotating over stationary cells, such as the French stationary basket extrac-
tor, are in use on a large scale. The operation principle of these extraction systems is 
elucidated in Fig. 1. The solvent is distributed over a section of the extractor by spargers. 
The liquid percolates through the bed of solids by gravity and after dripping through the 
perforated support, it is collected in reservoirs or pans. The net liquid flow from inlet to 
outlet can be accomplished in several ways. The extract from the collection pan in section 
i can be pumped to the sparger in section / '+1, as indicated in the figure. In other cases, 
the extract from pan i is recirculated in section i while the net liquid flow is obtained by 
overflow of the collection pans. A combination of recirculation and transport to the 
sparger downstream is also possible (Milligan, 1976). To avoid entrainment of ̂ he liquid 
contained in the interstitial voids of the solids to the section upstream, the solids are 
often left to drain before leaving a section. , 
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Fig. 1. Belt type percolation extractor. 
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Fig. 2. Diffusion battery with 4 col-
umns. 

In a diffusion battery or Shanks extractor, the percolation velocity is controlled by 
pumping the solvent through the layer of solids. The extractor consists of a series of 
columns in which the solids are held stationary. The operation of the extractor is shown 
in Fig. 2. The liquid flows all the way down through the series of columns as indicated in 
this figure. Fig. 3 illustrates how a diffusion battery with four columns operates. After a 
certain 'cycle time' tc the desired depletion of the solids in the first column is attained. 
The liquid inlet is then switched to the second column. The first column is then recharged 
with fresh solids and is put in the series of columns downstream of the last one (position 
IV in Fig. 3). After the extract has filled the interstitial pore volume of the freshly 
charged column, extract is drawn from the extractor. This cyclic operation is repeated, 
thus establishing an essentially countercurrent phase contacting system. This extraction 
system was traditionally in use for the extraction of sugar from beet but has been 
replaced almost entirely by continuous diffusors nowadays. The diffusion battery is still 
in use for the extraction of roasted and ground coffee, as the water for the extraction is 
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fed to the extractor at temperatures as high as 170 °C at a pressure of 8 x 105 Pa. Under 
these conditions it is difficult to feed the solids continuously to the extractor. In most 
cases between five and eight columns are used (Sivetz, 1963). This extractor is manu-
factured for small scale extraction of olive pomace (Bernardini, 1976) and consists of 
four columns in series. 

In percolation extractors the solids are held stationary on a rigid support. This design 
implies that no mechanical forces act on the particles, and consequently the formation of 
fines is considerably reduced. Furthermore the extract is filtered while percolating 
through the layer of solids, so that the entrainment of fines by the liquid flow leaving the 
extractor is relatively small. On the other hand, a carefully designed pretreatment is 
required since both the particle shape and size affect the percolation velocity. As the 
solids subjected to the extraction are not in general repacked non-uniform liquid flow 
through the layer of solids may restrict the separation efficiency. In particular when 
particle sizes are small with consequently low permeability of the packed bed, chan-
nelling may occur. This latter phenomenon will be discussed in more detail in Section 1.2. 

This description of extraction systems clearly shows that for most of the practical 
solutions to the mechanical problems involved in handling large amounts of particulate 
solids, the flow pattern of both phases through the extractor is quite complicated. Ob-
viously, this flow pattern must be taken into account in the mathematical models 
underlying design procedures for solid-liquid extractors. The design methods proposed in 
this study incorporate these specific features of extraction into the available design proce-
dures for other unit operations, e.g. drying and liquid-liquid extraction. 

1.2 Organization of the study 

The present study can be divided into two main parts: a theoretical part in which the 
number of transfer unit (NTU) approach for the design of solid-liquid extractors was 
analysed and an experimental part in which the hydrodynamic stability of the liquid flow 
in solid-liquid extractors was measured and analysed. 

Generally the design of mass transfer processes starts from specified or assumed con-
centrations in inlet and outlet streams, and the flow rates of the phases. As will be shown 
in Chapter 3, the mass flux that occurs in solid-liquid extractors is often proportional to 
the overall driving force for mass transfer, i.e. the local concentration difference of the 
solute in both phases. In such cases, the NTU concept, in which the mass transfer 
resistance is lumped at the solid-liquid interface, is a convenient basis for a design proce-
dure. An outline of the NTU approach in process design is given in Fig. 4. The separation 
to be attained can then be indicated by the number of exterior apparent or 'plug flow' 
transfer units, defined by Miyauchi & Vermeulen (1963): 

c O U t J > 

; W = / -^rzë (11) 
c in 

where c'in and c'out are the inlet and outlet concentrations in the continuous phase, 
respectively; c'* is the hypothetical local concentration which would be in equilibrium 
with the dispersed phase if the phases were contacted in purely countercurrent plug flow. 
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Only for purely countercurrent contact can it be shown that the number of exterior 
apparent transfer units is equal to the number of true transfer units (Colburn, 1939): 

-^ext, plug flow ~-"t, c 
* o c « r 

(1.2) 

where koc is the mass transfer coefficient on overall liquid phase basis and a is the 
effective interfacial area. Here combination of Eqn 1.1 with a mass balance yields for a 
linear equilibrium relation the well-known Colburn equation which is shown in Fig. 5 : 

N. - _ J _ 1 (l -fA\ 
« , c - ! _ A [n\l-f ) (1.3) 

The separation factor ƒ is related to the extraction efficiency 7? as ƒ = 77/A and 77 is de-
fined as: 
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When deviations from countercurrent plug flow occur, the number of true transfer units 
Nt c exceeds Next c , the number of exterior apparent transfer units. In fact: 

Table 2. Relation between the number of exterior apparent and true transfer units for some simple 
mass transfer stages. 

Phase contact Liquid Solid 
phase phase 

C i n - c o u t = 1 - e x p { ( A - l ) J V e x t . c > 
1 - A 

c i n - m a j o u t 

batch 
batch mixed irrelevant 

continuous flow operation 
cocurrent unmixed unmixed 

systematic mixed unmixed 
movement of the 

1 - e x p [ - J V t > c ( l + A ) ] 

1 

1 

A 

1 + A 

- e x p [-A^tiC (1 

1 + A 

AiVt.c 

KAT- f e_? 

1 - exp [- Nt> 

+ A)] 

ƒ•" 
0 

: A ] 

solid phase l - ( l - A ) e x p [ - J V t ; C A ] 

countercurrent unmixed unmixed \1 - exp [ - JV t c (1 - A)]}/(1 - A) 

continuous flow mixed mixed Nicl(l+Nic) 

1. Complete mixing of both phases at the stage inlet. 



^ t , c = S (Next, c A> flow situation) (1.5) 

The flow situation of the phases inside the apparatus is determined on a macro-scale by 
the local mode of phase contact, non-uniform flow of solvent through the solids etc. ; and 
on a microscopic scale by dispersive mixing between the phases. For some simple phase 
contacting systems the relation between Next and Nt is given in Table 2. However, the 
description of extractor types in Section 1.1 has shown that the complex flow situations 
in practical extractors are not adequately covered by the simple examples. Deviations 
from these simple cases are often described by dispersive mixing or backflow models. 
Also these models are not likely to present a realistic picture of the flow situation in 
diffusion batteries and belt type extractors for example. In Chapter 2 of this work new 
ready-to-use correlations between Next and Nt are developed for diffusion batteries and 
countercurrently cascaded crossflow sections. These correlations are based on mathe-
matical models which account for the local mode of phase contact within the apparatus. 

In order to calculate the required residence time of the solids in the extractor to attain 
the specified separation, a sophisticated guess of the overall mass transfer coefficient k0 is 
inserted in the definition equation for Nt. According to the Lewis two film theory, kQ is 
dependent on both the mass transfer coefficient in the continuous liquid phase, kc, and 
the dispersed solid phase, kà. A constant averaged value of kc can often be assumed 
throughout the extractor, as is pointed out in Section 3.1. Abundant literature data are 
available for estimating kc values for widely differing process conditions and packing 
geometries. The dispersed phase mass transfer coefficient kd is time dependent due to the 
transient nature of the diffusion process. In Section 3.1 it is shown that the Sherwood 
number kAD JJDA assumes an asymptotic value for long contact times so that for a 
constant diffusivity E)à in the solid phase kA has a constant value. These asymptotic 
values are calculated in Chapter 3 from the analytical solution of the diffusion equation 
with boundary conditions relevant to purely cocurrent and countercurrent phase contact. 
Using the additivity rule for mass transfer resistances, kQ can be determined from the 
estimated value of kc and the asymptotic kd value. Although this rule is exact only for 
a constant value of fc<j and kc, the error introduced when it is applied to transient mass 
transfer is small (Beek & Muttzall, 1975). The final step indicated in Fig. 4 then is the 
calculation of the size of the extractor from the required residence time and the specified 
throughput. 

In both Chapters 2 and 3, concerned with the effect of local phase contact on extrac-
tion efficiency and the calculation of mass transfer coefficients, plug flow of liquid 
between the phases is assumed. Normally however, residence time distribution in one or 
both of the phases reduces the separation efficiency of the extractor. In Chapter 2, some 
models are discussed which can be used to account for axial dispersion in the liquid and 
solid phases. Another important effect that might cause residence time distribution in the 
liquid phase is flow maldistribution caused by a non-uniform permeability distribution in 
a packed bed (Stanek & Szelkeley, 1972). A well-known example of this phenomenon is 
the preferent flow along the wall of a column packed with particulate solids. The porosity 
gradient in a packed given by Pillai (1977) for example shows that the porosity near the 
wall exceeds the average bed porosity over the distance of about a particle diameter, see 
Fig. 6. The fractional wall flow resulting from this local high permeability is illustrated in 
Fig. 7. In general this effect can be neglected for single phase flow of a liquid with 
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Fig. 6. Porosity gradients in packed beds, y is distance from 
the wall. FromPillai, 1977. 

uniform physical properties when the ratio column to particle diameter is higher than 
20-30. In solid-liquid extractors the physical properties of the liquid phase, i.e. density 
and viscosity, often increase in the direction of the liquid flow. In this case, gravity 
segregation can occur in upward liquid flow due to the unfavourable density gradient. In 
both upward and downward flow, local permeability variations can trigger the formation 
of channels or 'viscous fingers', through which the solvent will flow preferentially. The 
mechanism responsible for this phenomenon is discussed at length in Chapter 4. The 
existence of such stable and unstable flow regimes has been verified experimentally by 
many authors. Viscous fingering plays an important role in secondary recovery of oil 

D p / D c o l 

Fig. 7. Effect of particle to column diameter ra-
tio on wall flow in packed columns. From Rie-
tema, 1976. 



from underground reservoirs, where a fluid is injected in the porous rock structure to 
displace residual oil (Dumoré, 1964). Examples related to the food industry are the 
separation of ice crystals from the mother liquor in wash columns (Vorstman & Thyssen, 
1972), filter cake washing (Tondeur, 1970), sweetening on and sweetening off of char 
columns for decoloration of sugar solutions (Hill, 1952), and ion exclusion operations 
(Cooney, 1974). 

Though many studies have been devoted to the onset and growth of flow instabilities 
during displacement of liquid from inert packed beds, little attention has been paid to 
systems where a concentration gradient instead of a discontinuity exists in the liquid 
flowing through a porous medium, as is the case in for example solid-liquid extraction. 
Also the effect of mass transfer between the porous packing and the liquid has not yet 
been studied. Chapter 4 of this work is focussed on these phenomena which can be 
important in solid-liquid extractors. Experiments were performed to check stability cri-
teria which should be met in order to prevent the onset of flow instabilities in these 
systems. 

1.3 Some general remarks on the model system studied 

An effective study of the chemical engineering aspects of solid-liquid extraction is 
only possible when the problem is reduced to its essential elements. For this reason, if 
not stated otherwise, the following simplifications concerning the mass transfer process 
were assumed to be valid throughout this work. 
— A linear equilibrium exists between the solid phase and the solvent. This assumption 
implies that adsorption of soluble substances on the surface of the porous matrix accord-
ing to a non-linear equilibrium can be neglected. The validity of this approximation is 
shown experimentally by Oplatka (1954), Yang & Brier (1958) and Krasuk et al. (1967). 
— The diffusivity of the extracted species is constant. The mathematics involved in 
solving the diffusion equation can be significantly simplified when the mass transfer rates 
can be described with a constant diffusion coefficient. In Table 3 some extraction pro-
cesses from the food industry are given, for which the extraction rate can be described by 
Ficks law with a constant effective diffusion coefficient. In some cases the diffusivity is 
found to depend on concentration of the solute, particle size or time. Even in these cases 
a proper analysis of the data might sometimes reveal that the extraction can still be 
described by Ficks law with constant diffusion coefficient. For the extraction of flaked 
soybean, Bernardini (1976) found that the extraction rate is essentially constant until 
about 30% wt of the oil is transferred to the solvent. In a later stage of the process the 
mass transfer rate is governed by molecular diffusion. According to Bernardini, deviations 
of the initial extraction rate amount to washing off the oil adhering to the surface of the 
flakes. Brüniche Olsen (1962) observed that the diffusivity apparently varies with the 
particle size for the extraction of sugar from sliced beet. Similar effects were observed for 
the extraction of roast and ground coffee beans (Douwe Egberts Research, pers. com-
mun.). This effect has been explained by a change in particle shape and fraction of 
disruptured cells as a result of variations in particle size. 
— Constant flow rates of both phases in the extractor. When the particles can be con-
sidered as an inert solid matrix with constant internal pore volume, this approximation is 
valid exactly when the flow rates are expressed on a volumetric basis, e.g. m3/s. When the 
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Table 3. References that report mass transfer rates that can be described with a constant diffusion 
coefficient. 

Raw material 

Tung seed 

Soybean 

Peanuts 

Sugar beet 

Pickles 

Extracted component Source 

Oil 

Oil 

OU 

Sugar 

Salt 

Pickles Sugar 

Green coffee Caffeine 

Roast and ground coffee beans Solubles 

Solanum laciniatum Solasodine 

Krasuketal., 19751 

Beek & Muttzall, 1972 

Fan & Morris, 1948 

Brüniche Olsen, 1969 

Plug et al., 1967 
Bomben et al., 1974 

Eder, 1971 

Bichsel, 1976 

Douwe Egberts Research, pers. commun. 

Tettamanti et al., 1975 

1. At elevated temperatures only. 

liquid densities are constant throughout the extractor it is also valid when the flow rates 
and concentrations are expressed on weigth basis. The results are not generally applicable 
when the particles shrink or swell considerably during extraction. 
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2 Effect of local phase contact on extraction efficiency 

Large scale solid-liquid extractors are commonly operated in countercurrence as it is 
well understood that this design reduces solvent requirements. To attain pure counter-
currence between solid granules or powders and a liquid phase usually involves consider-
able mechanical problems. For this reason one often resorts to cascading mass transfer 
sections in an 'overall' countercurrent fashion, while the local phase contact within a mass 
transfer section deviates from the overall counterflow. A classification of countercurrent 
separation cascades relevant to solid liquid extraction is given in Table 4. In Section 2.1. 
this classification is discussed in some detail and available literature dealing with the 
design of such mass transfer cascades is reviewed. In the subsequent sections, the effi-
ciency of countercurrently cascaded fixed beds and cross flow sections is calculated from 
mathematical models. The separation efficiency of these systems is expressed as a relation 
between the number of exterior apparent transfer units, defined in Section 1.2, and the 
number of true transfer units: 

^ t .d /A = 
vod O.V 

4>d 

]_ 

A 
(2.1) 

The results are presented in concise correlations covering the range of normal operating 
conditions. 

Table 4. Classification of countercurrently cascaded mass transfer sections. 

Local phase contact 
within a mass transfer 
stage 

Examples 
References covering theory 
on design of mass transfer 
cascades 

distributed lumped 
parameter parameter 
model model 

countercurrent U-type and J-type extractor see Table 7 Colburn, 1939 

cocurrent Multiple batch extractors see Table 7 

crosscurrent Rotary and belt extractors Thibodeaux, 1977 

unsteady column Diffusion battery Svedberg, Chen, 1972 
1976 
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2.1 Classification of solid-liquid extractors 

The classification of extraction systems proposed in Table 4 does not necessarilly 
coincide with those presented elsewhere, see Chapter 1. However, most of the percolation 
extractors will be found under local cross current contact, and most of the immersion 
extractors in the other groups. It should be kept in mind that, where as other classifica-
tions give more direct information on the raw materials that can be processed in the 
apparatus, this classification is related to the stage efficiencies that can be expected in the 
extractor. 

Countercurrently cascaded mass transfer sections with local phase contact in counter-
current obviously imply a countercurrent extractor. In practice this model can be used to 
describe some commercial counterflow extractors approximately, such as the DDS dif-
fusor, the NIRO and Olier extractor. Moreover purely countercurrent contact limits the 
separation efficiency of any extraction system. Mass transfer in countercurrent extractors 
is undoubtedly analysed in most detail in the literature. When plugflow of both phases 
occurs, the analytical solution of the distributed parameter model is given by Mikhailov 
(1977). Tables of analytical solutions of the diffusion equations when mass transfer 
rate is limited by internal diffusion have been given by Tettamanti (1975). Plachco 
(1970) discussed the effect of an initial concentration gradient inside a particle on the 
extraction efficiency for particles with slab geometry. The lumped parameter model was 
first solved by Colburn (1939). This latter model has been extended to deviations from 
pure plug flow in the phases. Exact solutions obtained by Miyauchi & Vermeulen (1963), 
Sleicher (1959) and Hartland & Mecklenburg (1966) using the model of plug flow with 
superimposed axial dispersion, and those derived by Sleicher (1960) and Mecklenburg & 
Hartland (1968) using the model of backmixing between complete mixed stages are not 
convenient for design calculations. Approximate solutions are given by Watson & Cochran 
(1971), Stemerding & Zuiderweg (1963), Pratt (1975), Tolic (1973) and by Pratt (1976). 
Kerkhof & Thyssen (1974) used a dual-cascade model, where the number of ideal mixers 
in both phases can be different. 

Countercurrent cascades of mass transfer sections with local phase contact in cocur-
rence are mathematically similar to multiple batch countercurrent extractors. This extrac-
tion system is mainly used for small scale extraction of for example pharmaceutical 
products and spices. The operation of the extractor is described by Treyball (1968). 
Analytical solutions of the diffusion equation with the proper initial and boundary condi-
tions have been numerically evaluated to obtain the efficiency of these cascades by 
Plachco & Lago (1972). Similar results were obtained by Schwarzberg (1977) who used a 
different calculation procedure. In both cases, it was assumed that geometry was spherical 
and that internal diffusion limits mass transfer rate. When liquid clings to the particles so 
that the phases are not completely separated when stage transfer occurs, the analytical 
solution of Plachco & Lago (1975) can be applied. 

Countercurrent cascades of mass transfer sections with local phase contact in cross 
flow describes extraction systems that are in use for large scale extraction of oil seeds, 
sugarcane etc. The operating principle of this extractor is discussed in Chapter 1. In the 
literature little attention has been given to the mathematical modelling of these systems. 
For pure cross flow cascades where no entrainment of one of the phases by the other 
occurs, Thibodeaux (1977) recently proposed a design procedure. He assumed lumped 
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mass transfer resistance and complete mixing of the streams before they enter a new 
stage. Pure cross flow is encountered in cooling or heating of granular products (McGaw, 
1976), cross-flow cooling towers (Thibodeaux, 1969) and heat exchangers (Gardner & 
Taborek, 1977), and is a good approximation for belt type solid-liquid extractors when 
the value of the distribution ratio D, defined in Eqn 2.9 is low. In his simulation model 
for the extraction of sugar from sugarcane, Rein (1976) accounted for entrainment of sugar 
juice by the moving solids. In his calculation he neglected concentration gradients over 
the height of the bed, perpendicular to the flow direction of the solids. No systematic 
analysis of the efficiency of cross-flow sections in countercurrent cascades is available in 
the current literature. 

Countercurrent cascades of unsteady operated columns are often referred to as mul-
tiple column countercurrent extractors, diffusion batteries or Shanks extractors. Details 
of the operation principle of the extractor are given in Chapter 1. Multiple column 
countercurrent contactors are in use for ion exchange and adsorption processes. Most of 
the literature dealing with the design of this column arrangement is related to adsorption 
on active carbon from the liquid phase. The liquid residence time in a single periodically 
operated column was compared with a countercurrent adsorber by Neretnieks (1975). 
For a linear sorption isotherm, the residence time in the periodic column was at least 70% 
longer for the same efficiency of carbon utilization. Fornwalt & Hutchins (1966) pro-
posed a graphical procedure to determine the number of columns in amulticolumn system. 
They assumed that all the columns have similarly shaped breakthrough curves, so that the 
apparatus is overdesigned. Chen (1972) studied adsorption frorh the liquid phase on 
activated carbon in a multiple countercurrent contactor using the model of a cascade of 
perfectly mixed vessels to calculate the performance of the system. An empirical relation 
for the equilibrium relation and the rate of mass transfer was used, so that it is difficult to 
generalize his results. Svedberg (1976) thoroughly studied the efficiency of multiple 
column adsorption from the liquid phase. Mass transfer rate was calculated from a model 
that takes into account film diffusion and pore diffusion with a constant diffusion coeffi-
cient. Plug flow of liquid through the column and a linear equilibrium relation were 
assumed. He concluded that when four or more columns are used, carbon utlization is 
wihin 10% of the carbon utilization in a purely countercurrent contactor, under normal 
operating conditions. For two columns, this figure was about 15-30% lower than in a 
truly countercurrent apparatus. Klaus et al. (1977) calculated carbon utilization for the 
adsorption of binary mixtures on active carbon. They found that the transient phase 
before the concentration profiles stabilize is much longer than in single component ad-
sorption, where a periodic steady state is attained in one or two cycles. 

2.2 Diffusion battery 

In the following section a mathematical model of a single-stage fixed bed is derived. 
Subsequently it is shown how this basic model can be used as a building block in the 
mathematical simulation of a diffusion battery. The effect of process variables on the 
separation performance of the multicolumn countercurrent extractor is then calculated. 
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2.2.1 Mathematical model of a single-stage fixed bed 

From Figure 8 it can be derived that mass transfer in a fixed bed can be described by 
Eqns 2.2 and 2.3 when a linear driving force for mass transfer is used and plug flow of 
liquid through the bed is assumed: 

ALh^=kocaAL(c'*-c')-<t>c^I 

AL (1 -h)~- =- kocaAL (c'* - c') 

with initial and boundary conditions 

f = 0 u' = <o'0(x) c' = c'0(x) 

x = 0 c'=c[n(t) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

With a linear relationship between the equilibrium concentrations in both phases, c'* = 
m CJ', the equations can be made dimensionless by introducing the following variables: 

liquid phase concentration (2.6) 

solids phase concentration (2.7) 

number of true transfer units on overall liquid phase basis (2.8) 

— 

c -c0 

muQ 

m<J-

. mu>0 

^oc 

- c o 

~co 

aV 

Fig. 8. Fixed bed extraction. 
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D=j]—TT distribution ratio (2.9) 

x 
?—T dimensionless distance from liquid inlet (2.10) 

t<t>c 

Vh dimensionless time (2.11) 

With these variables the differential equations with initial and boundary conditions can be 
written as: 

9c be 

d9+~d$=Nt'c("~c) ( 2 - 1 2 ) 

30" =-NUcD(u-c) (2.13) 

0=0 co = Wo(r) c = cS) (2.14) 
f = 0 c = c i n ( 0 ) (2.15) 

When at time 6 = 0 the concentration in the solid and the liquid phase are in equilibrium 
and the inlet concentration c in is constant, the solution of the above equations is well 
known (Anzelius, 1926): 

c = e-eMf e-
sJ0(2iVsd^)ds (2.16) 

o 
where 

Ö M = ^ t , c f l ( Ö - l ) (2.17) 

The above relation is tabulated by Furnas (1930). Approximate solutions are given in the 
survey of Klinkenberg (1954) and in the paper of Roetzel & Nicole (1975). For arbitrary 
initial concentration profiles in both phases and time variable concentration at the liquid 
inlet, Klinkenberg & Harmens (1960) gave an unavoidably complicated analytical solu-
tion. As an alternative to this solution, the equations can be solved numerically. Details of 
the computational scheme that was used here are given in Appendix A. 

2.2.2 Mathematical model of a diffusion battery 

In order to simulate a diffusion battery, a number of columns can be put in series as 
shown in Fig. 9. Another approach that is somewhat easier to incorporate in a computer 
program, is to consider the diffusion battery as a single column in which the solids are 
transported intermittently. Since we are interested in the concentration profiles in a 
cyclic 'steady' state and the profiles at the beginning of a cycle are not known before-
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g=1/n 

} ll-ôj 
x=0 

Fig. 9. Diffusion battery with n columns. 

hand, the equations are solved numerically. Starting from an arbitrary initial concentra-
tion profile, the unsteady state start-up of the system of columns is simulated. At the end 
of every cycle the concentration profiles are shifted one column and the concentrations 
in both phases in the last column, i.e. where the solids are fed to the extractor, are reset 
according to the boundary conditions. This operation cycle is repeated until the concen-
tration profiles in the extractor and the exit concentration of the columns averaged over 
one cycle time no longer change significantly. In most calculations the concentration 
profiles stabilized in n cycles. To allow an accurate evaluation of 7V*ext, the calculation 
must be continued up to a dimensionless time 0 between 6 and 10. The computation is 
then halted and the mass balance checked, which closed within 0.5% in most cases. 

In analogy to the extraction factor in continuous countercurrent processes, we defined 
an extraction factor or 'draw-off factor' for semi-continuous multiple column extraction 
as the ratio of the liquid flow drawn from the extractor to the flow of solids through the 
extractor, multiplied by the slope of the equilibrium curve. The flow of solids is deter-
mined by the volume of solids in one column and the cycle time tc only. Bearing in mind 
that the water filling the interstitial voids in the first column is discharged with the 
exhausted solids, we can calculate the draw-off factor, A from: 

A = m 

Vh 1 

V(l-h) 1 
••D(n0c-l) (2.18) 

The above equation is used to determine the dimensionless cycle time 6C required to 
attain a chosen draw-off factor A. 

2.2.3 Efficiency of a diffusion battery 

The results of the calculations are shown in Fig. 10. The plots show an almost linear 
relation between Nt d/A and Next. Increasing the number of columns results in a smaller 
difference between Nt d/A and Next, showing that the extractor approaches a truly 
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Fig. 10. Number of exterior apparent 
against true transfer units for a diffusion 
battery with n columns. D is distribution 
ratio; A is extraction factor. 

countercurrent system. An increase in A, the draw-off factor, shows the same tendency, 
which is due to a more favourable ratio of draw-off and cycle time at higher values of A. 
Since the time required to fill the interstitial voids of the freshly charged column is equal 
to tf = (hV/n)/(j>c, one can write for this ratio with Eqns 2.9 and 2.18: 

et 1/« D 
0. (1 + A/D)/n D + A 

(2.19) 
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The effect of D can be made clearer by writing the expression for D as follows: 

Vh 

mh=
m_r% = _ A ^ _ . A (2.20) 

\-h V(l-h) 4>c-<i>c,A 

D/A can thus be interpreted as the ratio of the liquid flow entrained by the discharged 
solids, <[>c A and the net liquid flow drawn from the extractor. Since the solubles in the 
liquid in the first column will be lost with the spent solids at the end of the cycle one 
expects a higher efficiency for a lower value of D, which is confirmed by the calculations. 
The results of the calculations are given in a concise form by Eqn 2.21, which covers the 
whole range of input parameters used in the simulation runs. 

^ — = 1-0.59 n-1-11 A'0-3 N°ex\
5A'n D0-33 (2.21) 

•^t.d/A 

2 < n < 6 0.25 < A < 2 0.25 < D < 4 
0.25<W e x t<10 T ? < 0 . 9 9 

Within the indicated region this correlation gives an estimated value of (Nt d/A - Next)/ 
Next, within 5% of the numerically calculated value. 

2.3 Belt type extractor 

In this section a mathematical model of a single stage cross-flow device is derived. The 
analogy to an unsteady operated column is discussed. It is shown that the algorithm 
proposed in Section 2.2.1 can be used with some modifications for the mathematical 
simulation of a belt type extractor. For extractors without liquid recirculation, the effi-
ciency has been obtained from numerical calculations. The efficiency of extractors with 
liquid recirculation is calculated from analytical solutions of approximate models. 

2.3.1 Mathematical model of a single-stage cross-flow device 
« 

From Fig. 11, the folic ing equations can be derived for cross-current extraction 
under steady state conditions: 

<t>c be' vbSh be' , , 

-HTx + — * = * o . « * ( ' " - O (2-22) 

vhS(l-h) 3 c o ' 
1 fy = - Kc<M <P*' - c ) (2.23) 

with boundary conditions: 
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Fig. 11. Cross current phase contact. 

x*L 

j = 0 co' = coó (x) c' = c'0 (x) 

x = 0 c ' = 4 ( y ) 

(2.24) 

(2.25) 

The equations are transformed into a dimensionless form by introducing the following 
variable in addition to Eqns 2.6-2.10: 

0 = 
(yftb)0c 

~Vh dimensionless residence time of solids in the extractor 

The equations can thus be rearranged to: 

aë + ä F = J v t , c ( « - ^ ) 

9co 
30 =-NUcD(u-c) 

with boundary conditions: 

0 = 0 co = co0(?) c = c0(r) 

r = 0 c = cin(@) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

The above equations are similar to those given in Section 2.2.1. For pure cross-current 
contact in single stage devices, this analogy is well understood (Nusselt, 1930). It involves 
that the equations describing mass transfer in unsteady operated columns can be reduced 
to those describing pure cross-flow contactors, by transforming the Eulerian system to 
Lagrangian coordinates. When liquid is displaced in the direction of the flow os solids, as 
in solid-liquid extraction, the analogy applies in Eulerian coordinates. This analogy will be 
extended here to multiple fixed beds in series in order to simulate mass transfer efficiency 
in a belt type extractor. 
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2. 3.2 Mathematical mode! of a belt type extractor without liquid recirculation 

A sketch of the extractor considered in this section is given in Figure 12. The mean 
concentration of liquid leaving section / can be calculated by averaging the concentration 
of liquid dripping form the belt into the collection pan below, thus at x = L or % = 1, 
from y = 0 to y -H/n, or from 0 = 0 to: 

0c 
© = 0 = 

c Svhhn 
(2.31) 

0C, the dimensionless residence time of the solids in one section of the extractor, is 
related to the draw-off factor A, defined analogously to the extraction factor in counter-
current extractors as: 

A = m 
<PC - vbSh 

vhS(l-h) 

Combining Eqns 2.31 and 2.32 gives: 

0
c = (1 + e)/" 

(2.32) 

(2.33) 

Fig. 13 gives the calculation analogue of the belt extractor from Fig. 12. The liquid 
leaving section /' is collected in chamber Ai and mixed up. After one 'cycle timV 0C the 
liquid from A{ is transferred to B{. The liquid entering section (/ +1) is withdrawn from 
the latter. The calculation proceeds as follows. Since the concentration profiles in steady 
state are unknown a priori, Eqns 2.27-2.30 are integrated starting from an arbitrary initial 
concentration profile in both phases. After one cycle time 0C, the average concentration 
leaving column i is determined, and the liquid concentration in Bi is set equal to this 
value. Concentration profiles are shifted one column. The concentration in the last col-
umn downstream is reset according to the boundary conditions. After a large number of 
cycles has been worked through, the average liquid concentration leaving each section 
reaches a constant value. The calculation is then halted and the mass balance is checked. 
It should be realized that this calculation method does not give any information on the 
unsteady operation of the extractor since we started from the steady equations 2.22 and 
2.23. 
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Fig. 13. Analogue of belt extractor of Fig. 12. 

The mathematical simulation of a belt extractor without dripping sections has just 
been discussed. However, in most industrial extractors dripping sections are present. In 
the following the mathematical model will be extended to take these into account. 

A rigorous simulation of this case is rather complicated, because both drainage rate 
(Beek & Muttzall, 1972) and static holdup (Dombrowski, 1954) are dependent on the 
physical properties of the liquid and the bed geometry. Therefore the problem is simpli-
fied considerably here by assuming a constant drainage rate, equal to the percolation rate. 
It is further assumed that no liquid remains in the interstitial voids of the bed after 
drainage. This simplified situation can be simulated by shifting the chambers collecting 
the percolating liquid over a distance yf as indicated in Fig. 14. This distance is related to 
the time required to fill the interstitial voids in the fresh solids entering section n. In the 
time required for the liquid front to reach the lower end of the packing, the belt has 
moved over a length y f 

y{: 
hL 

4>J{BH/n) 
(2.34) 

or in dimensionless form: 
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Fig. 14. Belt extractor with dripping sections. 
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9 f = - (2.35) 

Since no liquid is entrained by the solids leaving the extractor, the extraction factor can 
now be calculated from: 

A=m ^ s c r^y (236> 
With Eqn 2.9 the dimensionless residence time of the solids in one section is obtained: 

&o = Wn <237> 

The calculation proceeds as discussed in the previous section. The average concentration 
of liquid collected in chamber A- is calculated from: 

<U, = \ ƒ Cout,,_ ! d0 + ƒ c o u t > , d 0 i / 0C (2.38) 

Note that an extra column 0 is used in the calculation to account for mass transfer during 
drainage. Since only a part of this column contributes to the extractor volume, the 
number of true transfer units used in the simulation Nt s i m , is corrected: on inspecting 
Fig. 14 it is found that: 

«0C + 0 f 

2.3.3 Efficiency of belt type extractors without liquid recirculation 

The results of the simulation of a belt extractor without recirculation of liquid and 
without dripping zones are presented in Fig. 15. It shows than an increase in the number 
of sections results in a smaller difference between NexX and Nt d/A, showing that the 
extractor approaches a purely countercurrent contactor. For a higher value of D, more 
liquid is entrained by the solids on the belt to the upstream sections. This backmixing 
flow 0C A is related to the distribution ratio in the following way: 

D= n u? C = : T - ^ A (2.40) 

Solubles contained in the liquid flow <j>c A at the liquid feed end of the extractor will be 
lost with the spent solids. Compared with a diffusion battery discussed previously, the 
belt extractor gives a lower efficiency due to mixing of liquid in the collection pans after 
percolation through the bed. In Fig. 13 this mixing is illustrated in the analogue where 
the liquid leaving the column i (i.e. section of the belt) is mixed in the vessel A{ (i.e. the 
collection pan). When the extraction factor is high or the number of transfer units in each 
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Fig. 15. Number of exterior apparent 
against true transfer units for a belt ex-
tractor with n sections without dripping 
zones. D is distribution ratio; A is ex-
traction factor. 

section is low, the concentration of liquid entering a collection pan does not vary 
significantly during a cycle. Then mixing hardly influences the extractor performance 
which thus approaches the performance of a diffusion battery. 

For higher values of Nt d/«A the adverse effect of mixing becomes more important, as 
is clearly shown in Figs. 15 and 16. A correlation was fitted to the data so that the 
results can be easily applied. Within the indicated region the estimated value of (Nxä -
ANext)jNt d is within 5% of the numerically calculated value. 
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Fig. 16. Number of exterior apparent 
against true transfer units for'a belt ex-

• n tractor with n sections with dripping 
• "" zones. D is distribution ratio; Ais extrac-, 

^ t d / tion factor. 

ext 
1 + 1.035 i t " 1 - « A" 0 - 7 1 D06S N°ex\

4 (2.41) 

2 < n < 7 0.3<A<2 0.25<D<2 
0.3<JVext<10 i?<0.99 

If dripping zones are present, no liquid is entrained to the upstream section. The effect of 
the variable D/A is thus less pronounced than in the foregoing case. The value of (Nt d -
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ANext)/Nt d can be estimated with 5% accuracy from Fig. 16 or Eqn 2.42: 

^ ^ = l + 1.00«-1-4 4A-0-6 3£>°-4 S7V°x
4

t
2 (2.42) 

• /vext 

2 < « < 6 0.3<A<2 0.25<Z»<1.5 
0.3<7Vext<10 TJ<0.99 A/£>>1 

The above equation is valid only for A/D> 1. Since from Eqns 2.35 and 2.37: 

0 c A/Dn A 

0 f Ijn D 
(2.43) 

the residence time in a section thus has to be longer than the time required to fill the 
interstitial voids of the packed section in one stage. 

2.3.4 Efficiency of belt type extractors with liquid recirculation 

Although the belt extractor with recirculation can be simulated analogously to the 
procedures we followed for the extractor without recirculation, it often suffices to 
apply an analytical approach for the simplified case of a completely mixed liquid phase in 
each section. Under what conditions this approximation is valid is discussed in Appendix 
B. We first note that the local mode of phase contact in each stage is immaterial because 
the liquid phase is completely mixed. The analytical expressions derived in this section 
can thus be used to estimate the efficiency of the other flow arrangements mentioned in 
Table 4 as well, as long as a uniform liquid phase composition in each section prevails. 

Hartland & Mecklenburg (1966) derived an analytical solution for when the solids are 
completely separated from the interstitial liquid before they leave the extractor. In the 
present notation their relation reads: 

hi-Bi 

. (Bi-l)B"i 
"'"" AxO-Afi?) 

h2 - B\ 

(*2-1)2*3 
h2 (1-A53) 

(2.44) 

( f i j - l ) f i ? ( B a - l ) f i S ' 

where B. is defined in Eqn 2.58 and h-s is given by: 

^ = 1 - ^ ( ^ - 1 ) (2.45) 

In the present analysis the entrainment of liquid by the solids leaving the extractor is set 
equal to the interstage liquid entrainment. This assumption is believed to be physically 
more realistic and the results of this model can easily be compared with the correlations 
derived earlier. For the derivation of the equations describing the model we refer to Fig. 
17. 
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Fig. 17. Belt extractor with complete mixed liquid phase in each stage. 

In this simplified model of the belt extractor, plug flow of the solids and complete 
mixing of the liquid within each stage is assumed. Then a mass balance on the solids in 
slice dx results in: 

dwj dojj 
v » 5 (1 - h) ST = ̂  "d7 = - *oc«S (*i* - cù 

which can be written in a dimensionless form by introducing Eqns 2.6—2.10. 

(2.46) 

dcoj 

IT 
Nt t,d 

( « i - ct) 

The number of true transfer units on solid phase basis is defined as: 

NtA = 
kozaV Ki^v 

t , d * d / « ^ 

Equation 2.47 can be integrated to give: 

— =exp(-JV t i d//i) 

(2.47) 

(2.48) 

(2.49) 

The mass balance on stage /, assuming complete entrainment of the interstitial liquid by 
the solids to the next section, gives: 

0d(«/+1 - «/) + 0c,A <p'i+1 - c ' i ) + 0c (*/-1 - c ' i ) = ° 

where the backflow <j>c A is defined as: 

0c,A= Vb5 A 

Equation 2.50 can be written in a dimensionless form using Eqn 2.9 and: 

(2.50) 

(2.51) 
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A = m ( 0 c - 0 C ; A ) / 0 d (2.52) 

Finally the following equation results: 

( u l + ! - co,.) +D(ci+1- 2cf + c,_,) + A (c,._, - c,.) = 0 (2.53) 

For the last section the balance has to be modified since no liquid is carried by the solids 
entering this stage, so: 

("in - « « ) + £> (c„ _ ! - c n ) + A(c„ _ j - c „ ) = 0 (2.54) 

Combining Eqns 2.53 and 2.54 results in the following boundary condition at the solids 
inlet end of the extractor: 

cn + l=cn (2.55) 

The solution of Eqns 2.49, 2.53 and 2.55 with the additional boundary conditions c jn = 0 
and w in = 1 yields: 

= (g | -1)/|*?(2? -1)1 - (B\ - \)l[Bn
2(ß2 - 1)] 

Ct (ß? + 1 -gi)l\giB? (5 , -l)]-(B2+1-g2)l\g2B
n
2(B2 - 1)] 

where: 

(2.56) 

g. = l„a(B.-l)=l-(Bi-l)l[exV(Ntdln)-l] (2.57) 

and B- are the roots of the equation: 

1 + ( A + D )a + Z ) ( l + « ) ( l + a ) g ) + A) 
' Da i Da 

The number of exterior apparent transfer units can be calculated from this using Eqn 1.7. 
The results of the simplified model for a belt extractor with liquid recirculation in 

each section are shown in Fig. 18. The results are presented as graphs ofNextA/n plotted 
against N ( Jn, the number of true transfer units in each section on overall solid phase 
basis in pure countercurrent flow and in the extractor under consideration, respectively. 
For some limiting cases of the model discussed here, a simplified solution can be given: 
— No liquid entrainment to the upstream sections. Since a constant liquid concentration 
in each stage was assumed, the distribution ratio D will only affect liquid entrainment as 
shown in Eqn 2.40. This case can thus be solved by taking D = 0 in the foregoing 
equations. The resulting equation is: 

This equation is shown in Fig. 18c. Equation 2.59 can also be derived from the solution 
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Fig. 18. Number of exterior apparent against 
true transfer units for a belt extractor with 
complete mixed liquid phase in each section, n 
is the number of sections; D is distribution ra-
tio; A is extraction factor. 

29 



of the cascade of mixers model proposed by Kerkhof & Thijssen (1974), by taking the 
limit for n going to infinity in their equation (13a), since the solids move in plug flow. 
— For a large number of true transfer units each section can be considered as an equilib-
rium stage. Then the resulting equation for Next is: 

A^ext A /D+I\ , „ ^ N 

=T-7 MT;—H (2-6°) 
n 1-A \D + Aj J 

From the reasoning given above under case 1, it can be concluded that the results of this 
model can be used to estimate the number of true transfer units when dripping sections 
are present. Here the parameter!) as defined in Eqn 2.9 has to be replaced by 

„ A
 v b S e me 

0 = A -7 Ö - = T — ( 2 - 7 0 ) 

where e is the residual liquid hold-up after partial drainage. One should bear in mind that 
the extractor volume calculated from Nt d when dripping sections are present does not 
include the volume of the dripping sections itself. 
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3 Estimation of mass transfer coefficients in solid-liquid extractors 

3.1 Introduction 

In this work the NTU approach has been adopted for the design of solid liquid 
extractors. In the preceding chapter it has been shown how the number of true transfer 
units required to meet the design specifications can be determined. The present chapter 
deals with the estimation of mass transfer coefficients. By combining these results, the 
required residence time of the solids in the extractor under given process conditions can 
be calculated from: 

Td = ni-A)/*d=*t,d/(*od«') (3-D 

where kod is the mass transfer coefficient on overall dispersed phase basis. Obviously, the 
use of mass transfer coefficients to describe transfer rates is most convenient when ka is 
independent of time, position, concentration and driving force for mass transfer. These 
conditions are only fulfilled approximately in solid-liquid extractors. The two film theory 
of Lewis states that k0 is dependent on the mass transfer coefficient in the continuous 
phase kc, and in the dispersed phase kd. This relation has been derived from the expres-
sions for the flux through a solid-liquid interface (see Fig. 19): 
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Fig. 19. Concentration profiles near a solid li-
quid interface. 
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= *c(c;-c')=M«'-«î) 

For a linear equilibrium relation c'* = m co', we obtain the well-known equation: 

1_ 

od 

1 _ 1 1 

"oc d 

which can be written in a dimensionless form as 

1 
Sfc od Sh 

1 1 
+ 25/ 

(3.2) 

(3.3) 

(3.4) 

where Sh = kDp/BD, k and 2D refer to the same phase; Bi = m(DpIZ)k0IIDd. As will be 
recalled in Section 3.2, Shc is dependent on the physical properties and the flow velocity 
of the liquid surrounding the particle. Due to the mass transfer process these physical 
properties change with time, while in gravity percolation extractors the flow velocity 
might change accordingly. Moreover, even if the physical properties are uniform and the 
velocity is constant, kc varies over the surface of the particle (Gillespie et al., 1968; 
Frössling, 1938). Fortunately, however, the Bi number which embodies the ratio of the 
mass transfer resistances inside and outside the particle is often rather high in solid-liquid 
extraction processes so that variations of kc have a small effect on the overall mass 
transfer coefficient. Even for moderate Bi numbers the use of a value of kc averaged over 
the particle surface and the time that the solids reside in the extractor will only slightly 
affect the accuracy of the design calculation. The dispersed phase Sherwood number Shd 

is time dependent due to the transient nature of the diffusion proces. The initial 
decrease of Sh is described by the penetration theory (Higbie, 1935). In a later stage of 
the extraction, the Shd against time curve levels off and approaches a finite asymptotic 
value when entering the so-called 'regular regime' (Kondratiev, 1964), Fig. 20. The value 
of ShA in this regular regime depends on the boundary conditions or concentration 
history at the surface of the particle, and on the geometry of the particle; but it is 
independent of the initial concentration distribution inside the particle. It can be ex-
pected that for high extraction efficiencies a considerable part of the process can be 
described with this asymptotic mass transfer coefficient. 

Fig. 20. Transient Shd numbers for unsteady diffusional 
mass transfer. (...) penetration period; ( ) regular 
regime. 
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In Sections 3.2 and 3.3, literature data on mass transfer coefficients in continuous and 
dispersed phases are reviewed. This information is thereafter extended to provide a com-
plete picture of asymptotic ShA values in cocurrent and countercurrent extractors for 
particles with simple geometry. In Section 3.3.4, the range of applicability of asymptotic 
Sh numbers in mass transfer calculations is discussed. Moreover it is shown in this section 
how one could proceed in more complicated cases that are not covered by the previous 
sections. 

3.2 Estimating mass transfer coefficients in the continuous phase 

Mass transfer coefficients in the continuous phase are commonly expressed by the 
dimensionless iS7z„ number, defined as: 

c 

SK = - ^ (3-5) 

Dp denotes a characteristic dimension of a particle or a system that contains n particles, 
normally the equivalent diameter \/ÄJrvn where Ad is the surface area of the particles. 
The external Shc number is determined by the concentration distribution in the con-
tinuous phase. The equality (Fig. 19): 

= ftc(cR-c) (3.6) 
R. 

yields the following relation for Shc : 

-3c/ar | 
Shc=Dp - H (3.7) 

cR-c 

For a stagnant fluidum surrounding a single spherical particle the asymptotic Shc value is 
easily obtained from the solution of the diffusion equation: 

with boundary conditions: 

r = R c=cR (3.9) 

r = R0 C=CRQ (3.10) 

The steady state solution for transfer from a particle submerged in a stagnant, infinitely 
extending fluidum is well known; when bc/bt = 0 and R0 -*• °°: 

Shc=Dp *-=2 (3.11) 
CR - C O O 
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Table 5. Effect of distance between two spherical particles with 
diameter Dp on Shc in an infinite stagnant medium. Data from 
Cornish 1965. 

Distance between centers of spheres Shc 

Dp 1.39 

2Dp 1.60 

50Dp 1.98 

2.00 

When two particles are placed in an infinite stagnant medium, the external mass transfer 
coefficient decreases with decreasing distance between the particles, see Table 5. For 
multiparticle systems in a stagnant liquid Miyauchi (1971) calculated the value of Shc 

from the concentric sphere model. In this model the particle is supposed to be sur-
rounded by a liquid shell; the dimensions of this shell are adjusted to match the void 
fraction of the packing. Miyauchi assumed a concentric shell ranging from r = R to r = R0 

around a spherical particle. When the liquid concentration at the particle surface is set 
equal to cR and the concentration at the outer boundary of the liquid shell equal to cR 

the result for <S7zc in the steady state is: 

-dc/br 
IR SK=Dp- - ^ = (3.12) 

CR -°R0
 l -(.K/K0) 

Suzuki (1975) solved Eqn 3.8 with a more realistic boundary condition at r = R0 : 

r = R0 (oc/ar) = 0 (3.13) 

thus avoiding the artificial sink term at r = R0. The transient solution is used to calculate 
the Shc value, defined in Eqn 3.7, where 

c = 3 ƒ cr2dr/(Rl-R3) (3.14) 
R 

This time-dependent Shc number approaches an asymptotic value for long contact times r. 
This asymptotic solution is shown in Fig. 21, where also some measured values reported 
in literature are included. 

For small .Re-numbers, correlations for the external Shc number for single particles 
have been derived from Stokes' stream function for creeping flow around particles. For a 
thick concentration boundary layer or small Re Sc numbers, the resulting equations are 
often presented as summation series of the form: 

Shc = 2 + faeSc) + $(ReSc)2 +... (3.15) 

For thin boundary layers, the relation obtained after summing up the result of the above 
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Fig. 21. Asymptotic values of Shc for 
spherical particles in a stagnant finite 
fluidum as a function of the void fraction 
h. Key: o Miyauchi et al., 1976b; A Miya-
uchi et al., 1975; v Miyauchi et al., 1976a; 
I Suzuki, 1975; II Miyauchi, 1971. 

analysis and the limiting value 2 for a quiescent fluid reads: 

Shc = 2 + b(ReScyi3 (3.16) 

where b ranges from 0.5 to 1 according to Sideman & Shabtai (1964). The fundamental 
problems associated with the interpretation of measured mass transfer rates at very low 
Re numbers in multiparticle systems are discussed by Gangwal (1977). This data analysis 
is complicated by several mechanisms that might override the effect of mass transfer rate 
on the measurements, e.g. dispersion effects (Wakao, 1976), channelling caused by varia-
tion in the void fraction (Martin, 1978) and free convection (Mandelbaum & Böhm, 
1973). Also the often assumed symmetry of the concentration or temperature profiles 
inside the particles is not valid in the low Äe-number regime, (Wakao, 1976). In order to 
provide a theoretical basis for mass transfer correlations in these systems, Pfeffer & 
Happel (1964) solved the spherical shell model assuming creeping flow around the par-
ticle. Their results agree reasonably well with the measured data. Nelson &/Galloway 
(1975) combined the solution obtained by Suzuki (1975) with Danckwerts' surface re-
newal theory. Thus, an analytical expression was obtained for Shc. After scaling thefr 
solution with the Ranz Marshall correlation which applies for single spheres, they derived 
a correlation that has been used to predict mass transfer coefficients in the low Re-num-
ber regime. Measurements of mass transfer rates in this regime were re-evaluated by 
Dwivedi & Upadhyay (1977), and by Wakao & Funazkri (1978). Foi Re numbers below 
10, the first authors proposed the following empirical correlation between the Colburn 
/-factor and the Reynolds number for the liquid flow, Re = p < v > D /p(l — h): 

him = 
hShc 

Re (Sc)1/3 
1.1068 Re-012 

(Re>\0) (3.17) 
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For higher values of Re an overwhelming amount of literature data are available. Based on 
Schlichtings boundary layer theory, correlations for single particles usually take the form: 

Shc = 2 + bRe1l2Sc1'3 (Re>l) (3.18) 

From the survey of Sideman & Shabtai (1964) it is found that the value of b is usually in 
the range 0.5 <b< 0.9. Correlations for external mass transfer coefficients in multi-
particle systems are reviewed (e.g. Barker (1975), Sideman (1966), Upadhyay & Tripathi 
(1975), Dwivedi & Upadhyay (1977) and Kumar et al. (1977)). Based on a critical exami-
nation of previous data, Dwivedi and Upadhyay proposed the following empirical correla-
tion for higher Re numbers: 

hjm= 0.4548 Re-°A069 (Re>10) (3.19) 

These authors also suggested a generalized equation that correlates data over a wide Re 
number range: 

0.765 , 0.365 
hU = — — + Re' 0.82 Re 0.386 

(10"2<JRe<15 103) (3.20) 

This relation is shown in Fig. 22 together with some literature data. 
Even though no attempt has been made to be complete, the above survey clearly 

shows that methods for estimating the external mass transfer coefficient for widely 
varying conditions is extensively dealt with in literature. Moreover, as was pointed out in 
Section 2.1, the Biot number Bi = m k^R/IDi for solid-liquid extraction is often very 

Re=p<v>Dp/n 
Fig. 22. Mass transfer factor in fixed beds. Solid line: Eqn 3.20; Goud: experi-
mental data. From Dwivedi & Upadhyay, 1977. 
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large. Thus a rough guess of k will prove to be sufficient in most engineering calculations. 
If kç varies over the length of the extractor due to changes in viscosity or flow velocity, it 
is recommendable to use a constant, averaged value of kc in the design calculation. 

3.3 Estimating mass transfer coefficients in the dispersed phase 

Mass transfer inside rigid particles is generally described by Ficks second law: 

9co 

Mi^-Z) °-2 1 ) 

where v, the geometrical shape factor, is 1,2 and 3 for a flat plate, cylinder and sphere, 
respectively. In analogy to the Shc number, the mass transfer coefficient in the dispersed, 
solid phase is embodied in the Shd number, which can be calculated from the concentra-
tion distribution inside the particles. An overall mass balance yields: 

_ 9co 
kdAd(u-u,) = -E)dAd — = - V d § 0.22) 

R at 

By substitution of rd = IDdt/R
2, £ = r/R, and v/2 = Ad/Vd, the above relation can be 

rearranged to: 

-0«/a0| _d^/d,d 
Shd = _ 1-1 = (3.23) 

1 CO — COI CO — c o l 

U=i U=i 

Since the concentration profile inside the particle, co (£, rd), is determined by the geom-
etry of the particle and the boundary conditions imposed on Eqn 3.21, we expect Shd to 
be a function of the following parameters: 

Shd = f (V, rd, initial and boundary conditions) (3.24) 

For long contact times between the phases, the Shd number will approach an asymptotic 
value Shd a , as pointed out in the introduction. This asymptotic value is essentially 
independent of the initial concentration profile, thus: / 

Shd a = f (y, boundary conditions) (3.25) 

Mathematically this stems from the fact that the solution of the diffusion equation, 
which can be written as a summation of terms containing a weighting function exp(— 
Xnrd) multiplied by the related eigenfunction f(Xn), is governed by the term containing 
the smallest eigenvalue Xx. The contribution of higher terms is negligible because of the 
nature of the weighting function for higher values of rd. Many authors proposed this 
'first-term approximation' for heat and mass transfer calculations (Pflug & Blaisdell, 
1963; Brüniche Olsen, 1962; and others). It can be shown that the extraction rate in this 
regular regime can be described with a constant mass transfer coefficient, kd. 
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3.3.1 Survey of literature data 

For a constant surface concentration, Shdi3 values are given by Beek &Muttzall (1975). 
For a constant bulk liquid concentration with finite Bi values, these data are reported by 
Thijssen (1969). The solutions for constant surface concentration were extended to con-
centration-dependent diffusivities and shrinking systems by Schoeber (1976) (Fig. 23). 
The results of the analysis mentioned so far are summarized in Table 6. For cocurrent and 
countercurrent extraction of heating/cooling of spherical particles, several authors derived 
the asymptotic transfer coefficients when he phases are contacted in pure plug flow. As-
suming a geometrical similar profile in the regular regime: 

CO 
= f(0 (3.26) 

CO 

where f(£) is a function of % = r/R only, Gardner (1966) obtained analytical expressions 
for Shd a by substituting the regular concentration profile Eqn 3.26 in the diffusion 
equation 3.21 and combining the resulting relation with an overall mass balance: 

( w 0 - < o ) = - ( c o u t - c ) A t (3.27) 

where \ is + A and — A for countercurrent and cocurrent phase contact, respectively. 
The same results were obtained by Wartman & Mertes (1966) from the transient solution 
of the diffusion equation with the appropriate boundary conditions. Vorstman & Thijssen 
(1971) calculated asymptotic Shd a values for countercurrent extraction of spherical par-
ticles by using a different mathematical approach. In solving the diffusion equation 3.21, 
the following general boundary condition was applied at r = R: 

9co 

w = Ä{ W -w*(f d )} 1 = 1 (3.28) 

The bulk liquid concentration, m co*(rd), was then obtained from the solution of the 

Sh, d.a 

- 1 0 2 4 

Fig. 23. Asymptotic Shda values for concen-
tration dependent diffusivity IDd = cja and 
constant surface concentration (Bi,A -* ~). 
Parameter is geometrical shape factor v. From 
Schoeber, 1976. 
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Table 6. Review of Shod values foi constant bulk concentration of the liquid phase in the regular regime. 

Diffusion 
coefficient 

constant 

concentration 
dependent, 

2D = c j a , 

a ->oo 

Boundary 
condition 

constant 
surface 
cone, Bi= «o 

finite Bi 

Bi = 00 

Bi = °° 

Geometry 

Sphere 

3 

2\J/3 
X, = 
(1 - Bi) tan Xt 

Fig. 23 

exp(8/3) 

Cylinder 

5.96 

x, J, (X,) = 
Bi J0 (X,) 

Fig. 23 

4e 

Slab 

7T2/2 

2XÏ 
X: = Bi/tun X, 

Fig. 23 

exp(2) 

Source 

e.g. Beek & 
Muttzall, 1975 

Thijssen, 1969 

Schoeber, 1976 

Schoeber, 1976 

lumped parameter model, i.e. the Colburn equation. Their results coincide with those 
obtained by the methods discussed earlier. 

In the subsequent sections Shd a values are calculated for both cocurrent and counter-
current extraction of particles which can be approximated by slabs, cylinders or spheres. 
Some general procedures for generating these asymptotic mass transfer coefficients are 
discussed. 

3.3.2 Shd a values from solutions under coupled boundary conditions 

During the extraction of rigid particles, the transient concentration distribution can be 
obtained from the solution of the diffusion equation, which can be written in a dimen-
sionless form as: 

du 

9 
^ = J—i— e"-» ^L\ 
t, up-i\dt 31 / 

In general, the following initial and boundary conditions apply: 

td = 0 w & 0 ) = f(Ö 0 < É < 1 

? =0 oco/a? = 0 

% =1 doildi = -Bi{u-c(tA)lm} 

td>0 

r d >0 

(3.29) 

« 

(3.30) 

(3.31) 

(3.32) 

The concentration in the continuous phase, c(td), can be calculated from a mass balance. 
For cocurrent and countercurrent extraction this results in the following relations: 
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de 

dtA 

1 dû_ 
Â dTT 

' d = 0 c = cin 

- cocurrent or batch (3.33) 

de _ 1 du 
dT, " + Â dTT 

fd
 = 0 c=cout 

countercurrent (3.34) 

We will indicate this system of equations by the term 'coupled boundary conditions', i.e. 
coupling of c(fd) from the boundary condition Eqn 3.32 with a mass balance relation 
3.33 or 3.34. Analytical solutions of the above equations are summarized in Table 7, with 
special reference to cocurrent and countercurrent phase contact. Only those solutions not 
dealt with extensively in the handbooks (Luikov, 1968; Crank, 1956; Carslaw & Jaeger, 
1959) are included in the table. From these solutions the Shd a values can be derived 

Tabel 7. Analytical solutions of the diffusion equation with coupled and general boundary 
conditions. 

Geometry factor 

cocuirent 
1,2,3 

1 

3 

1,2,3 

2 

3 

all 

countercurrent 
1,2,3 

1 

1 

3 

general 
3 

all 

1 ,2 ,3 

Bi 

oo 

oo 

oo 

finite 

finite 

finite 

finite 

oo 

oo 

finite 

finite 

finite 

finite 

finite 

f«) 

« 0 

m 
f«) 

" o 

" o 

" o 

f«) 

" o 

f(«) 

" o 

" o 

" o 

f(£) 

f«) 

Remarks 

tables, graphs 

tables, graphs 

arbitrary geometry 

tables, graphs 

graphs 

mass generation 
included 
sorption included 

axial dispersion 
included 

c = c (r) 

c = c(t) 

c = c(t) 

Source 

Tettamanti et al., 1975 

Plachco & Krasuk, 1972 

Plachco & Lago, 1972 

Mikhailov, 1966 

Edeskuty & Amundson, 1952 

Farritor & Tao, 1972 

Mikhailov, 1977 

Tettamanti et al., 1975 

Plachco & Krasuk, 1970 

Jeschar, 1966 

Munro & Amundson, 1950 

Kasten & Amundson, 1952 
Barbouteau, 1956 
Wartman & Mertes, 1966 
Neretnieks, 1974 

Vorstman & Thijssen, 1971 

Olçer, 1964 

Mikhailov, 1973 

40 



from Eqn 3.23. 
The solution of the transient diffusion equation can be written in a generalized form: 

w ' - w ' ( r d = 0 ) , o» _X2* 
W('d)= TT, 7, =A0+g(ß)eß '<• + 2 f(X;)e / d (3.35) 

where f(Xj), /=0, °° and g(/x) are functions that depend on the boundary and initial condi-
tions and Xj and p are the nonzero roots of the characteristic equation, if those roots 
exist. W(td) is defined in Table 8 for cocurrent and countercurrent flow. The value of A0 

is also given, which can be verified easily for cocurrent extraction, and for countercurrent 
extraction with an extraction factor A > 1 by taking the limit for rd -> oo j n Eqn 3.35 
since no root ß exists in these cases. Combining Eqn 3.35 with the mass balance on both 
phases, the value of C(td) defined in Table 8 is obtained. The definition of the Sh number 
given in Eqn 3.23 can now be written as: 

tfgM^'i-ï X* ffy)e~*>'d 

Shod(td)= '— — — (3.36) 

( l - A - 1 ) { ^ U ) e ^ ( d + £ f(X..)e~^fd} 

where \ = A or — A for countercurrent and cocurrent phase contact respectively. For 
longer contact times between the phases, the solution will be determined by the smallest 

Table 8. Asymptotic 5Vz-numbers and some related properties of the differential equations involved. 
7 = At/v; Jft is the Bessel function of the first kind and k-th order; 1^ is the modified Bessel function of 
the first kind and k-th order; X is the first non-zero root of the related trancedental equation. 

phase 
contact 

cocurrent 

counter-
current 
A > 1 

counter-
current 

w 
ÜJ - u , 

c0 - w » 

w - w0 

c o u t ~ w o 

C 

c - w0 

c0 - " o 

c - to0 

cout-w<> 

A» 

A 

A + l 

A 

A - l 

^ o d . a 

2^o 2 
X 

V 

2 A 0 ^ 

V 

X o r M 

yBiX 

A < 1 cout~wo c o u t - t J o * 

J. 

Jo 
w 
M 

nX = 

tanh ju 

i . 

Io 

+1 

GO 
(M) 

nV. ,. 

Bi + yX2 

yBiX 

Bi + yX* 

A (Bi + 7 

Bi + 7 (1 -

y Bin 

Bi + yß2 

y Bi ß 

Bi + 7 ( i ' 

X2) 

Bi)X2 

ß(Bi + yß2) 

Bi + y(l-Bi)ß2 

41 



eigenvalue Xt, or by the eigenvalue p if the latter exists. Thus the calculation of the 
asymptotic Sh numbers can be reduced to an analysis of these smallest eigenvalues. In the 
subsequent treatment, we will use Laplace transform techniques to determine the charac-
teristic equations that generate the eigenvalues. 

The solution of Eqn 3.29 with initial and boundary conditions 3.30 and 3.31 in the 
Laplace domain is given by: 

W = / e - s t dH/ ( | , f d )d f d 

o 

= A3 sinh (£ V 7 )/Vs" when v = 3 (3.37) 

= A2 I0 (£ Vs~) when v = 2 (3.38) 

= A y sinh {% Vs ) when v = 1 

The value of the constant Av can be obtained from boundary condition 3.32 and the 
overall mass balance equation 3.33 or 3.34. Thus, the characteristic equation is obtained 
by setting the denominator of the resulting expression for W equal to zero and solving for 
s. These equations are given below: 

f— (ßi ys~\ •y j 
tanh (Vs ) = ^ /;• „.. when v = 3 (3.40) 

v ' Bi-ys(\—Bi) 

Ii(Vs") yBi^Is 

Io(v7)~ Bi-ys 
when v = 2 (3.41) 

yBiVs 
tanh(v7) =-%r. when v~\ (3.42) 

' Bi - y s v ' 

where y = A^/v. It can be shown that the above equations have a non-zero real root ß only 
in case A < 1 in the countercurrent situation. This single root determines the asymptotic 
solution for W(tA). In other cases, an infinite number of roots is obtained by substituting 
X = i y/Z The smallest non-zero root determines the asymptotic solution in this case. The 
resulting characteristic equations are included in Table 8. The Shod a values obtained 
from the equations in this table, together with the Shd a values calculated from Eqn 3.4 
are shown in Fig. 24-29. Both for cocurrent and countercurrent extraction the solution 
approaches the constant bulk concentration limit when the extraction factor A goes to 
infinity. These solutions were already summarized in Table 5. The asymptotic mass 
transfer coefficient increases from slab to cylindrical to spherical geometry of the par-
ticles subjected to extraction. In fact,- this is a consequence of the definition of the Sh 
number given in Eqn 3.23. Due to the higher value of v = 2 Ad/Vd, a certain flux -
IDd(bcj'lbr)R causes a more pronounced concentration reduction in terms of average 
solute concentration for spherical particles. Decreasing the external mass transfer coeffi-
cient or Bi number shifts the Shd a value towards the value obtained for A = 1. For 
countercurrent extraction, an increase in A causes a reduction in the asymptotic mass 
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Fig. 24. Asymptotic Sh& and ShQ& values for countercurrent extrac-
tion of spherical particles. Bi = mkcR/ID^ is the Biot number. 
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Fig. 25. Asymptotic Sh^ and Sh0^ values for countetcurrent extrac-
tion of cylindrical particles. Bi = mkcR/E>^ is the Biot number. 
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Fig. 26. Asymptotic Sh^ and Sh0^ values for countercurrent extrac-
tion of particles with slab geometry. Bi = mkcR/EI^ is the Biot num-
ber. 
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Fig. 27. Asymptotic Sh^ and Sh0^ values for cocurrent extraction of 
spherical particles. Bi = mkfJi/E)^ is the Biot number. 
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Fig. 28. Asymptotic Sh^ and Sh0(^ values for cocurrent extraction of 
cylindrical particles. Bi = mkcR/lD^ is the Biot number. 
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Fig. 29. Asymptotic Sh,} and Sh0a values for cocurrent extraction of 
particles with slab geometry. Bi = mkcR/E>à is the Biot number. 
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transfer coefficient. Due to the falling concentration in the liquid surrounding the par-
ticle, the concentration gradients at the solid-liquid interface (9co'/9r)R are steepened 
with the result that was mentioned above. The reserve is true for cocurrent extraction 
where the liquid concentration rises during the extraction process. 

3.3.3 Shd a values from solutions under general boundary conditions 

The analytical solution of the diffusion equation 3.29 with boundary conditions 3.30 
through 3.32 can be derived from the generalized solutions presented by e.g. Mikhailov 
(1973). For the basic geometries these solutions are summarized below: 

c'(td = Q)/m-to'0 

2vB] 2 [ f C0j)e-*-" ( 'd- , , )dtJ]/[X2 +Bi(Bi + 2-v)] (3.43) 
/?— '1 O 

where C(td), the bulk liquid concentration at the dimensionless time td, is embodied by: 

(3.44) 
c'(td)/m - co'o = 1 

C{-td)~ c'(0)/m - co'o l~c(fà 

and Xn are the positive, non-zero roots of the characteristic equations: 

tan Xn =Bil\n when v = 1 (3.45) 

3l(K)Uo(\) = BHK when v = 2 (3.46) 

tan Xn = Xn( 1 - Bi) when v = 3 (3.47) 

For longer contact times, the regular regime solutions result in a mass flux that can be 
described with a constant mass transfer coefficient k„A. For the calculation of ShnA „ 

OU / O Q , a 

values, we are only interested in this limiting behaviour. Therefore, the time variant bulk 
liquid concentration C(td) can be calculated from the solutions of the lumped parameter, 
model. In Section 2.1, some solutions of this model for various flow systems were given. 
For cocurrent and countercurrent contact in plug flow , C(td) can be determined from 
Table 2 when the number of transfer units is replaced by: 

^t.d =koda' Td (x/L) = Shod td v\2 (3.48) 

where x is the coordinate in the liquid flow direction and Shod = kod2R/E)d. In this way 
the following relation is obtained: 
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(v i - M 
A, - exp^- td Shod > 

<**„) = ^ ^ — ' (3-49) 

where \ equals A for countercurrent phase contact, and —A for cocurrent extraction. 
The extraction rate — d tö/d td can be calculated by substitution of the former equation 
in Eqn 3.43, which yields: 

dZÔ __2vBi2 g [ ( A t - D ^ + M l e - ^ ' d - X e ^ d 
dfd Aj - 1 «=i (X* + A) [X* + Bi(Bi + 2-v)] 

where A = (i>/2) Shod (1 - At)l\. An expression for the driving force for mass transfer 
is obtained from a mass balance 3.27: 

(w - w'o)/ At + (c'out - c')/m = 0 (3.51) 

or in dimensionless notation: 

w - c = ( A t - l ) c - A t (3.52) 

The overall driving force can now be derived from Eqns. 3.49 and 3.52: 

iv 1 ~ A t \ 
co - c = - exp<- Sfcod rdV = - exp (-AtA) (3.53) 

In fact, this expression is proportional to the extraction rate calculated from the lumped 
parameter model. The Shod number can now be obtained easily from Eqns 3.50 and 3.53 
for a contact time td = Fo: 

-2vBi2 2 
^ + ^TA^KF0-Al^eAFo 

-Sh „ = "= ' (X2
n+A)[X2

n+Bi(Bi+2-u)] 
'od s\ — o o 

z -exp(AFo) 

(X2
l + -^-A)e-^+^Fo-A 1 

A j - 1 ' A t - 1 
= 2i>522 2 — (3.54) 

«=i (k2,+A)[\2„+Bi(Bi + 2-v)] 

The asymptotic Shod number for long contact times is derived from this equation by 
taking the limit for Fo -»oo. This raises the problem that no information is available 
beforehand about the value of -(X2, +A). However, it is known that the Shod a value is 
the lower limiting value of the actual Shod value, and we can only accept finite mass 
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transfer rates. Thus —(\„ +^4) must always be less then zero. Thus the following relation 
is derived for Fo -> oo; 

At 
2 {(\2

n+A)[\2
n+Bi(Bi + 2-u)]}-1 (3.55) 

2vBil n=l 

where A is a function of the asymptotic Sh number. The iterative solution of this 
equation yields Sh values for arbitrary values of Bi, \ and v. The solutions are identical 
to those presented in the previous section. 

3.4 Asymptotic Shd a numbers in engineering calculations 

The practical use of the asymptotic Sh values obtained from the theory presented in 
the previous sections is restricted to the extraction of uniform particles with simple 
geometry, cocurrent or countercurrent phase contact in pure flug flow and relatively long 
contact times between the phases. In this section attention is paid to the applicability of 
the asymptotic transfer coefficients in practical design calculations, where more compli-
cated cases are encountered. The error introduced when Shod a numbers are applied at 
finite Fo values is discussed. The determination of these asymptotic transfer coefficients 
for other boundary conditions will be outlined. Subsequently, the estimation of Shod a 

for irregular particles and for non-uniform particle size distributions is discussed. Finally, 
an approximate explicit relation is derived that predicts Shod a values in countercurrent 
extractors when the extraction factor is close to or larger than unity. 

Range of applicability. The practical significance of asymptotic 57iod a numbers can be 
measured by the critical Fo value, above which the time-averaged Sh differs less than a 
specified percentage from the asymptotic value. On this basis the range of applicability is 
discussed in this paragraph. The approximate Fo time required to perform a certain 
separation is calculated from the lumped parameter model using the asymptotic Shod a 

value, see Eqn 3.48. Also, the exact Fo' value is determined from the analytical solution 
of the diffusion equation. The relative difference between those two is then plotted 
against Fo'. Due to the large number of parameters involved: Bi, A, v, mode of phase 
contact and Fo', only some sample cases are covered by the figures. Fig. 30 shows the 
results for cocurrent extraction of particles with slab geometry. It clearly shows the 
expected increasing accuracy of the method with rising Fo' value. For higher Bi numbers, 
the critical Fo' value increases since the overall mass transfer coefficient becomes more 
and more determined by the time-dependent Shd ; the contribution of the constant valued 
Shc is gradually reduced. The effect of the extraction factor is shown in Fig. 31. This 
graph indicates that an increase in A reduces the critical Fo' value for cocurrent extrac-
tion. The reverse is true for countercurrent extraction. The latter conclusion is in agree-
ment with the results of Vorstman & Thijssen (1971) and of Brüniche Olsen (1962). The 
curve for \ =—30 is essentially identical to the curve obtained for a constant bulk 
concentration. The figure clearly shows that the critical Fo'value increases from counter-
current to cocurrent phase contact. To determine whether the critical Fo' values are met 
in a process, the extraction efficiency has to be calculated from the analytical solution of 
the diffusion equation as a function of the Fo time. The results are shown in Fig. 32, 
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Fo - Fo 
100 %> 

0.1 Q2 0.4 

Fig. 30. Relative etioi in the Fourier value cal-
culated from the Sh^a value for cocurrent ex-
traction. Slab geometry, v = 1 ; Extraction fac-
tor A = 10 ; Parameter Bi. 

Fo-Fo' 
Fo' 

100 

100% 

0.1 Q2 

cocurrent 

countcrcurrent 

0.4 3 
Fo' 

Fig. 31. Relative error in the Fourier value cal-
culated from the Sh^ value for cocurrent and 
countercurrent extraction. Spherical geometry, 
v = 3 ; Bi = 100 ; parameter At. 
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Fo - Fo' 
100°/, 

Fig. 32. Error in extraction calculations using asymptotic Shod values 
for cocurrent and countercurrent extractors. Bi - °°; ( ) v = 3; ( ) 
v= 1; Parameter A .̂ 

where the relative error in the Fo value required for the separation, as calculated from the* 
asymptotic Sh number, is plotted against the fraction of the solubles remaining in the 
solids, l-W/WFo _... = (w'ln - w'out)/(w',n - oj'out)Fo .„..For countercurrent extrac-
tion and plane sheet geometry, the relative error is less than 10% when the extracted 
fraction is higher than 0.9, or 1-W/Wmax < 0.1. This value will often be attained in 
solid-liquid extraction processes in the food industry. For either cocurrent or batch 
extraction, Fig. 32 shows considerable discrepancy between actual and approximated Fo 
value; in particular for spherical particles the minimum extracted fraction will not be met 
in practice. 

The asymptotic Shoi a value only determines the extraction rate attained after long 
contact times between the phases, Fig. 33. The extracted fraction / can be calculated 
more accurately when a fictious initial condition td = 0, ƒ = f0 is incorporated in the 
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In(1-f0) 

0.215 

Fig. 33. Graphical representation of calculation procedures for 
heat and mass transfer problems. I first term approximation; II 
penetration/regular regime; III exact solution diffusion equation; 
IV asymptotic transfer coefficients. 

calculation. In fact, this procedure forms the basis of the first term approximations (Pflug 
& Blaisdell, 1963). It has the disadvantage that the solution of the diffusion equation 
with proper initial and boundary conditions must be available. Here, a calculation pro-
cedure is adopted, which is similar to the one proposed for drying calculations by 
Schoeber (1976), that can be used to increase the accuracy of the calculation at small Fo 
values. The first part of the extraction process is calculated from the penetration theory. 
In a later stage the regular regime solution is applied. In Appendix D an analytical 
solution for short contact times is derived, for a plane sheet subjected to cocurrent or 
countercurrent extraction with finite mass transfer rate in the solvent phase. The time-
dependent Shod numbers obtained from this solution are shown in Fig. 34. From this 
figure we learn, that the Shod value decreases rapidly from Shod = Bi at t^ = 0 to some 
minimum value. In all cases, this minimum is located close to y/Fd = 0.45 or rd = 0.215, 
independent of Bi, A and the mode of phase contact. Furthermore, this minimum value is 
very close to the asymptotic Shod value. In most cases it is not more than 3% higher. The 
increase of the Shod number at longer times is caused by the fact that the boundary 
condition (D.4) for a semi-infinite slab is applied to a finite particle with finite storage 
capacity for the solute. This increase in the mass transfer coefficient is physically unrealis-
tic. The above results suggest the use of the solution of the diffusion equation in the 
penetration period in the calculation up to td = 0.215. The subsequent part of the 
extractor is designed with the lumped parameter model, using the asymptotic value of 
Shod attained in the regular regime. The initial conditions of the solid and liquid phases 
in the second stage of the process are then obtained from the solution in the penetration 
period. The extraction efficiency: 
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Fig. 34a. 5Ä0(J values in penetration 
period for semi infinite slab geom-
etry. Bi = o»; Parameter 1/At. 

Fig. 34b. 5A0j values in penetration 
period for semi infinite slab geom-
etry. Bi = 10; Parameter 1/At. 
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w = 
c'0/m-oj'0 

(3.56) 

at Fo = 0.215 is shown in Fig. 35 for both cocurrent and countercurrent extraction. The 
overall residence time required for the specified separation is then obtained from: 

W(R> = 0.215) 

0.1 0.2 0.4 
Fig. 35a. Extracted fraction in penetration period 
at Fo = 0.215 for semi infinite slab subjected to 
countercurrent extraction. Parameter Bi. 

0.1 0.2 0.4 

Fig. 35b. Extracted fraction in penetration period 
at Fo = 0.215 for semi infinite slab subjected to 
cocurrent extraction. ( ) extracted fraction at 
equilibrium (Fo -><»), W = A/(l + A); Parameter 
Bi. 
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F 0 = 0.215 + i - i - i n ^ ( F O S O - 2 1 5 ) - 1 FO>0.215 (3.57) 
P a o d , a pW(FÓ)-\ 

where p = (1—1/At). The Fo value calculated by the above procedure agrees up to a few 
percent with the exact solution for slabs. For Fo values smaller than 0.215 the Fo value 
has to be determined from the equations given in Appendix D. 

Irregular shapes and particle size distributions. From the graphs presented in this chap-
ter, the Shod a values for the extraction of particles with a simple geometry can be 
determined. For irregularly shaped particles, the common procedure is to approximate 
the particle shape by one of the basic geometries. Rutov (1958) suggested a method to 
improve the estimated kd value for slightly irregular shapes. For ifr-numbers greater than 
1, the diffusion coefficient has to be replaced by an effective diffusivity JD'd : 

E>'d=E>dAJAdtV (3.58) 

where Ad is the surface area of the particle and Ad v is the surface area equivalent regular 
particle. 

For non-uniformly sized particles, Gardner (1966) proposed a method to estimate an 
effective overall transfer coefficient when the particle size distribution is known. This 
procedure involves the determination of the particle size r% which follows the average 
concentration of the particle cloud. When m is the cumulative particle size distribution 
function, the following relation results: 

ƒ 
d ( m ) = 1 - A t (3.59) 

At kod/r0v 
1 + 

1 - A t (kod/r0i>)* 

where v is the particle velocity relative to the wall. r% can be determined by trial and error. 
When At = 1, a somewhat simpler equation is obtained: 

ƒ 
d(m) 1 

V ' - (3.60) Kdlrov (kodlrov~)* 

Boundary conditions. When a specific flow pattern in the extractor gives rise to a boun-
dary condition cj*(td) that cannot be adequately described by one of the cases treated in 
this section, one of the methods discussed in Section 3.3.2 or Section 3.3.3 should be 
used to calculate Shoda values. The coupled boundary condition solution method as 
discussed in Section 3.3.2 produces relatively simple equations for.S7zod a . However, the 
related characteristic equations may be rather complex, and the eigenvalues are normally 
not found in literature. Fortunately only one eigenvalue is required for the calculations. 
The general boundary condition method presented in Section 3.3.3 involves trial and 
error solution of an equation containing an infinite summation series to determine 
Shoda. The advantage of this method is that for numerous cases the lumped parameter 
solutions are published in literature. Furthermore, the expression for.S7zod is applicable 
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to all kinds of boundary conditions C(td), without modification of the characteristic 
equations. The first 7 eigenvalues are readily obtained from the common handbooks, 
while additional roots are tabulated by Hayakawa (1975) for v = 2 and v - 3 and by Bakal 
et al. (1970) for v = 1. For these reasons the method discussed in Section 3.3.2 is only 
recommended for a rather simple problem. When complicated boundary conditions are 
involved, and consequently complex characteristic equations, the method outlined in 
Section 3.3.3 is more suitable. 

Explicit relation for Shod a. A quick estimation of Shod a values without resorting to 
the graphs presented in this chapter can be obtained from the approximate relation 
explicit in Shod a . The equation is valid for countercurrent phase contact, when the 
extraction factor A is close to or greater than 1. The derivation of the equation is 
discussed in Appendix C. For plane sheet geometry the relation reads: 

Bi {6 {Bi + 2.25) + (A - 1) {Bi + 3) TT2/2> 

Bi A(Bi + 2.25) + (A - 1) {3 (Bi + 2.25) - (Bi + 3)n2l4} 
Shd a = i - ^ ' —— (3.61) 

The solution for other geometries can be generated by the conversion rule 

S V a ^ ^ V a , - ! - 4 ( " - l ) (3-62) 

For extraction factor A = 1, these equations are exact. 
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4 Liquid maldistribution in solid-liquid extractors: hydrodynamic 

instabilities 

4.1 Introduction 

It was mentioned in Chapter 1 that viscous fingering may occur in systems where 
viscosity gradients exist in the liquid flowing through a densely packed bed. The mecha-
nism that is responsible for the formation of viscous fingers can be elucidated by means 
of a simple model shown in Fig. 36. For the sake of simplicity, any interaction between 
the liquid and the packing material is not considered. The figure shows the situation 
where a liquid 2 is displaced downwards by a miscible liquid 1, which has the lower 
viscosity. Since in general density increases with viscosity, the displaced liquid is also said 
to be the denser one. A protrusion of the displacing liquid is supposed to be formed at 
the liquid-liquid interface due to, for example, a local permeability variation in the 
packing material. The displacing liquid will now flow preferentially through this protru-
sion, since the mobility of the liquid in this region is higher than that in the surrounding 
liquid. Hence, the disturbance tends to grow. On the other hand, especially at low 
displacement velocities, the favourable density difference counteracts any distortion of 
the displacement front. The flow can thus be stabilized by gravity segregation. The overall 
effect of viscous and gravity forces depends on the displacement velocity, physical prop-
erties of the liquids and properties of the packing material. Table 9 gives a schematic 
overview of the relative stability of several displacement conditions. In solid-liquid extrac-
tors viscosity differences may arise from concentration gradients in the solvent phase. 
Since both the shape of the concentration gradient and mass transfer between the solvent 
and the packing material affect the flow stability, the hydrodynamics of the flow in solid 
liquid extraction equipment present a much more complicated picture than the simple 
case just described. It is the aim of this section to provide information on whether viscous 
fingering affects extraction efficiency. In order to do so, the stabilizing effect of a 
concentration gradient in the liquid flowing through an inert packed bed is first ex-
amined. Subsequently, mass transfer between the packing and the solvent is taken into 

< v> A 

Fig. 36. Definition sketch for the phenomenological description of 
unstable displacement. 
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Table 9. Effect of flow conditions on the stability of displacement from 
packed beds. Index 1 refers to the upper liquid. 

Flow 
direction 

t 

I 

Sign 
(P! - P 2 ) 

+ 
+ 

-

-

+ 

+ 

-

-

Sign 
Oi, -

+ 

-
+ 

-

+ 

-

+ 

-

M2) 

Stable displacement 
at flowrates 

none 

high 

low 

all 

high 

none 

all 

low 

account. 
Stability criteria for liquid-liquid miscible displacement from inert packed beds are 

discussed in this section. Some attention is given to flow phenomena in the unstable 
regime, and some methods suggested in literature to describe unstable displacement are 
given. Stability critera were verified experimentally for a stepwise concentration change 
of the solute which increases the viscosity of the liquid flowing through a densely packed 
bed. This study was then extended to the case of a gradually falling concentration in the 
displacing liquid in Section 4.2. This situation is relevant to solid-liquid extraction, where 
the concentration of the solute rises in the direction of the liquid flow. Finally, the effect 
of mass transfer on the flow stability was studied. Two different cases were considered. 
When the liquid in the interstitial voids of the packed bed is initially in equilibrium with 
the liquid in the internal pores of the packing material, mass transfer is expected to stabi-
lize the displacement. Due to mass transfer in the protrusion, the viscosity ratio for the 
liquids outside and inside the protrusion is decreased. The growth rate of the disturbance 
is thus reduced by mass transfer. When the liquid in the interstitial voids is initially not in 
equilibrium with the solids, mass transfer occurs both inside and outside the disturbance. 
Then the overall effect depends on displacement conditions and the physical properties of 
the liquid. The extraction efficiency in a packed column has been measured over a wide 
range of displacement velocities to establish these effects. 

4.1.1 Stability criteria 

For liquid-liquid displacement, both miscible and immiscible, stability criteria are 
reported in literature. In general, interaction between the porous medium and the flowing 
liquid, e.g. adsorption, is neglected. When gravity effects are negligible, as in horizontal or 
matched density experiments, Muskat (1949) found that the flow is stable when the 
mobility ratio of the displacing and the displaced liquid exceeds 1. The mobility is 
defined as the ratio of permeability and viscosity. Hill (1952) included stabilization by 
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gravity during miscible displacement in the analysis. He assumed a sharp interface be-
tween the displaced and the displacing liquids, as shown in Fig. 37. At z the pressure in 
both the displaced and the displacing phase, p2 and p2 respectively, is assumed equal to 
p. The pressures in the phases at z + Az can be calculated from this value when the 
pressure gradients in the phases are known. The hypothetical disturbance indicated in the 
figure will then grow when p\ <p'2 and will be suppressed when p\ > p'2 • According to 
the expression for p\ and p\, the condition for marginal stability can now be formulated 
as: 

dp 

àz 

dp 

dz 
(4.1) 

The pressure gradients in both phases can be calculated from the Darcy Law. When vc is 
the maximum stable velocity we obtain: 

Kl 
+ Pig =-• 

"cM2 
+ P2g 

The displacement is thus stabilized when <v> <vc where vc is given by: 

g(ß2 - P i ) 

«•2 «1 

(4.2) 

(4.3) 

It can be verified easily that this result is in agreement with Table 9. 
During the flow through packed beds, any concentration jump between two miscible 

liquids, one of which displaces the other, will be smoothed out by diffusion or dispersion 
effects. Thus the stability criterion derived by Hill was reformulated by Dumoré (1964) 
to account for a continuous concentration change in the liquids. Since for downward 
displacement any disturbance in the equi-concentration planes will grow when the local 
pressure gradient is lower than the pressure gradient in the liquid downstream,, the dis-
placement will be stable when the pressure gradient increases continuously in the flow 
direction. The condition for marginal stability thus reads: 

P,= I V P 

' 1 ' 

dp > 
'2=P-(£)> 

•2' i 
P;-P-(-H£),AZ 

z 

z*Az 

Fig. 37. Definition sketch of a hypothetical distur-
bance at the displacement front. 
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Combining the Darcy Law with Eqn 4.4 gives for a constant permeability K 

1 d2p vs d p 

—r~ TT = - — + T " (4-5) 
dß dz2 Kg dß 

gTz 
where vs is the maximum stable displacement velocity in the situation under considera-
tion. When the viscosity in the liquid increases in the direction of the flow, dp/dz is 
greater than zero and the stability condition that is obtained for this case is that < v > < 
vs, with vs given by: 

vs = ng(dp/dp) (4.6) 

The value of (dp/dp.) is only a function of the concentration of the solute. Since Eqn 4.6 
should be satisfied everywhere in the packed column to prevent the formation of viscous 
'fingers', the minimum value of (dp/dp) is inserted in Eqn 4.6. Thus usually (dp/dp) has 
to be determined for the concentration of the displaced liquid in the present case. 

The stability criteria of Hill and Dumoré do not take into account the stabilizing 
effect of axial and radial dispersion in the liquid phase. Small amplitude distortions of the 
displacement front can be smoothed out by axial dispersion. On the other hand, radial 
dispersion tends to supress small wavelength perturbations irrespective of their ampli-
tude. Perkins (1965) stated that the smallest channel that was not smoothed out by radial 
dispersion has a wavelength: 

Xmin = 2 V 3 . 9 5 / D E T r (4.7) 

This result can be obtained assuming a Fourier number of 0.25 required for smoothing of 
the radial concentration gradients in the protrusion. From this discussion it can be con-
cluded that the perturbations with a large amplitude and a long wavelength are the least 
affected by dispersion. The least stable distortion of the displacement front thus has a 
wavelength that is bounded by the size of the apparatus under consideration. 

A marginal stability condition that takes dispersion effects into account can be obtained 
from the simultaneous solution of the equation of change for component A assuming disper-
sion with a dispersion coefficient E)E, the equation of motion with the Darcy constitutive 
equation for the velocity vector ]t and the continuity equation in a three-dimensional 
velocity field. For a binary mixture of A and B: 

- £ +V-pAv-V'lDEpV (pA/p) = 0 (4.8) 

v + (K//zA)(Vp-p? + pD*/Df) = 0 (4.9) 

^ + V p v = 0 (4.10) 
a t 
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d/dt denotes the partial derivative with respect to t, D/Drthe Lagrangian or substantial 
derivative. In these equations, both the liquid density p and viscosity ju are dependent on 
the concentration of component A. For the determination of marginal conditions for 
stable displacement, only the stability of the displacement front when it is subjected to 
small distortions has to be examined. This problem is usually solved by perturbation 
analysis. For small differences between the pure component densities, Ap/pA, Perrine 
(1961) derived an expression for the initial growth rate ya of a perturbation of the form: 

p„ = p„ e ' ( a x + ^ + "'rz> e-™ (4.11) 

where p n is the solution for stable flow; x, y and z are the spatial coordinates of a 
rectangular coordinate system extending infinitely in the* andj directions while bound-
ed in the z direction between 0 and L. The bulk liquid flow is in the positive x direction. 
The growth rate parameter yn characterizes the initial growth rate of a perturbation with a 
specific wavelength. For stability analysis in miscible displacements, only the real part of 
7n has to be considered, because the flow instabilities observed in laboratory experiments 
are found to be of non-oscillatory nature (Schowalter, 1965). This result was derived 
analytically for small density differences between the displaced and the displacing liquid 
by Lapwood (1948). A condition for marginal stability can thus be obtained by setting 
the value of the growth rate parameter yn for the least stable distortion equal to zero, 
thus forcing all possible perturbations to be just suppressed. Only the solution for down-
ward, vertical displacement is given here. Bearing in mind that the least stable perturba-
tion has a maximum possible wavelength and amplitude, we obtain for the maximum 
stable displacement velocity v' : 

Kg dp 

ß de 

ain/i * /£>n\ be r i (4.12) 

dc BoT\L / \dx' 

where BoT = V'SDP/E>E,T is the transverse Bo number andx' =x/D ,x being the distance 
coordinate in the direction of the liquid flow in a coordinate system moving with the 
mean flow velocity. For negligible radial dispersion BoT-+<x>, this equation reduces to the 
stability condition that was later derived by Dumoré (Ï964). Schowalter (1965)analysed 
the case where no restriction is put on the maximum pure component density differences. 
He assumed that the effective dispersion coefficient E)E has the same value in both the. 
transverse and longitudinal direction. According to Perkins (1965) the following empirical 
relation can be used to estimate radial Pe values in porous media that can be characterized 
by a tortuosity factor F and an interstitial void fraction h: 

BOT1 = TT, — + 0.0157 a (4.13) 
Fh <v>Dp 

where E)c is the molecular diffusion coefficient of component A in the liquid phase and 
the parameter a measures the inhomogenity of the packing. A similar expression holds for 
the Bo number in the longitudinal direction: 
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Bol = ™ FT + 0 - 5 f f (4-14) 
Fh <v>Dp 

From these equations it is observed that equal dispersion coefficients can only be as-
sumed in the low flow velocity range, where dispersion is controlled by molecular diffu-
sion. From perturbation analysis Schowalter found that the condition for marginal sta-
bility was determined by four dimensionless groups, quantifying the relative importance 
of the effects of gravity, viscosity, dispersion and permeability. For perturbations with a 
wavelength smaller than some critical wavelength Xc, the displacement front is stabilized 
by dispersion and gravity effects. In his paper the author presented graphs of Xc against 
the parameters that characterize the displacement condition. A similar analysis is given by 
Heller (1966) who did not assume the same value for the dispersion coefficients in both 
the longitudinal and the transverse direction. For a ramp-shaped concentration distribu-
tion in the mixing zone at the displacement front, the value of the growth rate parameter 
of the least stable perturbation is given for various displacement conditions. 

In conclusion, simple stability conditions describing the stabilizing effect of gravity 
segregation at the onset viscous fingering are directly obtained from the Darcy Law. A 
more complete analysis that includes dispersion effects shows that the onset of viscous 
fingering depends on the wavelength of the perturbations. The development of the least 
stable distortion of the displacement front is retarded by transverse dispersion effects, 
and also by longitudinal dispersion when small amplitude perturbations are considered. 
The wavelength of the least stable distortion is determined by the size of the experi-
mental equipment, and consequently the onset of flow instabilities depends on the size of 
the apparatus considered. 

4.1.2 Flow behaviour in the unstable regime 

In addition to the formulation of stability criteria, many attempts have been made to 
describe the flow phenomena in the unstable flow regime. The mathematical modelling of 
viscous fingering commonly proceeds along one of the following two routes: 
- Numerical solution of the equations of motion, dispersion and continuity, Eqns 
4.8—4.10. Since the 'dispersion equation', i.e. the continuity equation for a component A, 
is a mixed parabolic and hyperbolic partial differential equation, simple finite difference 
methods lead to numerical smearing of the concentration profiles when the dispersion 
term is small compared with the convective term (Chhatwal, 1973). Therefore, one has to 
resort to complex numerical schemes, see for example Peachman & Ratchford (1962). 
— Phenomenological description of the flow behaviour based on the Buckley-Leverett 
model. This model was origionally derived for the prediction of breakthrough curves for 
immiscible displacement of liquids with equal densities. Two basic equations are involved 
in this model. Firstly the frontal advance equation: 

dx <v> bf 

Yt " ^ " (4-15) 

the result from a simple mass balance, that embodies the rate at which an equi-satura-
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r tion plane with solvent saturation s proceeds through the porous medium in terms of the 
mean linear flow rate < v >/h and the relation between the fraction of solvent that is 
actually flowing and the local saturation of solvent s. Secondly, the fractional flow 
equation that relates the quantity ƒ to the viscosity ratio of the immiscible liquids, M: 

vxA ( 1 1 n - 1 

ƒ= HT 7 T = 1 1 + - 'TM'-\ (4-16) 
<v> (At +A2) [ a M y) ' 

where a = Ai/A2, M =/X2/MI and T = K I / « 2 (Fig. 36). This equation can be derived from 
the Darcy Law assuming an equal pressure drop in both the pure solvent channel and the 
displaced liquid regions. Koval (1963) followed this approach for simulating matched 
density displacements. In order to fit his results with experimental data, he replaced M in 
Eqn 4.16 by the effective viscosity ratio Me, which is related to the actual viscosity ratio 
M by: 

Me = (0.78 + 0.22 M0-25)4 (4.17) 

Dougherty (1963) included both gravity effects and mixing in the analysis. This results in 
a fractional flow equation of the form: 

( 1 1 1 ) - 1 / a ns(l-c)Ap/Ji \ 
f=\l + - • r - -}• <1- -\ (4.18) 

(. a M y) \ a + 1 <v> ) 
where a linear relation between p and c is assumed, when c is the local solvent concentra-
tion in the liquid mixture; p0 is defined by: 

Mo={cM s-°-2 5+(l-c)M0-0-2 5}-4 (4.19) 

The mass balance on slice dz in Fig. 35 now reads for the solvent channels: 

"IT f + Jt — B'Pl C1-')*1-')"1 <4-20> 
and for the solvent dissolved in the displaced liquid: 

<v> aO_^£ + a ( i _ £ ) i = 5 s P l ( 1 

n oz at 

The dispersive mixing terms are lumped in the term on the right in the equations. Claridge 
(1972) solved these equations (4.18—4.21) numerically. The parameters y,B,px andp2 

were adjusted to obtain acceptable agreement between calculated and measured break-
through curves. B was found to depend on displacement velocity, viscosity ratio, concen-
tration of solvent in the oil phase and the degree of fingering. 

Both the methods result in fairly close agreement between calculated and observed 
breakthrough curves, the latter however only after scaling of several model parameters. 

In addition to the above studies on the onset and progression of viscous fingers, some 

65 



interesting features of fully developed fingers are reported in the literature. Mathematical 
relations were derived for the shape of both the front end (Saffman & Taylor, 1958) and 
the rear end (Outmans, 1963) of the fingers. Apart from this front and rear end, the 
channel occupies a constant fraction of the column cross-sectional area. This fraction 
ranges from about 1 for very low flow rates to an asymptotic value 0.5 at higher displace-
ment velocities (Saffman & Taylor, 1958). Numerical simulations and electric analogue 
studies have shown that in this portion of the channel the flow is in the direction of the 
main liquid flow vector. Only at the front end and at the rear lateral flow of liquid was 
found from the finger towards the surrounding liquid and the reverse. (Richardson, 1961 ; 
Perkins, 1965). 

4.1.3 Experimental verification from literature data 

Many experimental investigations on liquid displacement in packed beds have been 
reported in the literature. Most of these are concerned with the efficiency of the displace-
ment in the stable and in the unstable flow regime, when a liquid is displaced from an 
inert porous medium (Hill, 1952; Brigham, 1961; Slobod & Howlett, 1964; King & 
Denizman, 1961). The results of these measurements are in qualitative agreement with 
Table 9. In most cases, the critical velocity vc where the flow instabilities just develop is 
determined by plotting the length of the mixing zone against the displacement velocity 
<v>. A more or less sharp increase of this length is observed near <v> = vc. The actually 
measured value of this mixing length is dependent on the displacement conditions and the 
experimental setup that was used. Slobod (loc. cit.) found that the mixing length corre-
lated well with the ratio of the actual displacement velocity and the critical displacement 
velocity, as shown in Fig. 38. This ratio <v>jvc can be interpreted as the ratio of viscous 
and gravity force terms in the Darcy equation: 

<v> <V>AJU/K 

gkp 
(4.22) 

The effect of a graded mobility zone, i.e. a continuously falling viscosity of the injected 
fluid, on the stability of the flow through a porous medium was first studied by Slobod & 
Lestz (1960). They reported macroscopic stability of the flow when the displacement was 
carried out with a linear falling viscosity of the injected fluid. The displacement condi-

hm.fraction of pore volume 
1.0 

0.6-

0.2-V 
7 

<v> 
Vr 

Fig. 38. Transition zone length hm for displacement with 
favourable density and unfavourable viscosity ratio. From 
Slobod, 1964. 
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tions were such that Eqn 4.12 predicted unstable displacement. Kyle & Perrine (1965) 
applied a linear concentration gradient in the displacing liquid. They observed that any 
tendency for viscous fingers to develop was completely suppressed at steeper concentra-
tion gradients than those predicted by theory, Eqn 4.12. They concluded that formu-
lating the stability criterion based on the least stable perturbation is quite conservative. 
Increasing the steepness of the concentration gradient increased the tendency for viscous 
fingers to develop. Mungan (1971), who used a Hele Shaw model in his experiments, 
found qualitatively that an exponential falling concentration of the injected liquid in-
creased flow stability in his immiscible displacement experiments. 

The effect of mass transfer from the packing to the liquid, as occurs in solid-liquid 
extractors, on the stability of the flow has been given little attention. King & Denizman 
(1972) mentioned the existence of unstable flow during solid-liquid adsorption chromato-
graphy. In their experimental study they measured the height of the mixing zone, hm, as 
a function of the displacement velocity, for both porous and non-porous packing mate-
rial. hm was defined by the authors as the time interval between passage of the 10 and 
90% concentration levels in the liquid effluent, multiplied by the mean displacement 
velocity. In all cases they observed a decreased height of the mixing zone when a porous 
packing was applied instead of a non-porous one. In their analysis they did not discrimi-
nate between the effect of finite mass transfer rates and hydrodynamic instabilities on the 
value of hm. Nevertheless it can be concluded from their experiments that the mass 
transfer process considerably stabilizes the flow. The conclusion agrees with the discus-
sion on this subject in Section 4.1. 

The growth of viscous fingers once they are initiated at the liquid-liquid interface or 
equiconcentration plane has been measured for both miscible and immiscible displace-
ment by many authors, e.g. Benham & Olsen (1963) and Gupta et al. (1974b). It is 
generally concluded that the growth rate of the fingered region is virtually constant 
during the major portion of the displacement. For short times after the onset of the 
channels the growth rate may be apparently slower or faster, and at long times stabiliza-
tion by transversal dispersion may reduce finger growth rate, although theoretically the 
mechanism seems rather ineffective in practical systems (Benham & Olsen, 1963 ; Wood-
ing, 1969). When gravity effects can be neglected in comparison with the viscous effects, 
the growth rate of a channel becomes independent of the displacement velocity (Schei-
degger, 1960). For normal flow rates the fractional area that is occupied by the channels 
in the mixing zone is approximately 0.5; at very low flow rates this value can be/consider-
ably higher (Perkins, 1965; Saffman & Taylor, 1958). 

The observations just mentioned contribute to the basic understanding of the be,-
haviour of viscous fingers during liquid displacement in packed beds in the unstable 
regime. On the other hand it should be realized that the onset and growth of these fingers 
is strongly dependent on the scale of the apparatus used in the experiments (Blackwell, 
1959), local inhomogenities of the packing (Hawthorne, 1960), preferent flow along the 
wall etc. Thus the quantitative result cannot easily be extrapolated to other displacement 
conditions and packing materials. 
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4.2 Experimental study of miscible liquid displacement from packed beds 

Experiments reported in the literature are mostly concerned with the determination of 
critical displacement velocities and the growth of viscous fingers in the unstable flow 
regime, when a liquid is displaced from an inert packed bed by a miscible or immiscible 
solvent, see Section 4.1. However, little experimental evidence is available on the stabi-
lizing effect of concentration gradients between displacing and displaced liquid, especially 
when those gradients arise from mass transfer between the solids that constitute the 
porous medium and the interstitial liquid. It is the aim of this study to contribute to the 
knowledge on flow phenomena under these conditions. To facilitate the interpretation of 
the measurements, the effect of a concentration gradient on both the onset and growth of 
viscous fingers is established in the first part of the study. The experimental setup that 
was used is sketched in Fig. 39. Both the experimental procedure and the apparatus are 
discussed in detail in Appendix E. The column packed with glass beads and the top 
and bottom mixer were initially filled with glycerol solution. Water was injected in the 
top mixer during the downward displacement experiments. The liquid concentration at 
the bed inlet thus fell exponentially with time. In this way, an arbitrary exponential 
concentration gradient can be applied by varying the size of the top mixed region. The 
breakthrough curve was measured by taking samples at the column outlet and by con-
tinuously monitoring the sample density. In order to assure representative sampling, the 
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Fig. 39. Schematic diagram of the experimental setup. Item 
list: 
1. storage vessel 7. sample pump 
2. packed column section 8. density meter 
3. mixed sample region 9. paper tape punch 
4. mesh wire 10. storage vessel viscous solution 
5. porous glass disk 11. three-way cock 
6. gradient mixer 12. drain 
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outlet stream was mixed in the lower mixed region so that any radial concentration 
difference caused by channelling was smoothed efficiently. In the second part of the 
experimental study the more complicated case of displacement with simultaneous mass 
transfer between the packing and the interstitial liquid was investigated. The packing 
consisted of porous silica spheres, impregnated with sugar solutions prior to the experi-
ments. The apparatus used and the experimental procedure that was followed are analo-
gous to the one just described. 

4.2.1 Effect of a concentration gradient in the liquid phase on flow stability 

Experiments were designed to determine the effect of a concentration gradient in the 
displacing liquid on the stability of the displacement. The measured breakthrough curves 
give information on the residence time distribution in the packed section of the column 
which arises from dispersion effects and channelling. Once some mixing model is adopted 
to describe the measured data, several methods are available to adjust the mixing para-
meters involved in the model in order to obtain agreement with the experimental data. 
These methods include time-domain, s-plane and frequency domain curve fitting tech-
niques (Johnston, 1971; Abbi & Gunn, 1976), as well as graphical procedures (Vergnes, 
1975; Gupta, 1974a). Since in the present experimental study the residence time distribu-
tion can originate from viscous fingering, wall flow, axial dispersion etc., no mixing model 
was assumed beforehand. Instead, the residence time distribution in the packed section of 
the apparatus is characterized by the relative variance of residence times in this column 
section, (O/T)IQ1, where the variance and the mean residence time are given by respec-
tively: 

a2 = ƒ 0 - T ) 2 E ( r ) d f (4.23) 
9 

CO 

ƒ tE(t)dt (4.24) 

o 
and: 

T = 

o 

Later on, parameters involved in mixing models can be adjusted to produce the same 
value of T and (OIT)2

CO1, when model fitting should be required. {olr)2
col can easily be 

derived from the relative variance of the frequency distribution of residence times Et(r) 
of the total flow system, (CT/T)J . The latter can be calculated from the moments of the 
distribution function, which are defined as: * 

oo 

Mn = f t"E(t)dt (4.25) 
o 

Combining Eqns (4.23 - 4.25), we obtain the well-known relation: 

M, 

where M0 equals 1 if a normalized frequency distribution is used in the calculation. The 
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procedure followed to calculate the moments from the measured residence time distribu-
tion function is discussed at length in Appendix F. The relative variance caused by the 
packed section (O/T)IO1 can be calculated from (.G\T)\ by making use of the additivity of 
variance and mean residence times for cascaded equipment. Since for a complete mixed 
region (ojif equals 1, the following relation holds: 

(OIT)IO1 = (OIT)\ (1+1,+ hf 
• % - & 

(4.27) 

where %x is the ratio of the mean residence times in the bottom mixer and the packed 
section, and £2 represents the same value for the upper mixed region. 

As a base case the breakthrough curve for a steep concentration jump using an inert 
packing material was measured. The results are shown in Fig. 40, where the value of 
2/(O/T)IO1 is plotted against the dimensionless displacement velocity <v>/vs, represent-
ing the ratio of inert to viscous forces in the packed bed. For single phase flow through 
packed beds, where the residence time distribution is determined by axial dispersion that 
can be described with an eddy diffusion coefficient E>E L the following relation holds 
(van der Laan, 1958): 

ax. disp. 
Pe2, h 1 + exp {-Peh)} (4.28) 

Single phase flow PeL-measurements revealed that Peh = 0.25 (L/Dp). This value was 
virtually independent of the /?e-number in the range where the experiments were per-
formed (Re = p<v>DJß < 10). This behaviour in the low -Re-number regime is in 
agreement with literature data (Miller & King, 1966; Levenspiel, 1957). For the high 
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Fig. 40. Efficiency of miscible liquid-liquid 
displacement from packed beds: the effect of a 
concentration gradient in the displacing liquid. 
?! is ratio of the volume of the gradient mixer 
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PeL-numbers encountered in the experiments the above relation reduces to: 

ix.disp. 
Pe, 

(4.29) 

or PeL = 2/(o/T)2 . For miscible displacement stabilized by gravity segregation somewhat 
higher PeL numbers can be measured resulting from the favourable density difference. The 
Per number, characterizing the transversal or radial mixing in the column, can be esti-
mated from Eqn 4.13. For the high values of PeT calculated from this relation and 
because of the steep concentration gradient that is applied at the liquid inlet end of the 
bed, no stabilisation of the flow by transverse mixing is expected as can be verified from 
Eqn 4.12. For displacement velocities below vs, the maximum stable displacement veloc-
ity, we thus expect Peh values of about 125. In the unstable flow regime, where <v>/vs 

> 1, viscous fingering is likely to occur, so that the variance of the residence time 
distribution curve increases considerably. For very high values of <v>/vs, the effect of 
gravity forces becomes negligible, and the growth growth rate of the disturbances is 
essentially independent of the displacement velocity (Scheidegger, 1960). This can be 
verified easily from a simple model shown in Fig. 41. Lumping all viscous fingers into a 
single hypothetical parallel channel and assuming the same pressure drop over the parallel 
channel and the 'main' flow, we can derive the following relation for the ratio of the 
velocity inside and outside the channel from the Darcy Law: 

Vi 

v2 

( a + 1 ) 
Mya + 1 

My(a + 1) y(M-l) 
R 

— a (4.30) 

<V>aß 
where a = Ai/A2, y = KX/K^, M = JU2/MI, and R = —, the ratio of viscous and 

intertial forces. In essence, this equation is identical to the fractional flow equation 
derived by Dougherty (1963), expressed in Eqn 4.18. The value of the relative variance 
{aJT)2 of the residence time distribution function shown in Fig. 41, resembling the pulse 
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Fig. 41. Two-stream model for the description of liquid-
liquid displacement from inert packed beds in the unstable 
flow regime; and the hypothetical pulse response of this two-
stream model. 
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response of such a two parallel stream model, is given by: 

parr. 

a 1 , 
1+a 1 +a 

a 1 
1+a 1 -fa 

2 (4.31) 

where we made use of the relation T 2 /TI = Vi/v2 = T. Thus, for high displacement 
velocities <v>, the value of T is virtually independent of the R number. Eqn 4.31 shows 
that then (a/r)2 reaches an asymptotic value that is determined by the parameters y,M 
and a. In Section 4.1.2 it was mentioned that a reaches a constant value at high displace-
ment velocities; Miscible displacement experiments in packed beds that were designed to 
confirm this asymptotic value are reported in Appendix G. Thus for high R values the 
relative variance of the distribution curve reaches a constant value. From the simplified 
model we also learn that (O/T)IO1 is independent of the column length when the residence 
time distribution is controlled by channelling, while for flow of a liquid with uniform 
physical properties through packed beds, the value of 2/(a/r)2

o) is known to increase 
linearly with the column length in the high /teL-number range, as can be verified from 
Eqn 4.29. Experimental results for two different column lengths are shown in Fig. 42. 
The results are in qualitative agreement with the simple flow model. 

From Eqn 4.12 it can be derived that the onset of channelling is not retarded signifi-
cantly when a concentration gradient of the form c = c0 exp(—t/Tm) is applied at the 
column inlet, and Tm is 21% of the mean residence time in the packed section of the 
column. From the simple flow model we expect, however, that the growth rate of the 
fingers will be attenuated due to a decrease of the effective viscosity ratio M. This 
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Fig. 42. Effect of column length on the apparent Péclet 
number in the unstable flow regime. The columns used 
had diameter 0.054 m, and length 0.5 and 1.0 m, respec-
tively. ( . ) Dispersion is the controlling mecha-
nism; ( ) Channelling is the controlling mechanism. 
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parameter represents the ratio of the average viscosity in the channel and in the main 
flow. Due to this decreased finger growth rate, the variance of the breakthrough curve is 
reduced, as is shown in Fig. 40. Applying an even less steep concentration gradient in the 
displacing liquid causes considerable problems in the data analysis. From Eqn 4.27, it is 
observed that the contribution of the mixing zones in the top and bottom section of the 
apparatus to the total variance in residence time is quite significant. The small additional 
variance caused by the packed section of the apparatus is thus more difficult to determine 
accurately for higher rm values. This fundamental problem is discussed by Otto & Ge-
strich, (1974), who proposed the assemblage of a mixer-column-mixer system for resi-
dence time distribution measurements in single phase flow. 

From the above experiments it is concluded that in the interpretation of the measure-
ments, the ratio of the actual and the maximum stable displacement velocity can be used 
to discriminate between a stable and unstable flow regime. Although a smooth concentra-
tion gradient with an exponential decaying solute concentration attenuates viscous finger 
growth rate, channelling is not completely inhibited. The displacement efficiency in the 
unstable flow regime can be described qualitatively with a very simple model based on the 
Darcy Law. 

4.2.2 Effect of mass transfer from the packing to the liquid on flow stability 

The effect of mass transfer on flow stability was studied with the aid of a porous 
packing. The experimental setup was quite similar to the one used with an inert packing 
material, see Fig. 39 sub a. These porous particles were impregnated with a concentrated 
sugar solution before the experiment. Dependent on the initial condition that was re-
quested the interstitial liquid was either washed out of the column with pure water, or 
the liquid remained in the column until equilibrium between the interparticle liquid and 
the pore liquid was attained. Subsequently the breakthrough curves were recorded when 
pure water was injected in the apparatus. In all cases, the flow direction was downwards. 
Properties of the packing material and details of the experimental procedure are given in 
Appendix E. In order to detect flow instabilities in this system, the measured break-
through curves were compared with theoretical extraction curves obtained from a simple 
mathematical model. For plug flow of liquid through a fixed bed, such a model is given 
by Eqns 2.12 to 2.15, where a constant mass transfer coefficient is assumed. These 
equations were slightly modified to account for axial dispersion. The final result reads: 

be 1 92c dc „ , . 

ye=-ND(u-c) (4.33) 

where Pe = <v>L/E)E L and the other dimensionless variables are defined in Eqns 2.6 to 
2.11. The initial and boundary conditions that apply in our case are: 
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0 = 0 

e > o 
c = s0 

c = 0 

9c/9z = 0 

and o; = 1 z>0 

z = 0 

z = 1 

(4.34) 

(4.35) 

(4.36) 

In Eqn 4.34, s0 embodies the initial saturation of the interstitial liquid. For s0 = 1, initial 
equilibrium exists between the pore liquid inside and outside the porous particle. When s0 

= 0, the external pore liquid is free from the solute. To simplify the mathematics involved 
in solving these equations the second boundary condition has been replaced by: 

d > 0 c = s0 = finite z = °° (4.37) 

Extrapolating from similar dispersion problems it is expected that the effect of this 
modification on the final expression c = c (0) is small for the high Peclet numbers 
encountered in the present study under stable flow conditions (Gerson & Nir, 1969). 
Adjustment of the parameters involved in the model to match the predicted breakthrough 
curve with the measured data is achieved by moment analysis. The zeroth and the first 
moments calculated from the analytical solution of Eqns 4.32 to 4.37 are given below: 

M c 0 = ( l + s 0 D)/D (4.38) 

1 
M c l - , c,l D2 h+(-2+Je!(1+D){l + SoD) (4.39) 

The index c implies that the moments pertain to the breakthrough curve at the exit of the 
packed section of the apparatus. The moments Mm { of the actually measured concentra-
tion-time curve in the mixed sample region are related to the moments of the break-
through curve at the exit of the packed section of the column Mc ;. The mass balance on 
the mixed region with volume Vm reads: 

dcm 

Vm - ^ - = * v ( c c - c m ) (4.40) 

where the subscript m refers to the mixed region and c to the exit of the packed section 
of the column. Introducing dimensionless variables 6 = t/(Vcolh/<j>y) and % = Vm/Vcolh 
leads to the following equation: 

d c m 
S ^ - = c c - c m (4.41) 

After Laplace transformation and some rearrangement we obtain: 

ce = cmi^s+l)-Uo (4-42) 

From this equation the moments are readily obtained by the well-known method: 
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. 3'"c(s) 
M,. = lim (-1)' — (4.43) 

s^o ds1 

with the following result: 

Mc,o = M m , o - ^ o *' = 0 (4.44) 

M c * = M m , / - i Ç M m i / _ 1 i > 0 (4.45) 

Combining Eqns 4.38 and 4.39 with Eqns 4.44 and 4.45 gives the normalized first mo-
ment of the breakthrough curve: 

M1>m _ D> h+\2+Tel(1+D)(1+SoD) 

V ' J+l (4.46) ju 1 +s0D 
Mo,m D° +6a 0 

Thus, the value of the Peclet number can be calculated once the other parameters D and 
TV are given. Since D is only determined by the geometry of the packing, it remains 
unchanged for all the runs. For stable flow, the Pe number can be estimated from 
previous measurements, see Section 4.2, to be Pe = 100. For the same reason as discussed 
in Section 4.2.1. this value is essentially independent of the Re number in the low Re 
number regime where the measurements are carried out, as long as dispersion is the only 
mechanism that causes deviations from plug flow. Estimation of the other parameters D 
and TV from stable flow displacements is discussed in Appendix H. The results show that 
D = 0.9, andTV= 0.0125 T, when stable flow occurs. 

Experiments.were performed with initial saturation s0 = 0 and s0 = 1, over a wide 
range of displacement velocities and initial concentration levels. The measured break-
through curves were reduced to their zeroth and first moment. The Pe number was 
determined from these assuming the theoretically predicted value for TV. Also, the ap-
parent number of transfer units TV is calculated from Eqn 4.46 assuming Pe - 100. The 
results are summarized in Table 10. The Pe and TV values contain essentially the same 
information; from Eqn 4.39 it can be derived that: / 

= l+N(l+D)(l+SoD)(—^--^) . (4.47) 

Therefore, only the Pe number will be considered in the further analysis. When chan-
nelling occurs, some fraction of the solute is recovered at a later stage of extraction. Thus 
the first moment Mj m increases accordingly, resulting in a decrease of the apparent Pe 
number, see Eqn 4.39. Thus when the Pe number falls below 100, or alternatively TV/TVref 

below 1, it can be concluded that viscous fingering contributes to the residence time 
distribution, together with axial dispersion and finite mass transfer rates. 

The results of the s0 = 1 runs are shown in Fig. 43 and Table 10. The dimensiónless 
flow velocity along the horizontal axis is calculated from Eqn 4.6. The minimum value of 
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Fig. 43. Effect of hydrodynamic instabilities 
in systems with simultaneous mass transfer on 
the apparent Péclet number: pore liquid ini-
tially saturated (s0 = 1). ( ) Stable displace-
ment limit. 

(dp/dp) is inserted in this equation, which is the value attained at the initial concentration 
in both the particles and the interstitial liquid. The figure clearly shows that thePe num-
ber is far below 100. The existence of flow instabilities is indicated by breakthrough of 
displacing liquid before t/r = 1 and by deformation of the regular s-shape in the more un-
stable cases. Due to excessive tailing of the breakthrough curve, especially in the unstable 
flow regime, the curves were sometimes truncated before the solute was completely recover-
ed. This tailing can originate from limited mass transfer rates, but also from inclusion of 
displaced liquid when the leading edges of viscous fingers coalesce (Perkins, 1965). In-
spection of Eqn 4.39 shows that when the breakthrough curve is prematurely truncated, 
the value ofPe is overestimated. The data shown in Fig. 43 are conservative in these cases. 
From the figure it can thus be concluded that the stabilizing effect of mass transfer is not 
sufficient to prevent viscous finger growth in case s0 = 1 under the prevailing experi-
mental conditions. 

Fig. 44 and Table 10 show the results of the s0 = 0 runs. In the interpretation of the 
breakthrough curves an additional problem arises here compared with the previous case. In 
the prewash step there is some diffusional loss of the solute when the sucrose solution is 
removed from the interstitial voids of the packing. Since this loss is not known exactly, 
the initial interparticle concentration has to be determined from the zeroth moment of 
the breakthrough curve. Only when the solute is completely recovered from the bed, does 
the value thus obtained equal the actual initial concentration. The maximum concentra-
tion that occurs inside the packed column determines the value of the dimensionless 
displacement velocity along the horizontal axis of Fig. 44. This maximum concentration 
is calculated from the solution of the mass transfer model for a packed bed, Eqns 2.12 to 
2.15. In this calculation the theoretical number of transfer units N= 0.0125 r is assumed. 
This method was believed to give a more reliable reference condition for the (dp/djit)-term 
in the expression for the stable velocity than the concentration at the maximum of the 
actually measured breakthrough curve. Even though this measured maximum equals the 
maximum concentration obtained in the packed section of the column under stable flow 
conditions, see Eqn 4.40, it may be considerably lower when radial concentration differ-
ences occur since these differences are efficiently smoothed in the sample region. The 
results of the calculations show less then 20% difference between the maximum concen-
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Table 10. Results of displacement runs with simultaneous mass transfer. 

». = 1 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

y„=o 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Initial 
liquid 
cone. 
(kg/m3) 

600 
350 
200 
620 
140 
615 
590 
550 
111 
700 
370 
190 

Theore-
tical 
maximum 
liquid cone. 

187 
128 

73 
259 
173 
150 
108 

71 
212 
179 
156 
152 

98 
154 
133 
131 

Mean 
residence 
t imer 
(s) 

560 
560 
560 
350 
350 
200 
97 
67 
67 
38 
38 
38 

Mean 
residence 
t i m e r 
(s) 

590 
590 
590 
195 
195 
195 
195 
195 

98 
98 
98 
98 
98 
47 
38 
38 

<v> 

"s 
(1) 

22 
4 
1.7 

45 
2 

70 
65 

130 
9 

500 
60 
30 

<v> 

(1) 

1.4 
1.1 
0.9 
6.7 
4.1 
3.5 
3.0 
2.5 

10.2 
8.7 
7.7 
7.7 
5.6 

15.5 
17.0 
17.0 

N 

tfref 
(1) 

0.22 
0.32 
0.27 
0.24 
0.40 
0.28 
0.45 
0.77 
0.91 
0.69 
0.74 
0.54 

N 

^ref 
(1) 

0.43 
0.43 
0.45 
0.80 
0.74 
0.76 
0.74 
0.81 
0.79 
0.68 
0.73 
0.76 
0.70 
0.75 
0.74 
0.80 

Pe 

(1) 

6.5 
10.5 
8.7 
4.6 
9.5 
3.3 
3.5 
9.3 

24.0 
3.7 
4.6 
2.0 

Pe 

(1) 

9.4 
9.6 

10.0 
15.0 
12.0 
13.0 
12.0 
17.0 

8.1 
4.8 
6.0 
6.9 
5.2 
3.3 
2.5 
3.3 

Initial 
particle 
cone. ui0 

(kg/m3) 

360 
240 
140 
500 
330 
290 
210 
140 
450 
380 
330 
325 
210 
425 
430 
425 
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Fig. 44. Effect of hydrodynamic instabilities 
in systems with simultaneous mass transfer on 
the apparent Péclet number: pore liquid ini-
tially free from solute (s0 = 0). ( ) Stable 
displacement limit. 

tration obtained from the measurements and the calculated value. The final results of the 
s0 = 0 runs, shown in Fig. 44, show that considerable effects of channelling are observed 
in the s0 = 0 case where miscible displacement is accompagnied by transfer of a viscosity 
increasing solute. 

In conclusion, without putting emphasis on the numerical value of the results, the 
experiments clearly show that in systems where there is simultaneous miscible displace-
ment and mass transfer of a solute that increases the viscosity of the liquid, viscous 
fingers may develop and reduce extraction efficiency. 
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5 Conclusions 

From mathematical models the effect of local phase contact in countercurrent separa-
tion cascades is established for diffusion batteries and belt type solid-liquid extractors. 
The results are presented as concise correlations between the number of exterior apparent 
and true transfer units. These correlations show that the separation efficiency of a diffu-
sion battery with 4 or more columns in series is within 10% of a purely countercurrent 
extractor under normal operating conditions. Similarly, a belt extractor as shown in Fig. 
12 performs much like a countercurrent extractor when it contains 6 or more extraction 
stages. The beneficial effect of dripping sections is quantitatively discussed. When the 
solvent is recirculated in each section, complete mixing of the solvent in the stages can 
often be assumed. Liquid recirculation restricts the separation efficiency of an extractor, 
especially when the. number of transfer units per section is high and mixing in the liquid 
phase becomes controlling. 

Asymptotic values of the mass transfer coefficient in the dispersed phase have been 
calculated for purely cocurrent and countercurrent extraction. A simplified design pro-
cedure based on these values is proposed. Only a minor error is introduced when the 
asymptotic values are used directly in the solutions of the lumped parameter model for 
countercurrent extraction. The error in the estimated residence time required for a speci-
fied separation in such an extractor decreases with increasing dimensionless Fourier time, 
decreasing ratio of mass transfer resistance inside and outside the particle or Biot number 
and decreasing extraction factor. For cocurrent extraction the use of asymptotic transfer-
coefficients in combination with the solutions of the lumped parameter models seems less 
promising; for the high Biot numbers that normally prevail in solid-liquid extractors, the 
critical Fourier value above which the asymptotic solution applies is only in the region of 
practical interest for a high extraction factor and slab geometry. For those cases where 
the approach just mentioned fails, an accurate short-cut calculation method is proposed 
which combines the penetration and asymptotic solutions. , 

Hydrodynamic instabilities, i.e. viscous fingering, can occur in solid liquid extraction 
systems, in spite of the stabilizing effect of viscosity gradients in the liquid phase. Such, 
gradients, rather than viscosity jumps in the liquid flowing through a densely packed bed, 
significantly reduce the channelling intensity in the unstable flow regime. However, a 
significant effect on the point of onset of flow instabilities is not observed. For inert 
packing materials, the onset can be predicted from simple stability criteria reported in 
literature. More experimental results are required to warrant a conclusion about the onset 
of channelling during displacement with simultaneous mass transfer. However, in the un-
stable flow regime viscous fingering considerably reduces the overall mass transfer efficiency 
of the extractor. Finally it was concluded that the preferent flow along the wall of a 
packed column can be very much higher in the unstable flow regime than one would esti-
mate from the usual correlations that apply for liquids with uniform physical properties. 
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Summary 

Large scale solid-liquid extractors often consist of countercurrently cascaded mass 
transfer sections. The local mode of phase contact within each section usually differs 
from the overall countercurrent. A design procedure for solid-liquid extractors, which 
incorporates the mode of phase contact in the extraction stages, is presented for a 
diffusion battery or Shanks extractor, and for a rotary or belt type extractor. The effect 
of dripping sections, which are often applied to prevent interstage liquid entrainment, is 
included in the analysis. The mathematical models developed in this study are based on 
the equations describing mass transfer in a single-stage fixed bed. The results are reduced 
to ready-to-use correlations that can be applied over a wide range of process conditions. 
The estimation of mass transfer coefficients is an essential part of the current design 
procedures for solid-liquid extractors. Asymptotic values of the transfer coefficients are 
calculated for cocurrent and countercurrent extraction of particles with simple geometry. 
It is shown that these asymptotic values are a convenient tool in design calculations, 
especially for countercurrent extraction. For countercurrent extraction, an explicit semi-
theoretical equation for the asymptotic mass transfer coefficient is derived which applies 
for an extraction factor greater than 0.5. Very accurate short-cut calculation methods are 
suggested based on the combination of mass transfer rates derived from the penetration 
theory and the asymptotic solutions. 

In percolation type extractors, which are often used for large scale extraction pro-
cesses, the solid particles form a densely packed bed. In this study the effect of non-uni-
form liquid flow through this layer of solids on extractor performance is studied. Special 
attention is given to channelling phenomena caused by differences in viscosity and den-
sity in the solvent. Measurements are performed to establish the effect of both the 
concentration gradients in the liquid phase and the mass transfer between the packing 
material and the solvent on the stability of the flow. The results qualitatively show that 
channelling caused by viscosity gradients in the solvent flow direction can occur in many 
solid-liquid extraction systems. The effect of this phenomenon on the extractor perfor-
mance was studied experimentally for a single-stage fixed-bed extractor. 
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Samenvatting 

Extractie van vaste materialen met behulp van een oplosmiddel is een, met name voor 
de voedingsmiddelenindustrie, belangrijke unit operation. Dit onderzoek richt zich op 
twee aspecten van het extractieproces. Eerst wordt ingegaan op het dimensioneren van 
extractieapparaten, die gebruikt worden voor processen op grote schaal. In het tweede 
deel wordt de stroming van het oplosmiddel door een laag van vaste deeltjes bestudeerd. 

Extractieprocessen op grote schaal worden vaak uitgevoerd in apparatuur die bestaat 
uit in tegenstroom geschakelde secties, waarin de vaste en vloeistoffase met elkaar in 
contact worden gebracht. Het fasecontact in elke sectie zal in het algemeen afwijken van 
zuiver tegenstroom. Twee voor de voedingsmiddelen industrie belangrijke voorbeelden 
hiervan zijn de diffusiebatterij of Shanks-extractor, en de band-type-extracteur. Aan de 
hand van mathematische modellen is het extractierendement van deze apparaten verge-
leken met het rendement van een pure tegenstroomextracteur. De bij deze berekeningen 
gebruikte modellen zijn gebaseerd op de vergelijkingen die het instationair stoftransport 
in een gepakte kolom beschrijven. Zowel voor de diffusie batterij als voor verschillende 
uitvoeringsvormen van de band-type-extracteur zijn de resultaten verwerkt tot correlaties, 
die over een groot gebied van extractiecondities bruikbaar zijn. 

Voor het berekenen van extractieprocessen kan de lokale stoftransportsnelheid vaak 
voldoende nauwkeurig worden beschreven met een constante stofoverdrachtscoëffïciënt. 
Voor het bepalen van de voor een gespecificeerd extractierendement benodigde apparaat-
grootte is een nauwkeurige schatting van de waarde van deze overdrachtscoëfficiënt essen-
tieel. Voor zowel meestroom- als tegenstroomextractie van vlakke, cylindervormige of 
bolvormige deeltjes is de asymptotische waarde berekend die de stofoverdrachtscoëffï-
ciënt na lange contacttijden aanneemt. Het gebruik van deze asymptotische waarde in 
ontwerpberekeningen wordt besproken. Vooral voor tegenstroomextractie is de afwijking 
van de uit de exacte oplossingen berekende apparaatgrootte klein. Voor dit praktisch 
interessante geval is een semi-theoretische vergelijking opgesteld, waarmee de asympto-
tische waarde van de stofoverdrachtscoëfficiënt direct kan worden berekend. 

In vast-vloeistof-extracteurs van het percolatietype vormt de vaste fase tijdens het, 
transport door het apparaat een stationair gepakt bed. Het effect van niet-uniforme 
stroming van het oplosmiddel door de laag vaste deeltjes op het extractierendement is 
experimenteel bepaald in een gepakte kolom. Behalve door inhomogeniteit van de pak-
king kan kanaalvorming optreden ten gevolge van viscositeits- en dichtheidsverschillen in 
de extractievloeistof. Met name aan dit laatste aspect is in dit onderzoek aandacht be-
steed. Zowel de invloed van een concentratiegradient in de vloeistoffase als van stof-
transport van de vaste deeltjes naar de vloeistof op de stroming door de laag vaste deeltjes 
is bestudeerd. De resultaten laten zien dat kanaalvorming ten gevolge van concentratie-
verschillen in de vloeistoffase de scheidende werking van een extracteur nadelig kan 
beïnvloeden. 
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Appendices 

Appendix A. Numerical solution of the equations describing mass transfer in a fixed bed 

In Section 2.2.1, the equations describing mass transfer in a fixed bed were derived: 

9c 9c 

ae + W 

9co 
9~0 

= JV t > c (u-c) 

= -NtteD(u-c) 

(2.12) 

(2.13) 

Solving these equations by finite difference techniques gives accurate results only when 
the number of true transfer units, A^ c is high and the step size used in the integration is 
very small. The reason for this unfortunate situation is that any discontinuity in the 
concentration profiles in the liquid phase is suppressed by numerical dispersion (Rosen-
brock & Storey, 1966). Therefore, Acrivos (1956) suggested the method of characteristics 
for solving the above equations. The principle of this method is that first the position of 
the solid and liquid elements are calculated as a function of time. The solution of the 
equations 2.12 and 2.13 is then calculated along these curves. Since to = co(f ,0) and c = 
cQ> > 0) °ne can write: 

dto = (9to/9?) • df + (9co/90) • dö 

dc =(9c /9 f ) -d f + (9c/90)-d0 

(Al ) 

(A.2) 

The above equations can be considered as four simultaneous equations in the unknowns 
9c/9f, 9c/90, 9to/9f and 9co/90. These equations can be summarized in matrix notation 
as [A] • b = c, or 

1 1 0 0 

0 0 0 1 

df d0 0 0 

0 0 df d0 

3c/3f 

9c/90 

9w/9? 

9co/90 

JV-tjC(co-c) 

-NUcD(co-c) 

dc 

dco 

(A.3) 

The characteristic directions can be obtained by setting the determinant of [A] equal to 
zero (Beckenbach, 1961). Thus the two characteristic curves, indicated by I and II, are 
obtained: 

86 



^ = 1 
de J 

(A.4) 

iL 
de :0 (A.5) 

The characteristic grid for the hyperbolic system (2.12) and (2.13) is shown in Fig. A.l. 
The differential equations that hold along the characteristics can be obtained by 

combining the origional PDE with the equations for the characteristic curves. For the 
derivative of c with respect to time along characteristic I the result is: 

dc 
= ̂ t , c ( « - 0 (A.6) 

Similarly, the derivative of co with respect to time along characteristic II is obtained by 
combining Eqns 2.13 and A.6: 

dcol 
Tf\ =-NttCD(u-c) 
ao • ii 

(A.7) 

Eqn (A.6) is solved numerically along the characteristic I, by applying the following 
finite difference approximation: 

0 / + l . i + i 

A T / d e 
" > " • < " + 2 W + 

dc 

df 
7+i,i' + i 

Substitution of (A.6) and rearrangement gives: 

(A.8) 

/ , < / 

h' 

c / + i ,J + i 
Ar^t.c 

l | + w / t i + w / + l f , + 1 

(A.9) 

Ar^ t ;C 
+ i 

Similarly the resulting finite difference approximation of dco/dÔ along characteristic II is 
obtained: 

ftimd 

Ae y 

y' 
s 

s 
s 

S 
S 

j (position) 

Fig. Al. Characteristic grid. (-
Il-characteristic. 

— ) I-characteristic; ( ) 
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co,-,,,-/ - l ) + c / + M + c/H 

+ 1] 
"ƒ+! . / + ! = 7 O ' \ ( A - 1 0 ) 

lAö7Vt>c£> 

The above equations are solved simultaneously. The initial conditions (2.14) provide the 
values of Cj0 and coj0 at the beginning of a cycle. The liquid concentration c0 i is given by 
Eqn 2.15. The concentration in the solid phase at % = 0, Wj 0 , is calculated from Eqn A.7: 

dcjo,f 

dô 
= -Z)# t>c(co0> , .-c0) I .) (A.ll) 

During the time interval A0 the concentration c0 ; is assumed to remain constant. After 
integration of the above equation the following boundary condition at the liquid inlet 
side of the column results: 

w o , / = co,/ + (wo,i-i-*<>,/)• exp(-tftfCZ>A0) (A.12) 

The differential equations (2.12) and (2.13) with the initial and boundary conditions can 
thus be replaced by the finite difference equations (A.9) and (A. 10). 

Appendix B. Criteria for the validity of the simplified model of a belt extractor 

The concentration in each section is nearly constant when the concentration of liquid, 
sprayed on a section, c i n , and the concentration of liquid leaving the solids beds, c o u t , do 
not differ too much. From analytical solutions of Eqns 2.12 and 2.13, one can calculate 
the liquid concentration at the bed exit at the moment of breakthrough, cb , when the 
solids entering the section have uniform initial concentration over the bed height. 

Cb-Cin = l-e~
NU/n (B.l) 

where JV*t r/w, the number of true transfer units on overall liquid phase basis in one sec-
tion, is defined as: 

AT k„aVI„ NKC ! 

— -^T'—R <*» 

It will be clear that here cb — cin is the maximum concentration difference within a 
section. 

From Eqn B.l it can be seen that for high recirculation rates R = (j>c r /0 c and low mass 
transfer rates Â t c , the concentration of liquid in the bed is nearly constant. In interpret-
ing this result it should be realized that in general R is not an independent variable, but is 
normally adjusted to assure complete filling of the interstitial voids in the packing. A 
maximum concentration difference of, say, 10% is attained when Nt Jn R = 0.1, as can be 
seen from Eqn B.l. Assuming no liquid entrainment, Â t c can be calculated from Eqns 
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Table B.l . Recirculation ratio resulting 
in 10% maximum concentration differ-
ence at 90% efficiency. 

Number of sections n 

A 5 8 
1.5 9 5 
2 5 3 
4 2 1 

1.3 and 2.59. For T? = 0.90, the resulting recirculation ratio required to meet the above 
condition is shown in Table Bl. The situations are often met in practice. 

The simplified model will not be applicable in extraction of deep beds and when the 
number of sections is low. For these situations, the equations describing mass transfer in a 
fixed bed must be solved to account for concentration gradients in the liquid phase, and 
in the solid phase perpendicular to the flow direction of the solids. 

Appendix C. Approximate relation for estimating Shd a values 

In Section 3.3.2, it is shown that the Shod a value for countercurrent extraction with 
an extraction factor A > 1 is given by: 

•S»od,. = — - X ? (CD 
A,Bi,v A - l V 

where Xj is the first non-zero root of the related characteristic equation and the indices 
A, Bi and v refer to arbitrary value of A, the Biot number Bi and the geometrical shape 
factor v. For a linear equilibrium relation it was further shown in Section 3.1 that: 

ShîX =S»öd,. - (2 5/)-1 (C2) 
A,Bi,v A,Bi,v ' 

Combining the foregoing equations yields the following relation for Sh d,a 

^d,a = - l - r - : V - - ^ ] (C-3) 
A,Bi,v 

The aim of this appendix is to provide a simple method for estimating the first eigenvalue 
Xi, thus allowing a straightforward calculation of Shd a. For convenience this approach is 
followed for slab geometry. The results for this case are there after extended to the basic 
geometries cylinder and sphere. 

For infinite A, i.e. a constant bulk concentration, several authors presented simple 
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Table C.I. Approximate relation for the 
first root of tan \ , = Bi/\t 

X°°,Bi,l 

2.5 Bi 

Bi + 2.4 

2.67 Bi 

Bi + 2.67 

(ir2/4)Bi 

Bi 1 02 + 

1.02 

2.24 

Source 

Rutov, 1958 

Backstrom, 1935 

Kondratiev, 1964 

equations for estimating the first eigenvalue X̂  Bi x. For slab geometry, some equations 
are summarized in Table C.l. In the present analysis the Kondratiev equation was 
adopted since it produces the exact solution for infinite Bi numbers. The equation was 
used in a somewhat simplified form, without forcing the accuracy significantly: 

_2 D.* 

K,Bi,^^ 5 / + 2.25 ( C 4 ) 

To extend this equation to finite values of the extraction factor, it was written as: 

2 Oj 

*A ni i = f (A, Bi) (C.5) 
A,BI,I 4 Bi+ 2.2S 

Since the Shd a value for a slab subjected to countercurrent extraction with extraction-
factor A = 1 is 6, irrespective of the Bi number, a combination of Eqns C.3 and C.5 sets a 
constraint to the function f (A, Bi): 

*YA D^ A _ 1 1 Bi+ 2.25 A , (ncr. 
i(A,Bi)= —— — ; A= 1 (C6) 

A j . \_ Bi IT2 14 
3 Bi 

or 
A „ A N „ Bi + 2.25 12 .„ „ 

Ä - T f ( A , 5 0 = P * = - ¥ T r - - ; A = I (c.7) 

From the values of f(A, Bi) calculated from Eqn C5 the Fig. CI is constructed. It is noted 
that for any A the following relation holds with reasonable accuracy: 

A f ( A , Ä ) = l + 7 ( p * - l ) (C.8) 
A - l v ' ' A 

The final result is obtained from Eqns C3, C5 and C8 with v = 1 
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A 
A-1 

1.20 

f(ABi)= U2 -A- Bi + 2.25 
W' ' * A-1 (Ti2/4) Bi 

1.10-

1.0 

0.9 

-
-

V V 

' 

s^* 
£_---~ 

V 

^° 

/ ^ x ' 

^ A ' 

v-

^ x 

^-b 

— V 

oo 

iao 

5 

1 

0 0.25 0.5 0.75 1.0 1.25 Fig. CI. Graphical determination of f(A, Bi); 
1/A Parameter Bi. 

Sh d,a 
A,Bi", 1 

Bi [6 (Bi + 2.25) + (A - 1) — (Bi + 3)] 

ABi(Bi + 2.25) + ( A - 1 ) [3 (5/+ 2.25) - (5z + 3) TT2/4] 
(C.9) 

The deviation of Eqn C9 from the exact solution is shown in Fig. C2. The extension to 
other geometries is based on approximate equations given by Schoeber (1976) which he 
used for correlating Shd a values for concentration dependent diffusivities and constant 
surface concentration: 

Sh d,a 
A,Bi,2 

2.01 Sh 

Sh d,a 
A, S i , 3 

3.18 Sh 

d,a 
A,Bi,\ 

d,a 
A,Bi, 1 

4.45 

2.30 

(CIO) 

(C.ll) 

Sh d Q - S h d a I 

Sh"d 
100% 

d,a 

0 1 2 3 4 5 6 

Fig. C2. Error bound of the approximate Eqn C.9. 
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These relations were reduced to a single equation, which increased the accuracy slightly 
for the case of variable extraction factor and constant diffusivity: 

Sh d.a 
A,Bi,v 

= " 5»d.. - (« ' -D4 (C.12) 
A, Si , 1 

As can be verified, the approximate equations presented here are exact for A = 1. Also for 
extraction factors slightly below 1 they can be used to estimate Shd values with reason-
able accuracy. 

Appendix D. Mass transfer efficiency in the penetration period 

In the following an analytical solution will be derived for the mass transfer problem 
for a slab subjected to cocurrent or countercurrent extraction with finite mass transfer 
resistance in the continuous phase in the penetration period. 

The mass transfer process can be described with Eqn 3.29 with v = 1 : 

dW d2W 

3f„ 3£2 (D.l) 

The dimensionless distance coordinate is now defined according to Fig. Dl. The boundary 
and initial conditions are given by: 

f d = 0 

dW/d£ = Bi{W-C(td)} 

3W/3£ = 0 

(D.2) 

(D.3) 

(D.4) 

Again, the value of C(td) is obtained from a mass balance, with the following result: 

= 0 (D.5) 
dC dW 

ç=o 

with the initial condition td = 0, C = 1. The solution is derived using Laplace transforma-

c. 
liquid , 

eft*) " N , 

(JÜ 

i=o 

solid 

I Fig. Dl. Concentration profile near the solid li-
quid interface: semi infinite solid. 
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-op-

tion. Thus, the expression for dW/dl-\0 and W are readily obtained, where W has been 
defined as 

0 
y dt=~J 9? 

àtA 

£ = o 

The final relation for the Shod number then reads: 

r S * o d = 

In the above equation the following variables are used: 

f(x) = ex erfc(x) 

a2 H--i^} 
For 2?z' -> oo, the relation can be reduced to: 

kShnt,= 
vW7 ^ 

2 J "od 
l - K A t - l M l - Z X - V ^ / A t ) } 

The average concentration in the solid phase can be determined from: 

Bi 
W = 

a\ ~a2 

— <-l +ƒ(-«! V/d)}- — .<_1 +/(-aa VTd)> 
ßl «2 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

(D.ll) 

(D.12) 

Appendix E. Apparatus and experimental procedures: measurement of breakthrough 
curves 

Apparatus: The experimental setup used in this study is shown in Fig. 39. Two 
columns which were kept at a constant temperature were used, one with a diameter of 
0.07 m and a length of 0.7 m and a second with diameter 0.054 m and length 0.5 or 1 m. 
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Table El. Properties of the packing material used in the experimental study. 

Property of the packing material 

diameter (m) 

permeability (m2) 

interstitial void fraction (1) 

effective internal porosity 
calculated from measured 
value of the distributionratio (1) 

material 

geometry 

Inert packing 

1.4 x 10-3 

0.49 x 10-' 

0.35 

glass ballotini 

sphere 

Mass transfer experiments 

1.4 x 10-3 

0.28 x 10-9 

0.35 

0.6 

porous silica 

sphere 

The properties of the packing material used are summarized in Table E.l. Since the 
concentration of the liquid flow leaving the packed section of the column may vary over 
the cross section of the bed, a complete mixed sampling region was constructed at the 
column outlet. The displacement velocity is kept constant by means of a positive dis-
placement plunger pump. The plunger was driven by an electrical motor with variable 
speed, thus allowing easy control of flow velocity. A sample was withdrawn from the 
sample region and pumped continuously through a PAAR digital density meter. The 
density is measured over a time interval of about 4 seconds. With this time interval as a 
minimum, the measured density is stored on paper tape. 

For experiments directed towards the effect of a concentration gradient on the flow 
stability the configuration shown in Fig. 39b was used. The mixer on top of the column 
provides an exponentially decreasing concentration at the inlet of the packed section of 
the column, when a step function in concentration is applied on the inlet stream: 

c - c „ 

Co 
exp 

t<t>y 
(E.l) 

where c0 and c„ are the initial and final concentration in the mixer respectively. Vm is 
the volume of the mixed section. The resulting concentration gradient travelling down-
wards through the column is thus: 

c - c „ 

Co 
•= exp (E.2) 

Vk = hAL is the free volume of the column and z' = z/L is the distance coordinate in the 
flow direction. The shape of the concentration profile thus obtained resembles the one 
that is expected in countercurrent extractors with plug flow in both phases, when the 
extraction factor is greater than 1, see Eqn 1.3. It should be noted that the profile is 
independent of the displacement velocity when plug flow of the liquid occurs. Both from 
literature data (Miller & King, 1966; Levenspiel, 1972) and our own experiments, it was 
concluded that the axial Pe number is virtually independent of Re in the region of 
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interest. The former conclusion can thus be extended to stable displacement conditions in 
general. This allows us to evaluate easily the effect of displacement velocity on the 
hydrodynamic stability of the flow for a fixed concentration gradient. 

The experiments designed to determine the effect of mass transfer on flow stability 
were performed in a set up similar to the one shown in Fig. 39a. The properties of the 
packing material are summarized in Table E. 1. 

Experimental procedure: Experiments run with an inert packing material i.e. glass 
beads proceeded in the following way. From a liquid reservoir a glycerol solution was 
recirculated through the bed until a uniform concentration was observed throughout the 
column. In order to assure complete deaeration of the packed section of the column, the 
flow was directed upwards. After closing the circulation loop, water was injected with a 
constant velocity in a downward direction, and the breakthrough curve was measured. 
When a porous packing was applied, the experiments proceeded in three steps. First, a 
sugar solution was recirculated through the bed until equilibrium between the liquid in 
the pores of the particles and the flowing liquid was obtained. There after the column was 
left to drain for several minutes. In the second step, the liquid adhering to the particles 
was washed off with water. To maximize the rinsing effect while reducing diffusional 
losses of sugar from the interior of the particle, the wash liquid was fed to the column at 
a relatively high speed. Measurements of the concentration of sugar in the wash water 
indicated that the desired effect was obtained when 5 pore volumes of wash water were 
collected. The flow direction was then reversed and the breakthrough curve was measured 
at the selected flow velocity. This third step is analogous to the final step in the experi-
ments where an inert packing material was used. 

Scouting experiments with inert packing material using dyed solutions indicated that 
considerable wall flow occurred in the unstable flow regime: the shape of the break-
through curve showed a sudden decrease when breakthrough at the wall occurred. This is 
caused by the higher permeability in this region, a fact that triggers the formation of 
protuberances near the wall. The magnitude of the wall flow was dependent on the size of 
the equipment and the displacement conditions. To avoid the above effect, glass beads 
were mounted at the wall surface. It was ensured that a glue layer of Tensol cement 
occupied the voids fraction up to about half a particle diameter from the wall. Reruns 

Fig. EL Effect of preferent flow along the wall on the 
variance of the residence time distribution curve. 
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showed a considerable attenuation of the wall flow, see Fig. E.l. At the same time, the 
scatter in experimental data was considerably reduced. Reinterpretation of the residence 
time distribution curves that were affected by wall flow, which showed a significant con-
centration jump when breakthrough in the wall region occured, produced results that 
were very close to the measurements in the wall treated column. 

Appendix F. Determination of the moments of the breakthrough curves 

Several methods have been suggested in literature to determine the moments of the 
distribution function. Direct application of Eqn 4.23 has some significant drawbacks. 
Firstly, since in the experiments a cumulative distribution function F(r) is measured, 
differentiation of the experimental data is required to obtain the frequency distribution 
E(r). Numerical differentiation is a cumbersome procedure that requires careful smooth-
ing of the measured data. Secondly, when the second moment Mj is calculated, measure-
ments in the tail of the distribution curve may contribute significantly because of the 
weighting function f2. Therefore experimental errors in the trailing edge of this curve are 
largely amplified. Procedures that are proposed in literature try to overcome the foremen-
tioned difficulties. The method adopted here was suggested by Gunn (1970) and by 
Paynter (1957). Here the moments are obtained from the Laplace transform of the 
frequency distribution of residence times E(t), that can be written as: 

oo 

£<E(f)} = E ( s ) = J s~stE(t)dt (F.l) 
o 

After series expansion of the exponent and neglecting higher order terms, which is correct 
for small values of s, we obtain 

oo oo oo 

E(s) = ƒ E(t)dt-s ƒ f E ( r ) d r + f s 2 ft2 E(f)df (F.2) 
0 0 0 

The moments of the distribution function can be recognized on the right side of this 
equation. After some rearrangement the following result is obtained for small values of s: 

1 E ( s ) - M 0 Mi M2 
= 1- s (F.3) 

s Mo Mo 2 M0
 v ' 

Mt and M2 can thus be easily determined by linear regression. Even though the range of s 
is restricted to small values, an optimum choice exists. For very low values of s the 
truncation error of the computing device may set limits to calculation accuracy. More-
over, for higher s values the weighting function exp(-sr) slightly suppresses the effect of 
errors in the tail of the breakthrough curve. According to Gibilaro & Drinkenburg (1972) 
the values of s should be selected in the range 0.02 < ST < 0.1, where T is the mean 
residence time in the flow system. Since the weighting function exp(-sr) is always close to 
or smaller than unity, the accuracy in the determination of the moments is considerably 
increased compared to direct application of Eqn 4.23. In most of the experiments the 
cumulative distribution of residence times F(r) is measured. By definition, the relation 
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between E(r) and F(f) is: 

E(f) = dF(r) /df (F.4) 

Since F(0) = 0 by definition, taking the Laplace transform of this equation gives: 

E(s) = sF(s ) (F.5) 

where F(s) is defined analogous to Eqn F.l. After substitution of Eqn F.5 in Eqn F.3 the 
final result reads after slight rearrangement: 

£ {M0 - F (f )}/M0 = Mi - s M2 /2 (F.6) 

Note that Mt can be determined directly from this equation when s = 0 is inserted. The 
resulting equation is then identical to the one proposed by Van der Laan (1958): 

.„ = ƒ t"E(f)df = - ƒ tnd(Mo - F ) = « ƒ (M0 -¥)tn~l dr (F.7) M 

For the calculation of M2, the weighting function t that occurs in the procedure proposed 
by van der Laan is replaced by exp(-sr), with some gain in accuracy. 

Appendix G. Locating the position of the displacement front in downward miscible 
liquid-liquid displacement from packed beds 

In order to get information on the behaviour of viscous fingers during unstable flow in 
liquid-liquid miscible displacement, an experimental setup was designed in which the 
location of the displacement front could be monitored. As pointed out in Appendix E, 
considerable wall flow may occur during unstable displacement. For this reason we aimed 
at a setup where measurements could be made in the interior of the column packing, 
while wall flow was suppressed as much as possible. This technique is likely to provide 
more reliable information on viscous finger growth than interpretation of frontal position 
measurements near the wall, see e.g. Chuoke et al., (1959). 

The rectangular column used in these experiments is shown schematically iii Fig. Gl. 
In order to suppress preferent flow along the wall as much as possible, a pretreatment of 
the wall surface as discussed in Appendix E was followed. The column packing consisted* 
of glass ballotini with a diameter of 0.0014 m. Glycerol solutions are displaced down-
wards with pure water. The location of the displacement front is determined by mea-
suring the conductivity of the interstitial liquid between a common electrode and gold 
plated electrodes with the same dimension as the packing material. 100 Of these elec-
trodes were mounted in a 10 x 10 matrix in a vertical plane in the centre of the column. 
To speed up the sample rate and to simplify recording of the data measured, only the 
order of magnitude of the conductivity is determined. This signal is converted to either a 
0 or 1 logic level. Thus, at every moment the liquid concentrations inside the column are 
represented by a 10 x 10 matrix of 0 or 1 coded elements. The electronics were cali-
brated to produce a 0 signal for pure water and a 1 signal for the glycerol solution. Every 

97 



water ° 
supply - * - ( R -
vessel ^ ^? 

front 
view 

JC 

glycerol 
solution 
storage vat TU 

side view 

-drain 

Fig. Gl. Schematic picture of the experimental setup. 
Dimensions (m) 

length 0.2 
width 
height 
a 
b 

0.1 
0.5 
0.01 
0.03 

Packing: glass beads 
diameter 0.0014 
porosity 0.35 (-) 

Item list 
1. gold plated electrode 
2. digitizer, 100 channels 
3. multiplexer, 10 channels 
4. common electrode 
5. digital printer 
6. positive displacement pump 
7. pulse damper 
8. sinewave generator 

row of 10 electrodes thus constitutes a binary number. The decimal representation of this 
binary number is stored for further analysis. This figure can later be uniquely decoded to 
the binary representation. From these data, the time when the displacement front passed 
a specific electrode can be determined. By interpolation, the position of the front can be 
calculated at all times. To transform these results into smooth curves for further analysis, 
spline interpolation was used. Typical results are shown in Fig. G2 for stable displacement 
conditions, and in Fig. G3 and Fig. G4 for ambient and strongly unstable conditions, 
respectively. 

From the measured front positions, the growth rate of the viscous fingers and the 
relative channel width were determined. At low displacement velocity, <v>/vc < 3, the 
fingers once initiated did not grow in size during the displacement. For higher flow 
velocities, the growth rate was essentially constant. The growth rate of the fingers is 
further increased with flow rate, until an asymptotic value is reached where the stabilizing 
effect of gravity can be neglected. The results confirm data reported in literature (e.g. 
Benham & Olsen, 1963; and others); Most of these data have been obtained from mea-
surements in Hele Shaw models, a hydrodynamic analogon of a packed bed. Channel 
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Fig. G2. Front positions under stable displacement condi-
tions. M = 60; <v>/vc = 0.6; <v> = 0.33 x 10"4 m/s; Para-
meter time. 

Fig. G3. Front positions under slightly unstable displace-
ment conditions. M = 20; <v>/vc = 5; <v> = 6.2 x 10"" m/s; 
Parameter time. 

Fig. G4. Front positions under unstable displacement condi-
reduced horizontal tions. M = 60; <v>/vc = i0;<v> = 51.0 x io-4 m/s; Para-
position meter time. 

width was only well defined for high viscosity ratios and displacement velocities. The 
fraction of the column cross section occupied by the channels varied from 0.4 to 0.7 with 
increasing displacement velocity. This value compares reasonably with the asymptotic 
value of 0.5 for high displacement velocities reported by Safmann & Taylor (1958). For 
more ambient displacement conditions the area occupied by the fingers varies in the flow 
direction. 
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Appendix H. Experimental determination of model parameters D and (k0a) 

In principle the distribution ratio D can be determined from properties of the packing 
material, i.e. the internal and external void fraction e{ and A. Yet we preferred to measure 
the value of D in situ since the internal pore volume might not be occupied completely 
with the presaturation liquid. Therefore experiments were designed with relatively low 
initial sugar concentration and rather low displacement velocities. Experimental condi-
tions were chosen such that stable displacement could be expected. At the beginning of 
the experiment equilibrium conditions between the packing and the interstitial liquid was 
assured, s0 = 1. Under this condition the initial solute concentration in both phases is 
known exactly and, moreover, mass transfer stabilizes the liquid flow. From the zeroth 
moment of the breakthrough curve the value of D is calculated with the aid of Eqn 4.36. 
The result, averaged over three runs, showed that the distribution ratio equals: 

0 = 0.90 ±0.05 (H.l) 

From the first moment of the breakthrough curve the number of transfer units is calcu-
lated with Eqn 4.37, assuming that Pe equals 100. From this value the apparent (fc0a) is 
determined. The effective interfacial area a is dependent on the packing geometry only 
and thus has the same value for all experiments. The overall mass transfer coefficient k0 is 
dependent on kc and kd. The former coefficient is determined by the physical properties 
of the liquid and by the flow velocity. Fortunately it can be shown from Eqn 3.20 that 
the Biot number Bi = mkcDp/E)d is higher than 50, even for the runs with high sugar 
concentration and low flow velocity. This implies that the mass transfer rate is limited by 
interparticle diffusion. Although the value of k0 is thus in principle a function of time 
and dependent on the concentration history in the liquid surrounding the particle, a 
constant value of ko is assumed here. This figure serves as a reference value for other 
experiments. Averaging over three runs we obtained: 

(M)ref = ( ^ H e f = 0-0125 ±0-0015 (s"1) (H.2) 
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