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Abstract—The complexity of hardware systems is currently
growing faster than the productivity of system designers and
programmers. This phenomenon is called Design Productivity
Gap and results in inflating design costs.

In this paper, the notion of Design Productivity is precisely
defined, as well as a metric to assess the Design Productivity of a
High-Level Synthesis (HLS) method versus a manual hardware
description. The proposed Design Productivity metric evaluates
the trade-off between design efficiency and implementation qual-
ity. The method is generic enough to be used for comparing
several HLS methods of different natures, opening opportunities
for further progress in Design Productivity.

To demonstrate the Design Productivity evaluation method,
an HLS compiler based on the CAPH language is compared to
manual VHDL writing. The causes that make VHDL lower level
than CAPH are discussed. Versions of the sub-pixel interpolation
filter from the MPEG HEVC standard are implemented and a
design productivity gain of 2.3× in average is measured for the
CAPH HLS method. It results from an average gain in design
time of 4.4× and an average loss in quality of 1.9×.

I. INTRODUCTION

One major challenge of electronic system design is cur-

rently a growing Design Productivity Gap, as stated by the

International Technology Roadmap for Semiconductors [1].

The Design Productivity Gap refers to a faster increase in

the complexity of systems than in the productivity of system

designers. In order to solve this problem, the world of

Electronic Design Automation (EDA) is currently evolving

towards higher levels of architecture abstraction [2]. The

most commonly used languages for EDA logic synthesis

today are the Hardware description language (HDL) languages

VHDL, Verilog and SystemVerilog. HDL languages are used

to describe a hardware implementation at a Register Transfer

Level (RTL). However, High-Level Synthesis (HLS) methods

are currently becoming market practice in the industry [2].

They raise the level of abstraction of the code manipulated by

designers higher than RTL. HLS methods ambition to improve

design efficiency while maintaining solid implementation qual-

ity, or Quality of Results (QoR).

The main motivation behind HLS is to improve the produc-

tivity of hardware designers by providing some correct-by-

construction features and by separating the correctness design

concern from the timing design concern.

Depending on the HLS method, different higher-level lan-

guages are used such as the imperative C and C++ languages

and their extensions SystemC and OpenCL, or the BlueSpec

functional language [3]. Dataflow HLS, based on the Dataflow

Process Network (DPN) paradigm [4], is an alternative to

classical HLS methods where the input language does not

follow an imperative paradigm. The DPN paradigm is suited to

signal processing problems where limited control is necessary

and computation should be triggered by data availability [4].

Dataflow languages for HLS exist both in academia (e.g. CAL

[5] and CAPH [6]) and in the industry (e.g. Cx [7]).

This paper defines a metric for evaluating the Design

Productivity (DP) of an HLS method versus manual HDL

writing. The study does not intend to promote a particular HLS

language or method or to display advanced quality metrics

on a given Field-Programmable Gate Array (FPGA). Instead,

this paper defines a precise and reproducible procedure for

assessing design productivity. While difficult, this task is

fundamental to drive the future developments of HLS methods.

To our knowledge, this paper is the first one that aims to clarify

the HLS modalities of “raising the abstraction” and Design

Productivity.

The application chosen for applying the method is the

MPEG High Efficiency Video Coding (HEVC) [8] inter-

polation filter. This 2-dimensional separable Finite Impulse

Response (FIR) filter is a simple yet costly operation that

requires fine implementation tuning. Moreover, the convolu-

tions composing this filter are canonical examples of signal

processing. The compiler chosen for evaluating DP assessment

is the CAPH compiler, compiling the CAPH language [6].

CAPH is a dataflow language based on a functional paradigm.

This paper is organised as follows: Section II presents

the related work. Then, the proposed protocol for evaluat-

ing design productivity is presented in Section III and the

experimental set-up in Section IV. Experiments using HDL

and HLS are detailed respectively in Sections V and VI.

Finally, experimental results are presented in Section VII and

Section VIII concludes the paper.

II. RELATED WORK

The success of HLS tools such as Catapult [9] and the

release of integrated tools by major FPGA companies (i.e.

Xilinx Vivado HLS and Altera SDK for OpenCL) demonstrate

the industrial interest in raising the level of abstraction of

hardware design. When discussing the benefits of HLS, design



productivity is often invoked (e.g. in [10], [11]) but a precise

definition of design productivity has never been proposed.

In [11], many different HLS tools are compared qualitatively

but no precise quantitative comparison is developed. An HLS

productivity increase of 8× w.r.t. manual writing of a Wireless

LAN baseband processor is evoked. Authors refer to the

design time gain as the gain in design productivity, without

considering design quality.

In [10], a sphere decoder implementation with the AutoESL

HLS tool is compared to equivalent manual HDL. Approxi-

mate development times (in man-weeks) are given, as well

as resource information including Look-Up Tables (LUTs),

registers, DSP48 blocks and 18K RAMs on a Xilinx Virtex

5 FPGA. The design frequencies are not displayed and the

results focus on area. The proposed study analyzes more

generally the pros and cons of an HLS method, taking into

account many dimensions of design quality.

In [12], authors compare two implementations of the

MPEG-4 Simple Profile video decoder, one written in the CAL

language and one in VHDL. The type of FPGA is not precisely

defined and the efforts of development are approximatively

expressed in man-months (12 for VHDL and 3 for CAL).

The protocol proposed in this paper intends to make design

productivity from different studies of this type comparable.

In [13], CAPH and CAL designs are compared to VHDL

designs in terms of implementation quality. The considered

applications include motion detection, connected component

labeling and parts of a JPEG encoder. The method proposed

in this paper adds the notion of design efficiency.

The study in [14] compares the Xilinx Vivado HLS method

to manual HDL. The metric used to evaluate design efficiency

is called Non-Recurring Engineering (NRE) effort and consists

of measuring design time. This paper goes further than the

work in [14] by defining a metric of design productivity and

a precise protocol to evaluate the benefits of HLS. Moreover,

a discussion on the origins of HLS benefits is developed.

III. EVALUATING THE DESIGN PRODUCTIVITY OF HLS

The performance of an HLS method is a trade-off between

a system quality to optimize (frequency, area, memory...) and

design efficiency. It can be illustrated by a radar chart such

as the one in Figure 1. The smaller the polygon is, the

higher the productivity because it means that both design

efficiency and implementation quality are high. Note that

period = 1/frequency is minimized to maximize frequency.

Next sections introduce 3 metrics to assess an HLS method:

the gain in NRE design time GNRE evaluating design effi-

ciency, the quality loss LQ evaluating implementation quality

and finally the design productivity PD evaluating the trade-off

between design quality and design efficiency.

A. Evaluating Design Efficiency

Design efficiency results from a combination of many

parameters including the complexity of the design under de-

velopment, the amount of Non-Recurring Engineering (NRE)

tasks to execute (i.e. the cost of the new code to produce),

Design time Debug time

Operating periodSilicon Area

Design efficiency

Implementation 
quality

Des
ig

n P
roductivity

Fig. 1. Example of a trade-off radar chart with implementation quality and
design efficiency parameters.

the expressiveness, and “developer friendliness” of the design

languages, the designer’s experience, the testability of the

results, the simulation time (influencing the time of design

and verification steps), and the maturity of the design tools.

Quantitative quality metrics can be computed to characterize

the HLS and HDL codes. System development time can be

divided into:

— 1.a NRE design time, i.e. time necessary for writing the

code of a functionality,

— 1.b NRE verification time, i.e. time used for building a

testbench and unit testing,

— 1.c the system integration time, i.e. time necessary to build

from components a system respecting its requirements.

The system integration time, comprising verification and

validation, depends on features that go beyond digital system

design (analog to digital conversion, energy management,

physical environment, etc.). Reducing integration time by an

HLS method would require a system completely defined with

the HLS method, including for example I/O drivers. The

system tested in this paper, like all systems using HLS today,

integrates HLS generated blocks within a framework written

with standard HDL. Integration time is thus considered out of

the scope of this study.

Design times are controversial because they depend on the

designer’s experience. Different times may be required for a

design by a junior hardware designer and a senior hardware

designer. In the experiments, design times measured for HDL

and HLS reflect the time required by a single developer

experienced on software signal processing but novice in both

VHDL and CAPH languages. The experiments reflect the

capacity of HLS to offer a high-level API to a novice designer.

This choice is consistent with the important objective of HLS

to open hardware design to a broader public of developers.

A selection of the time taken into account in measurements

reduces the subjectivity of the approach. The time taken to

refer to books and papers for syntactic details is excluded

from the measured time. The development times are thus sums

of short design and verification times with a quantum of 1’

(minute) and an average length of 15’.

Code properties complement the timing results:

— 2.a number of Source Lines Of Code (SLOC) (excluding

blank lines and comments),



— 2.b number of characters in the code (excluding blank

lines and comments).

These grades reflect the complexity and expressiveness of

the languages. A lower number of lines in the HLS code than

in the HDL code reflects the abstraction of some implementa-

tion concerns. These numbers do not fully reflest complexity,

as for instance, one line of regular expression may have a

greater complexity than 20 lines of C code. As a consequence,

this information is not used in the DP metric but rather as an

additional information.

B. Evaluating Implementation Quality

On an FPGA implementation, quality metrics are divided

into area and time information:

— 3.a number of Look-Up Tables (LUTs)

— 3.b number of registers,

— 3.c number of Random Access Memory (RAM) blocks,

— 3.d number of Digital Signal Processor (DSP) cores.

— 4.a processing latency,

— 4.b minimum operating period.

One number cannot reflect the capacity of an HLS method

to improve a designer’s productivity. In order to make more

objective the comparison between methods, a list of elements

is displayed, providing a multi-dimensional evaluation of the

Quality of Results (QoR). Even in this multi-objective context,

giving a main DP metric to a method is necessary to compare

different methods.

C. A New Metric of HLS Design Productivity

As HLS aims at reducing design time, the gain in global

NRE time GNRE is the most important metric of design

efficiency. GNRE is defined formally as:

GNRE =
tHDL
design + tHDL

verif

tHLS
design + tHLS

verif

(1)

where tHDL
design and tHDL

verif are respectively the design and veri-

fication times when writing the application in HDL. Similarly,

tHLS
design and tHLS

verif are the design and verification times when

writing the application in HLS. A time gain GNRE greater

than 1 reflects the ability of an HLS method to save design

and/or verification time. If only design and verification times

are evaluated to assess an HLS method, methods resulting in

a fast design with low quality are favored. In the proposed

method, a quality degradation metric is included that penalizes

low quality systems.

Implementation quality metrics depend on the constraints

of the design (strict frequency constraint, strong resource

limitations...). To take into account in a single cost the different

quality metrics constituting a QoR vector, the implementation

cost is defined as the weighted sum of normalized features

to minimize [15]. The normalization of the different hardware

quality metrics is done with respect to the maximum amount

on the chosen system. For instance, the maximum period of

the design obtained with HDL is computed as:

prdHDL
norm = prdHDL/prdsystemmax , (2)

where prdsystemmax is the maximum period for supporting the

application (for instance, to ensure the frame rate). In the

general case of HLS DP measurement, we define quality loss

as:

LQ =

∑

φHLS
i

∈ΦHLS αi × (φHLS
i )

∑

φHDL
i

∈ΦHDL αi × (φHDL
i )

, (3)

where ΦHLS is the sets of normalized quality metrics to

minimize and αi are normalizing coefficients. In particular,

in the case of an FPGA, we can define quality loss as:

LQ =
α1 × lutHLS

norm + α2 × regHLS
norm + α3 × ramHLS

norm+

α1 × lutHDL
norm + α2 × regHDL

norm + α3 × ramHDL
norm+

α4 × dspHLS
norm + α5 × latHLS

norm + α6 × prdHLS
norm

α4 × dspHDL
norm + α5 × latHDL

norm + α6 × prdHDL
norm

(4)

where lutHDL
norm and lutHLS

norm are numbers of LUTs (3.a),

regHDL
norm and regHLS

norm are numbers of registers (3.b), ramHDL
norm

and ramHLS
norm are numbers of RAM blocks (3.c), dspHDL

norm

and dspHLS
norm are numbers of DSP blocks (3.d), latHDL

norm and

latHLS
norm are latencies (4.a), and prdHDL

norm and prdHLS
norm are

operating periods (4.b).

The parameters αi can be tuned to favor different hardware

features. We propose 2 approaches: 1) architecture-relative

where each alphai is set to 1, and 2) fair to place all metrics

on an equal footing, where each (non null) pair of values is

normalized to its maximum:

αi =

{

0, if max(φHLS
i , φHDL

i ) = 0.

(max(φHLS
i , φHDL

i ))−1, otherwise.
(5)

for φHLS
i ∈ ΦHLS and φHDL

i ∈ ΦHDL. The architecture-

relative approach is specific to a single device because it favors

metrics that are sparse on the measured platform. Experimental

results (Section VII) focus on the fair approach, putting all

parameters on the same footing.

Quality loss LQ reflects the loss due to rising the level

of abstraction. A low LQ reflects a good HLS generated

code quality. We introduce the HLS Design Productivity (DP)

metric as a unique grade to assess the trade-off between design

efficiency and quality. HLS DP ratio is defined as:

PD = GNRE/LQ (6)

An HLS method can be considered successful if its DP

is greater than 1. Two HLS methods can be compared in

terms of DP, provided that the same approach is used for both

methods, a greater DP reflecting a better trade-off between

design efficiency and implementation quality.



D. Design Productivity Assessment Protocol

A few rules must be respected to evaluate in practice the DP

of an HLS method versus HDL: the same hardware platform

and the same synthesis (back-end) tools should be used for

both HLS and HDL, the designer should have similar experi-

ence in both the HLS and the HDL methods, the developed

use case should have precise specifications and requirements,

design periods in both languages should be interleaved, and the

same (preferably default) synthesis tool configurations should

be used for both HLS and HDL. A particular effort is made

in this paper to obtain reliable DP measurements by following

these different rules.

IV. EXPERIMENTAL SET-UP TO MEASURE THE DESIGN

PRODUCTIVITY OF AN HLS COMPILER VERSUS HDL

In this section, details are given on the use case and the

tools that this study leverages on to assess HLS vs. HDL.

A. The HEVC Interpolation Filter Use Case

The motivations for using HEVC interpolation filtering as

the application for design productivity assessment are three-

fold. The use case is specifically chosen because it requires

bit-exact implementation to conform to the HEVC standard.

Moreover, it is based on canonical DSP operations. Finally, the

HEVC interpolation filter requires only fixed point operations

that are efficiently implementable on an FPGA.

Video compression leverages on redundancies between im-

ages to reduce data rate. The performance of the latest video

compression algorithms such as MPEG HEVC [8] is mostly

due to a precise matching between blocks in an image and the

corresponding blocks in near images. This matching must be

precise also when a motion has occurred that is not an exact

multiple of the pixel size. HEVC interpolation filters provide

fractional-pixel motion compensation between images with a

quarter-pixel precision on luminance.

The HEVC interpolation filter generates a shifted version of

a block of pixels by applying a filter with coefficients (taps)

generated from a Discrete Cosine Transform (DCT) and an

Inverse Discrete Cosine Transform (IDCT) [8]. The block can

be left shifted of 1/4, 1/2 or 3/4 of a pixel by the filter displayed

in Figure 2. The upper part of the figure is a shift register.

The filter coefficients tap[i] depend on the selected sub-pixel

position σ. The filter has 8 taps for the 1/2 pixel position and

7 taps for the 1/4 and 3/4 positions [8].

x[t]

tap[7]
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tap[4]
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Fig. 2. Signal flow of an HEVC interpolation filter for horizontal shift of
1/4, 1/2 or 3/4 of a pixel.

Figure 2 only represents horizontal filtering. The extension

to a 2-D filtering version requires 8 horizontal filters. The re-

sults of these filters undergo a second 8-tap filtering operation

with equivalent coefficients for 1/4, 1/2 and 3/4 upper shifts.

This bidirectional filter is illustrated in Figure 3 where line

First In, First Out data queues (FIFOs) delay the pixels of

one line length L to correctly synchronize the outputs of the

different horizontal filters.

horizontal filter
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horizontal filter
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input
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flow picture line FIFO
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Fig. 3. Signal flow of a 2-dimensional HEVC interpolation filter for horizontal
and vertical shift of 1/4, 1/2 or 3/4 of a pixel.

The use case being normative, data sizing is derived from

the standard specifications. This is an important point because

it limits the design choices and helps comparing different

versions of the code. The presented filters correspond to the

core of the luminance filters. In the next sections, the presented

filters serve as the basis for the HLS vs. HDL study.

B. Used Design Tools and Platform

The software tools and versions used for the study are:

• Altera Quartus II versions 13.1.0.162 and VHDL 2008,

• Mentor Graphics Modelsim ASE, delivered with Quartus,

• CAPH Compiler version 2.7.0.

A golden reference of the filter Design Under Test (DUT) is

coded in C language. This implementation is out of the scope

of the study and serves for verifying both the HDL and the

CAPH implementations. The HDL code is ported to an FPGA-

based smart camera named DreamCAM [16]. This camera

embeds an Altera Cyclone III EP3C120F780C7N FPGA.

Using a camera aims at making the study close to designer’s

best practices by not limiting the study to simulations. A

complex pattern of data valid signals makes the filter not trivial

to port on the camera.

V. DESIGNING HEVC INTERPOLATION FILTERS IN VHDL

In this section, the use case is implemented in HDL and

qualitative as well as quantitative elements are given on

the design effort. VHDL [17] is a language for hardware

description standardized in 1987 and revised in 1993, 2000,

2002, and 2008. A VHDL program consists of explaining how

a digital circuit is structured and what the behavior of each



component is. These behaviors can be purely combinatorial,

sequential or more commonly mixed.

A. Writing the MPEG HEVC Interpolation Filters in VHDL

1) Assumptions and Verification of the Use Case Design:

The number of possible designs in HDL for a filter such

as the ones presented in Section IV is large. Accesses to

external memory to store intermediate values can alter much

the quality. It is also possible to use existing Semiconductor

Intellectual Property Core (IP) blocks or “design templates”

(especially for FIR filters). The choice of parallelizing or

sequencing operations is also very important.

In order to narrow the design space, some assumptions

are taken on the input and output pixel streams of our use

case. The filter is synchronous to a unique clock and has

asynchronous reset. The input pixel stream comes in raster

order (i.e. scanning the image from left to right and from top

to bottom) in a stream of 8-bit pixels. A data valid signal

states whether the current clock event corresponds to a data

value. Each filter configuration (1/4, 1/2 or 3/4 horizontal and

vertical shifts) is studied independently and coefficients are

considered constant. In an HEVC encoder or decoder, the filter

must then be duplicated for the different positions. A sufficient

number of clock events without data is given for the filter to

resume execution at the end of a pixel line. The last assumption

is compatible with most CMOS image sensors that provide

horizontal and vertical blanking. The assumptions foster a

pipelined design with FIFOs such as the ones illustrated in

Figures 2 and 3. Several versions of the filter are designed with

their test benches. The golden reference code in C language

provides reference values for debug.

2) VHDL Version 1: Horizontal Filter with Minimal Inter-

faces: In this version of the filter, implementing the diagram

in Figure 2, the stream of input pixels is considered continuous

(1 clock event = 1 data). A transition to zero of the data valid

signal resets the filter. It is interpreted as the beginning of

a new line and thus, the filter needs to gather 8 data before

outputting the first valid data. Based on the writing of this

HDL filter, the time needed to describe the pipelined quarter

pixel filter in HDL is 358’ for design and 288’ for verification,

including time for writing the test bench, RTL simulation, and

debug.

The algorithm description time includes all the reflections

on the description (data types, generics, sizing, the use of

functions, data conversions, use of best practices...) and the

writing, from scratch, of the VHDL files.

3) VHDL Version 2: Horizontal Filter with Interfaces for

the DreamCAM Camera: When porting the filter onto the

camera, the VHDL block must input and output a data valid

signal (indicating pixel validity for each clock event) as well as

a frame valid signal. The frame valid signal is continuously

set during the reception of a frame and reset at the end of

the frame. Clock events that do not carry data happen pseudo

randomly during the reception of an image.

The time needed to describe the filter in HDL is 162’ for

design and 783’ for debug, including 152’ on a test bench and

631’ on the DreamCAM platform. VHDL Version 2 shows that

porting an algorithm onto a real platform has a large cost, even

when the algorithm has already passed some RTL verification

process.

4) VHDL Version 3: 2-D Filter with Interfaces for the

DreamCAM Camera: This filter is designed by reusing the

VHDL version 2 horizontal filter and combining filter results

of several lines such as in Figure 3. The time needed to

describe the filter in HDL is 232’ for design and 775’ for

verification.

The main difficulties comes again from the control part of

the filter that determines when a data is valid or not and on

which cycle it must appear on a given signal. In particular,

synchronizing data valid and frame valid signals have neces-

sitated most of the time. Next section discusses the sources

of VHDL non-optimality in terms of design productivity that

make room for HLS methods.

B. Discussion on the Origins of VDHL Complexity

1) The Counterpart of VHDL Versatility: In order to build

verifiable logic, it is recommended to design a fully syn-

chronous system. Using VHDL, a designer is however free to

design asynchronous circuits and gated clocks that are chal-

lenging to verify. For instance, while rarely being necessary,

latch constructs may be generated by mistake with VHDL,

for instance with an incomplete IF THEN ELSE statement

in a combinatorial process. Latches are strongly discouraged

in literature [17] and this type of “low level implementation

bugs” is at the heart of the need for HLS methods [3].

2) A Unique Language for Different Objectives: A dif-

ficulty of VHDL comes from the combination, in a single

language, of simulation-oriented and implementation-oriented

features. For example, operators such as modulus MOD or

remainder REM are generally not synthesizable [17].

3) Some Unintuitive Properties: The absence of precedence

in logical operators makes the following expression:

y <= a and b or c and d

equivalent to:

y <= ((a and b) or c) and d.

This property stands in contradiction to the mathematical

order of operation and can cause errors that are difficult to

detect for a new programmer.

4) The Historical Reasons: Some difficulties of the VHDL

language come from the different techniques available to im-

plement a single functionality. For instance, an 8-bit unsigned

integer signal data can be declared by

SIGNAL data : INTEGER RANGE 0 TO 255;

or by

SIGNAL data : UNSIGNED (7 DOWNTO 0);

Choosing between the two solutions requires a knowledge

that is not related to system design but rather to language

implementation details. The integer style is typically used to

manipulate data within a design while the unsigned style is

used for designing I/Os.



5) The Fundamental Reason: The main productivity lim-

itation while using VHDL is the tangle of value and timing

concerns. A value is considered as correctly received only if

it arrives at an exact predefined clock event. During design,

a lot of time is spent to obtain a value one cycle later or,

worse, one cycle sooner than what the current design outputs.

As an input signal of an entity must be present when its

corresponding valid signal occurs, much of the design time

is spent to synchronize data and control signals.

Now that VHDL design characteristics have been presented,

next section details for comparison the design of the same filter

versions with the CAPH HLS language.

VI. DESIGNING HEVC INTERPOLATION FILTER IN CAPH

A. Introduction to the CAPH Language

CAPH [6] is a domain-specific language (DSL) for de-

scribing and implementing stream processing applications

on configurable hardware, such as FPGAs. CAPH was first

released in 2011 and is based upon the dataflow model of

computation where an application is described as a network

of autonomous processing elements (actors) exchanging tokens

through unidirectional channels (FIFOs).

As the CAPH language is not mainstream like the VHDL

language, details on the syntax and semantics are given in this

section. The behavior of individual actors in CAPH is specified

using a set of transition rules, where a rule consists of a set

of patterns, involving inputs and local variables, and a set

of expressions, describing modifications of outputs and local

variables. Tokens circulating on channels and manipulated by

actors are either data tokens (carrying actual values, such as

pixels for example) or control tokens (acting as structuring

delimiters). With this approach, fine grain processing (down

to the pixel level) is expressed without global control or

synchronization.

Listing 1. An actor computing the sum of values along lists in CAPH.

actor suml

in (i: signed<8> list)

out (o: signed<16>)

var st: {S0,S1}=S0

var s : signed<16>

rules

(st:S0, i:’<) -> (st:S1, s:0)

| (st:S1, i:’v) -> (st:S1, s:s+v)

| (st:S1, i:’>) -> (st:S0, o:s)

As an example, the actor coded in Listing 1 com-

putes the sum of a list of values. Given the input stream

< 1 2 3 > < 4 5 6 >, — where 1, 2, . . . represent data

tokens and < and > control tokens respectively encoding the

start and the end of a list — the CAPH program produces

the values 6, 15. For this, the CAPH code uses two local

variables : An accumulator s and a state variable st. st

indicates whether the actor is actually processing a list or

waiting for a new list to start. In the first state, the accumulator

keeps track of the running sum. The first rule can be read

as : when waiting for a list (st=S0) and reading the start

of a new one (i=’<), then reset accumulator (s:=0) and

start processing (st=S1). The second rule says : When

processing (st=S1) and reading a data value (i=’v), then

update accumulator (s:=s+v). The last rule is fired at the

end of the list (i=’>); the final value of the accumulator is

written on output o. This style of description fits a stream-

based execution model where pixels are processed “on the

fly”.

For describing the structure of dataflow graphs, CAPH

embeds a textual Network Description Language (NDL). NDL

is a higher-order, purely functional language in which dataflow

graphs are described by defining and applying wiring func-

tions. A wiring function is a function accepting and returning

wires (graph edges). This concept is illustrated in Figure 4,

where the dataflow graph on the left is described by the CAPH

program on the right. In this example, two wiring functions

are defined : neigh13 and neigh33. The former takes a

wire and produces a bundle of three wires representing the

1×3 neighborhood of the input stream, by applying twice the

one-pixel delay actor dp. The latter takes a wire and produces

a bundle of nine wires representing the 3×3 neighborhood of

the input stream, by applying the previously defined neigh13

function and the dl actor (one-line delay)

net neigh13(x) = 

  x,

  dp x,

  dp (dp x);

net neigh33(x) = 

  neigh13 x,

  neigh13 (dl x),

  neigh13 (dl (dl x));

net

 (o11,o12,o13),

 (o21,o22,o23),

 (o31,o32,o33)

= neigh33(i);

DPDP

DL DP DP

DL DP DP

i

o11

o12

o13

o21

o22

o23

o31

o32

o33

Fig. 4. Example of a graph description in CAPH.

The tool chain supporting the CAPH language comprises a

reference interpreter and a compiler producing both SystemC

and synthetizable, platform-independent VHDL code. The

SystemC back-end is used for verification.

B. Writing the MPEG HEVC Interpolation Filters in CAPH

1) Assumptions and Verification of the Use Case Design:

The assumptions on the filter are the same as in the VHDL

description case: pixel flow in raster order, unique clock, valid

signal and sufficient blanking (Section V-A1).

Data validation is automated by the CAPH compiler based

on the structural tokens < and > in the bitstream (Sec-

tion VI-A). The CAPH environment provides FIFOs im-

plemented in VHDL that automate data valid management.

Moreover, a VHDL wrapper for the CAPH-generated VHDL

code exists for the DreamCAM camera, driving inputs and

FIFOs with the data valid signals of the camera. These features

may appear unfair for the comparison between VHDL and

CAPH but, in our opinion, VHDL and CAPH are treated on

an equal footing, as they are both ported to the platform with

tools helping the connection of their communication means



(signals in VHDL, FIFOs in CAPH) to their environment (a

CMOS sensor and a USB port).

2) CAPH Version 1: Horizontal Filter with Minimal Inter-

faces: In version 1 of the HEVC filter in CAPH, the code is

composed of a single actor receiving the image bitstream and

sending the horizontally filtered data. The test bench represents

only 5 lines of code connecting the actor to the input and

output streams. This simple test bench is possible because the

HLS compiler performs only functional verification and time

verification is left to the synthesizer. The actor implements a

shift register and a counter discards the 7 first output tokens

that do not represent valid data. The actor has four transition

rules and most of the design time is taken to find the right

way to represent the shift register in CAPH. In this version,

the shift register is made of a set of internal variables in the

CAPH actor. The filter is functionally equivalent to its VHDL

counterpart after 103’ for design and 65’ for writing the test

bench and debugging the filter with a SystemC simulation.

3) CAPH Version 2: Horizontal Filter with Interfaces for

the DreamCAM Camera: Similarly to its VHDL counterpart,

this version 2 of the filter in CAPH is adapted to the Dream-

CAM needs, resetting the filter at the end of each line and

adding modularity to the description. The filter is decomposed

into 8 pipelined multiply-accumulate actors. The last actor in

the pipeline has a different code. It gathers the intermediate

products into a filtered and clipped value and generates the

output flow. The main difficulty comes from getting rid of

unwanted tokens, i.e. tokens that appear while the pipeline is

filled up and emptied. The time for designing this version,

composed of 9 actors, can be decomposed into 71’ for design

and 72’ for verification.

4) CAPH Version 3: 2-D Filter: In this 2-D version of the

filter, 7 new delay actors are first instantiated and connected.

CAPH higher order functions are used to create a large number

of actors with a code of limited size. Delay actors insert L
first dummy tokens in the stream, where L is the length of a

picture line, and then forward the arriving pixel values. The

time needed to describe the 2-D filter in CAPH is split into

187’ for design and 169’ for verification.

C. Discussion on the Reduction of Complexity when using

CAPH HLS Instead of VHDL

A dataflow Model of Computation (MoC) abstracts two

elements:

• time. Instead of reacting to clock events, actors react to

the arrival of data tokens,

• amount of data stored in FIFOs. The MoC assumes

FIFOs of sufficient size to store pending tokens.

These two abstractions make it possible a first verification

of the process independently from the notion of time. The de-

signer can thus verify very early in the design process whether

the output values conform to the specification. Moreover,

by generating SystemC code for simulation and verification,

the CAPH compiler leverages on an optimized simulation

environment. Writing the test bench in CAPH is also fairly

less complex than in VHDL.

TABLE I
VHDL VS. CAPH DESIGN EFFICIENCY AND QUALITY FIGURES

(TIME IN MINUTES AND FREQUENCY IN MHZ).

VHDL CAPH VHDL CAPH VHDL CAPH

v1 v1 v2 v2 v3 v3

NREdt 358 103 162 71 232 187

NREvt 288 65 783 72 775 169

# SLOCs 147 43 333 61 805 194

# chars 4114 1351 9465 2395 22072 6099

# LUTs 193 226 282 3161 2868 11398

(445) (3380) (11636)

# Regs 81 103 115 2209 1252 7557

(269) (2375) (7723)

# RAM 0 0 (1) 0 0 (1) 18 14

Freq. 64.7 68.0 71.8 83.0 65.2 84.2

These advantages come at the cost of a higher memory

consumption, mostly due to the allocation of FIFO queues be-

tween actors. Experimental results in the next section evaluate

the DP of the CAPH HLS method w.r.t. VHDL by assessing

both their resulting design quality and design efficiency.

VII. EXPERIMENTAL RESULTS: EVALUATING THE DESIGN

PRODUCTIVITY OF THE CAPH HLS COMPILER

A. Overview of the Experimental Results

Table I summarizes the experimental results of the different

versions of the use case and Figure 5 illustrates them. Con-

cerning CAPH results, values reported in brackets correspond

to the total hardware resources including the overhead of the

transformation from the platform signals (frame and data valid)

to the token representation. These numbers are the fairest

to compare to VHDL so they are the ones used for quality

assessment.

Figure 5 displays values normalized to the largest of the

two values. One can see that HLS is obtaining gains on design

efficiency because, in the upper part of the charts, the CAPH

values are smaller than the VHDL values (smaller is better).

Conversely, there is a quality loss due to HLS that makes

the VHDL values smaller than the CAPH values in the lower

part of the chart. The CAPH HLS method is efficient for

frequency; it even obtains slightly better minimum period than

manual VHDL. This effect can be explained by the insulation

of each actors by FIFOs that build a pipeline. However, CAPH

presents a large overhead in terms of LUTs and registers.

This effect is explained by the automatic insertion of FIFO

queues between actors that are not present in VHDL (VHDL).

Improving the footprint of the VHDL generated from CAPH

is thus an important objective to make this HLS method

competitive. Globally, a smaller area in the clear red zone

than in the dark blue zone is a good indicator that HLS is

reaching a higher DP than VHDL; this fact will be confirmed

in the next sections.

B. Gain in NRE Design Time of CAPH vs. Manual VHDL

Table II shows for each use case version the Gain in NRE

Design Time GNRE introduced in Section III-C. In average,
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Fig. 5. Design efficiency and implementation quality chart (the smaller the
better) for each filter in CAPH (clear red) and VHDL (dark blue).

TABLE II
GAIN IN NRE DESIGN TIME GNRE , QUALITY LOSS LQ AND DESIGN

PRODUCTIVITY PD OF CAPH VS. MANUAL VHDL.

CAPH vs. CAPH vs. CAPH vs. Average

VHDL v1 VHDL v2 VHDL v3

GNRE 3.84× 6.60× 2.82× 4.42×

LQ 1.70× 2.53× 1.47× 1.90×

PD 2.26× 2.61× 1.92× 2.26×

designing the use case versions with the CAPH HLS method

took 4.42× less time than writing and testing VHDL by hand.

The standard deviation is large (1.96). This fact shows that,

depending on the code type (raw 1-D filter, 1-D filter with

control or 2-D filter), the gain in design time varies.

C. Quality Loss of CAPH vs. Manual VHDL

The quality loss, defined in Section III-C, is evaluated to

study the productivity of the HLS method. We focus in this

paper on the fair approach, putting all parameters on equal

footing to make results not very dependent on the type of

FPGA so normalization to maximum values is skipped and

parameters αi are computed by equation 5.

Numbers of DSPs and latency are ignored in quality loss

computation (α4 = 0 and α5 = 0) because the use case

does not generate multipliers and the latency of a few cycles

introduced by VHDL and CAPH is negligible when compared

to the latency of several picture lines, mandatory in the 2-D

filter, so latency does not reflect system quality.

Quality loss LQ figures are displayed in Table II. They show

that, when putting all quality metrics on an equal footing, there

is in average a quality loss of about 2× due to using the CAPH

HLS method when compared to VHDL manual writing. The

standard deviation of 0.6 is limited.

D. Design Productivity of CAPH HLS versus Manual HDL

From the previously computed gain in NRE design time

and quality loss, we can derive the Design Productivity PD

for the different use case versions. The values of PD are shown

in Table II. The HLS Design Productivity (DP) metric for the

tested CAPH compiler version 2.7.0 is 2.2×. This number

is an evaluation of the gains obtained by the HLS compiler.

The small standard deviation of 0.34 between the different

versions is an encouraging sign of the relevance of the DP

metric evaluation method proposed in this paper. Finally, one

can see in Figure I that while verification takes in average 3×
the time of design in VHDL, it takes in average only 85% of

the design time in CAPH.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, the notion of Design Productivity (DP) has

been defined, as well as a method to assess the DP gains

of an HLS method versus a manual HDL description. Using

this method, an HLS compiler based on the CAPH dataflow

programming language has been compared to manual VHDL.

The framework for design productivity estimation pro-

posed in this paper can be extended to any type of HLS

and to any type of hardware systems. Figures of merit for

the implementation quality and design efficiency should be

adapted to the system under test. However, the method and

recommendations remain valid. Crossbreeding different HLS

methods and combining their best features in a unique method

could drive the future of very-large-scale logic design.
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