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ABSTRACT

A shape design sensitivity analysis (DSA) and optimization
of structural transient dynamics are proposed for the finite defor-
mation elastoplastic materials under impact with a rigid surface.
A shape variation of the structure is considered using the material
derivative approach in continuum mechanics. Hyperelasticity-
based multiplicatively decomposed elastoplasticity is used for the
constitutive model. The implicit Newmark time integration
scheme is used for the structural dynamics. The design sensitivity
equation is solved at each converged time step with the same
tangent stiffness matrix as response analysis without iteration.
The cost of sensitivity computation is more efficient than the cost
of response analysis for the implicit time integration method. The
efficiency and the accuracy of the proposed method are shown
through the design optimization of a vehicle bumper.
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I. INTRODUCTION

When a time-dependent load and/or boundary condition is applied to a
structure, the transient response of the structure is important. The inertia effect
and wave propagation through the structure are important compared to the
quasi-static response. Methods of integration for the equation of motion in a
dynamic response analysis can be implicit or explicit. The explicit integration
method is usually used with a very small time-step size to solve a wave propaga-
tion problem associated with a relatively local response of structure. This
method is useful for impact and crash-worthiness problems for which wave
effects such as focusing, reflection, and diffraction are important. The implicit
integration method is usually used to solve inertial problems [1] for which the
overall dynamic response of a structure is sought. The structural problems are
considered inertial when the response time is longer than the time required for
the wave to traverse the structure. Since in the linear problem the implicit inte-
gration scheme is unconditionally stable by choosing appropriate integration
parameters, the time step is usually one or two orders of magnitude larger than
that of the explicit integration method. However, a reasonable time-step size
must be chosen based on the accuracy of the solution [2].

Recently, several research results were reported for design sensitivity anal-
ysis (DSA) of structural dynamics. For nonlinear elastic material with infinitesi-
mal deformation assumption, Tortorelli et al. [3] formulated an adjoint sensitiv-
ity equation, and Poldneff and Arora [4] addressed design sensitivity for
thermoviscoelasticity using the implicit time integration method. Pollock and
Noor [5] derived the sensitivity expression of a structural dynamic problem with
respect to material properties using the explicit central difference method to take
the derivative of the finite-element matrix equation. For elastic material, the
sensitivity expression is consistent with that of response analysis.

Arora and Dutta [6] formulated design sensitivity equations for dynamic
elastoplastic problems. They claimed that the design sensitivity equation uses a
different tangent stiffness matrix from that of response analysis because of finite
rotational effect. To overcome this difference from response analysis, sensitivity
iteration is carried out using the same tangent stiffness matrix as response analy-
sis, which reduces the efficiency of sensitivity computation significantly.

Choi and Cho [7] discussed design sensitivity expressions for dynamic
elastoplastic problems using the explicit central difference method for the beam
element. The sensitivity expression for the explicit time integration method is
simpler than that for the implicit method. The cost of sensitivity computation,
however, may not be less than the response analysis time. Thus, the merit of
the sensitivity computation is reduced compared to the finite difference method
for explicit time integration. It is quite beneficial to develop a sensitivity equa-
tion for the implicit time integration method since it does not require iteration



NONLINEAR TRANSIENT DYNAMICS 353

for the finite deformation elastoplastic problem, so the cost of sensitivity compu-
tation is significantly less than that of the finite difference method.

Recently, Kim et al. [8] proposed an efficient way of computing design
sensitivity of the finite deformation elastoplasticity based on the hyperelastic
constitutive relation with multiplicative decomposition of the deformation gra-
dient.

In this article, an efficient shape DSA of structural transient dynamics is
proposed for finite deformation elastoplastic materials, including impact with
the rigid surface. The direct differentiation method is used instead of the adjoint
variable method. It is well known that the adjoint variable method for the tran-
sient dynamic problems with an initial condition becomes a terminal value prob-
lem for which a terminal condition is given for an adjoint equation [9]. Thus,
the adjoint equation cannot be solved simultaneously with the response analysis.
This fact complicates significantly calculations associated with transient dy-
namic DSA using the adjoint variable method.

The Newmark time integration scheme is used to integrate in the time
domain for the implicit method. The computational aspect of time integration
methods is compared from the sensitivity analysis viewpoint. A linear system
of the design sensitivity equation is solved at each converged time step.

Hyperelasticity-based multiplicative decomposition elastoplasticity is used
for the constitutive model that can represent finite deformation and rigid body
rotation. The stress-strain relation is described as a hyperelastic relation between
the intermediate rotation-free configuration and the current configuration. For
shape DSA, however, the variation of the intermediate configuration is trans-
formed into the undeformed domain in which the design velocity field is defined
since the design perturbation is always defined at the initial undeformed geome-
try. Through an appropriate transformation, an updated Lagrangian form of the
design sensitivity equation is obtained. The consistent tangent operator is used
to obtain quadratic convergence of response analysis and accurate sensitivity
results. Design sensitivity is path dependent as response analysis; the sensitivity
equation is solved at each converged time. However, using the consistent tan-
gent stiffness matrix, the sensitivity equation can be solved without iteration.
After solving the design sensitivity equation, the material derivatives of other
path-dependent variables are updated to be used at the next configuration time.

The efficiency and accuracy of the proposed method are shown through
the design optimization of a vehicle bumper.

II. RESPONSE ANALYSIS OF STRUCTURAL DYNAMICS

Response analysis of nonlinear structural transient dynamics is reviewed
in this section. The implicit time integration method is discussed with an accel-
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eration formulation. Using the implicit method, the nonlinear transient response
is obtained by solving for incremental acceleration with a linearization proce-
dure. For details, refer to the work of Hughes [10] for the linear problem and
the work of Bathe [11] for the nonlinear problem. For given f b, f h, and �, the
weak form of the equation of motion for a structural dynamic problem at time
t ∈ [0,T] is to find the displacement function z(x,u,t) ∈V such that

d(z,tt,z̄) + a(z,z̄) = R(z̄), ∀ z̄ ∈Z (1)

where

V = {z(x,t)*z(x,t) = �(x,t), x ∈ Γ g, z(x,t) ∈ H1 (Ω)} (2)

is the solution space, Z is the space of the kinematically admissible displace-
ment, f b is the body force, f h is the surface traction force on the boundary Γ h,
and � is the prescribed displacement vector on the boundary Γg. The overbar is
used to denote the first-order variation in this article. If the problem contains
structural impact, then the contact variational form b(z,z) can be added as dis-
cussed in the work of Kim et al. [12]. The b(z,z) term is ignored in the following
derivation. In Eq. 1,

d(z,tt,z̄) = ∫0Ω
ρz̄T z,ttd� (3)

is the kinetic energy form. In Eq. 3, z,tt is the second time derivative of the
displacement (i.e., acceleration), and ρ is the initial density of the material.
Using the conservation of mass, the integration in Eq. 3 can be carried out at
the undeformed configuration with the density at that configuration. In Eq. 1,

a(z,z̄) = ∫0Ω
σijε̄ijd� (4)

R(z̄) = ∫0Ω
z̄T f b

d� + ∫0Γh
z̄T f h

d� (5)

are the structural energy and load forms, respectively. The structural energy form
depends on the constitutive model of the material. In this article, a finite deforma-
tion elastoplastic constitutive model is assumed for a(z,z) with a multiplicative
decomposition of the deformation gradient into elastic and plastic parts as

F(X) = F e(X)F p(X) (6)

The Kirchhoff stress σij can be obtained using hyperelasticity with F e(X).
Note that the integration domain 0Ω in Eq. 4 is undeformed configuration since
the Kirchhoff stress is used instead of the Cauchy stress. For general elastoplas-
tic problem, Ωij is computed by a return-mapping algorithm in the principal
stress space by fixing F p(X). The configuration determined by F p(X) is called
the stress-free intermediate configuration. For the load form, only the conserva-
tive load case is considered for simplicity; this is independent of the displace-
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ment. Note that the structural energy form is generally nonlinear, whereas ki-
netic energy and load forms are linear. Since Eq. 1 is an initial boundary value
problem (IBVP), the following initial conditions are used:

z(X,0) = z0(X) X ∈ 0� (7)

z,t(X,0) = z0
,t(X) X ∈ 0� (8)

where z0(x) and z0
, t(x) are the prescribed initial displacement and velocity vec-

tors, respectively. For solving the IBVP Eq. 1 numerically, the finite difference
method is used to make the time domain discrete, whereas the mesh-free method
is used for the structural domain. The discretization of the structural domain
using the mesh-free method was discussed in detail by Chen et al. [13]. Time
discretization is derived in the following.

To solve the differential Eq. 1 with initial conditions Eqs. 7 and 8, the
time interval [0,T] is discretized by [t1, t2, . . . , tn, . . . , tN], and the equilibrium
Eq. 1 is imposed at each discrete time. Let the equation of motion in Eq. 1 be
satisfied at time tn−1, and the solution at time tn is investigated. The Newmark
family time integration with the predictor-corrector method is used to integrate
Eq. 1 as

nz,t = nz pr
,t + γ∆t n nz,tt (9)

nz = nz pr + β∆t 2 nz,tt (10)

where

nz pr
,t = n−1z,t + (1 − γ)∆t n−1z,tt (11)

nz pr = n−1z + ∆t n−1z,t + (1
2 − β)∆t 2 n−1z,tt (12)

are the velocity and displacement predictors, respectively, and are constructed
based on the configuration at the previous time tn−1. The left superscripts n and
n − 1 denote the configuration times tn and tn−1, respectively. Here, β and γ are
integration parameters for the Newmark method, and ∆t is the time-step size.
Since the right sides of Eqs. 9 and 10 include responses at time tn, this integra-
tion method is implicit; thus, iteration is usually required.

The stability and accuracy of the time integration method for the linear
system were discussed rigorously by Hughes [10]. The unconditionally stable
condition for the Newmark family integration method is given by 2β ≥ γ ≥ 1/2
and the second-order accuracy is preserved only when γ = 1/2, which does not
include any viscous damping effects. The other choice of γ > 1/2 yields the first-
order accuracy with viscous damping effects.

Since the structural energy form in Eq. 4 is nonlinear, a linearization is
required to solve the nonlinear equation iteratively using the Newton-Raphson
method. The linearization of the structural variational form was discussed thor-
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oughly by Simo [14]. The linearized form of a(z,z) is denoted by a*(z;∆z,z), which
is linear with respect to ∆z and z, and depends on the configuration at tn, as

a*(z;∆z,z̄) ≡ ∫0Ω
(ε̄ijcijklεkl(∆z) + σijηij(∆z,z̄))dΩ (13)

where cijkl is the fourth-order consistent tangent tensor [14], εij is the engineering
strain tensor with respect to the current configuration, and ηij is the geometric
strain tensor term. Equation 13 is the updated Lagrangian formulation [11] since
the current configuration is used as the reference. Let the current configuration
time be tn and the right superscript k + 1 denote the current iteration counter.
The linearized incremental equation of motion becomes

d(∆z k+1
,tt ,z̄) + a*(nz k;∆z k+1,z̄) = R(z̄) − a(nz k,z̄) − d(nz k

,tt,z̄), ∀z̄ ∈Z (14)

Since only the relation between the incremental displacement and incremental
acceleration is required in Eq. 14, the following incremental integration formula-
tions of the displacement are used:

∆z k+1 = β∆t 2∆z k+1
,tt (15)

nzk+1 = nzk + ∆zk+1 (16)

where nz0 = nz pr is the predictor at the time tn. Note that since the kinetic energy
form is linear, it does not require a linearization. Equation 14 is solved itera-
tively until the residual terms on the right side vanish at the configuration time
tn. To solve Eq. 14, the kinematic relation in Eq. 15 is substituted into the
structural bilinear form a*(nz k;∆z k+1,z) to express the unknown ∆z k+1 in terms of
∆z k+1

,tt as

d(∆z k+1
,tt ,z̄) + β∆t 2

a*(nz k;∆z k+1
,tt ,z̄) = R(z̄) − a(nz k,z̄) − d(nz k

,tt,z̄), ∀ z̄ ∈Z (17)

which is solved for the incremental acceleration ∆z k+1
,tt .

After computing ∆z k+1
,tt , the displacement and velocity are updated using

Eqs. 9 and 16. The tangent stiffness matrix obtained from Eq. 17 is stored for
the DSA described in the following section. The path-dependent terms, includ-
ing internal plastic variables (back stress and effective plastic strain), are up-
dated in the same way as the classical infinitesimal elastoplasticity [15]. In
addition, the stress-free intermediate configuration F p is updated using the fol-
lowing incremental plastic deformation gradient as

f p = ∑
3

j=1

exp(−ξNj)n
j
�n j (18)

where n j is the principal vector of Kirchhoff stress, ξ is the plastic consistency
parameter determined by the return-mapping algorithm, and N is the unit normal
vector of von Mises yield surface in the principal stress space. Note that f p is a
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symmetric tensor, which implies that the incremental plastic spin vanishes.
Thus, the following updated formulas can be used:

F e
n = f pF etr

n (19)

F p
n = F e−1

n F n (20)

where the superscript tr denotes the elastic trial states by assuming all the incre-
mental deformation is elastic. This formulation is different from that of Simo
[14], for which all the rigid body rotations are ignored in F e, and only be =
F eF eT is stored from the isotropic assumption. From an analysis viewpoint, this
is possible since the rigid body motion does not contribute to the constitutive
relation. However, for shape DSA, a discontinuous intermediate configuration
is not allowed since continuous perturbation of the domain is considered. Thus,
the decomposition in Eqs. 18–20 has to be used to recover the finite elasticity
when no plastic flow is observed. However, more memory is required to store
nonsymmetric F p rather than the symmetric be.

III. SHAPE DESIGN SENSITIVITY
ANALYSIS OF DYNAMICS

In shape DSA, the structural domain shape is the design. Let initial do-
main 0Ω(X) be perturbed in the direction of V(X) (design velocity), and the
magnitude of the perturbation is controlled by a scalar parameter τ to the new
domain 0Ωτ(Xτ). Shape DSA is used to obtain the variation of the state variable
in terms of the design velocity explicitly using the direct differentiation method.
The material derivative concept in continuum mechanics is utilized to describe
the design variation. The material derivative of the displacement can be ex-
pressed as a sum of the partial derivative and convective terms as

ż = lim
τ→0

1

τ
zτ(X + τV) − z(X)]

= z′ + ∇ 0zV (21)

where ∇0z = [∂zi/∂Xj] is the gradient of z with respect to the undeformed configu-
ration.

For the linear problem, it has been shown that the displacement z is
Fréchet differentiable with respect to the design [16]. Without mathematical
support, it is assumed that the displacement z is differentiable formally for the
nonlinear structural dynamic problem. Assume that response analysis is con-
verged up to time tn, and the sensitivity equation is solved up to time tn−1. The
design sensitivity equation at time tn can be obtained by taking the material
derivative of Eq. 1 as
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d

dτ
[d(nz,tt,z̄)] +

d

dτ
[a(nz,z̄)] =

d

dτ
[R(z̄)], ∇ z̄ ∈Z (22)

The material derivative formulas of the structural energy and load forms are
discussed in detail in the work of Kim et al. [8]. If the hyperelasticity-based
constitutive relation is used, then the sensitivity equation is solved for the mate-
rial derivative of the total displacement. Since the design perturbation occurs at
the initial configuration (t = 0), the structural variational form a(z,z) is trans-
formed to the initial configuration (pull back) and then transformed to the cur-
rent configuration (push forward) after taking the derivative with respect to the
design. The material derivative of the structural energy form, using the updated
Lagrangian formulation, becomes

d

dτ
[a(z,z̄)] = a*(z;ż,z̄) + a′V(z,z̄) (23)

where a*(z;żz) is the same form as the structural bilinear form in Eq. 13 if ∆z
is substituted by ż and

a′V(z,z̄) = ∫0Ω
(ε̄ijcijklεV

kl(z) + ε̄ijcijklεP
kl(z) + τfic

ij ε̄ij)dΩ + ∫0Ω
(τijηij

V(z,z̄) + τijηP
ij(z,z̄)

+ τijε̄ijdivV)dΩ (24)

is the structural fictitious load form. The form aV′(z,z) depends explicitly on the
design perturbation through the design velocity V(X), the structural response z,
and the material derivatives of path-dependent variables. In Eq. 24,

�V(z) = −sym (∇ 0z∇ nV) (25)

�V(z,z̄) = −sym(∇ n z̄T∇ 0z∇ nV) − sym(∇ 0 z̄∇ nV) (26)

explicitly depend on design velocity V(X) and z, and

�p(z) = −sym(G) (27)

� p(z,z̄) = −sym(∇ n z̄G + ∇ n z̄TG) (28)

G = F e d

dτ
(F p)F−1 (29)

depend on the material derivative of the intermediate configuration, and � fic

represents the sensitivity of path-dependent plastic variables. Notations ∇0z =
∂z/∂X, ∇nz = ∂z/∂x, and sym(A) = 1⁄2(A + AT) are used throughout this paper.
Equation 29 corresponds to transforming (push forward) the material derivative
of Fp into the current configuration for the updated Lagrangian description.

For the case of a conservative external load, the design variation of the
load form contains explicitly dependent terms only:
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d

dτ
[R(z̄)] = RV′ (z̄) (30)

where

RV′ (z̄) = ∫0Ω
(z̄T(∇f bV) + z̄T f b

divV)dΩ

+ ∫0Γh
(z̄T(∇f hV) + κz̄Tf h

Vn)dΓ (31)

κ is the curvature of the boundary, and Vn is the normal component of the design
velocity on the boundary. In Eqs. 24 and 31, aV′ (z,z) and RV′ (z) can be computed
using the results of response analysis up to time tn and sensitivity analysis up to
time tn−1 with a given design velocity field at the undeformed configuration.

The design sensitivity of the kinetic energy form is relatively simple com-
pared to that of the structural energy form using the principle of mass conserva-
tion, for which integration is carried out at the undeformed configuration. The
material derivative of the kinetic energy form is

d

dτ
[d(z,tt,z̄)] = ∫ 0Ω

ρz̄T ż,tt dΩ + ∫0Ω
ρz̄T z,ttdivV dΩ

≡ d(ż,tt,z̄) + dV′ (z,tt,z̄) (32)

where dV′ (z,tt,z) contains the divergence term only. Relatively simple expression
is obtained for kinetic energy form in Eq. 32 since no spatial derivative of state
variable is involved.

Using Eqs. 23, 30, and 32, the design sensitivity Eq. 22 for structural
transient dynamics can be expressed as

d(nż,tt,z̄) + a*(nz;nż,z̄) = RV′ (z̄) − aV′ (nz,z̄) − dV′ (nz,tt,z̄), ∀ z̄ ∈Z (33)

The design sensitivity Eq. 33 is another IBVP, which requires the initial condi-
tions. Since the initial conditions in Eqs. 7 and 8 are fixed values, their material
derivatives vanish. Thus, the initial conditions for the sensitivity equation be-
come

ż(X,0) = 0 X ∈ 0Ω (34)

ż,t(X,0) = 0 X ∈ 0Ω (35)

and the time integration of the material derivatives of the kinematic variables
follow the same procedure as response analysis:

nż,t = nż pr
,t + γ∆t nż,tt (36)

nż = nż pr + β∆t 2 n
ż,tt (37)

where material derivatives of predictors can be obtained from results at the
previous time by
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nż pr
,t = n−1ż,t + (1 − γ)∆t n−1ż,tt (38)

nż pr = n−1ż + ∆t n−1ż,t + (1
2 − β)∆t 2 n−1ż,tt (39)

with Eqs. 34 and 35 as initial conditions. By using Eq. 37, Eq. 33 is expressed
in terms of the acceleration sensitivity as

d(nż,tt,z̄) + β∆t 2
a*(nz; nż,tt,z̄) = RV′ (z̄) − aV′ (nz,z̄) − dV′ (nz,tt,z̄) − a*(nz; nżpr,z̄),

∀ z̄ ∈Z (40)

The left side of Eq. 40 has the same form as response analysis in Eq. 17 with a
different right side, which is the fictitious load. The sensitivity equation solves
the number of design parameters at a given time. Thus, the decomposition of
the matrix is important for efficiency. Note that the sensitivity Eq. 40 does not
require any convergence iteration, whereas response analysis is solved itera-
tively to obtain the converged configuration in Eq. 14. Thus, a linear sensitivity
equation is solved at each converged time step effectively. Note that the last
term in Eq. 40 a*(nz;nżpr,z) is the contribution from the time integration effect of
structural dynamics, which does not appear in a quasi-static sensitivity equation.

An interesting observation comes from the comparison of the sensitivity
equation with that of the quasi-static problem for elastic material. It is well
known that the sensitivity equation is solved only once at the final converged
time for the quasi-static problem. However, the sensitivity Eq. 40 is solved at
each converged time step for the dynamic problem regardless of the constitutive
model.

After solving for the acceleration sensitivity in Eq. 40, the velocity and
displacement sensitivities are obtained using Eqs. 36 and 37. The material deriv-
atives of the internal plastic variables are also updated for the sensitivity compu-
tation at the next time. This procedure is the same as the infinitesimal elastoplas-
ticity formulation in the principal stress space [15].

The last part of DSA is updating the material derivative of the intermedi-
ate configuration Fp. For a given ż, the material derivative of the deformation
gradient can be computed using

d

dτ
(F) =

d

dτ
(I + ∇ 0z) = ∇ 0 ż − ∇ 0z∇ 0V (41)

with the analysis result z and design velocity V. By taking the material deriva-
tive of the multiplicative decomposition in Eq. 20, the material derivative of F p

can be obtained as

d

dτ
(F p

n) =
d

dτ
(F e−1

n )Fn + F e−1

n

d

dτ
(Fn) (42)

where the material derivative of F e can be obtained from Eq. 19 as
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d

dτ
(F e

n) =
d

dτ
( f p)F etr

n + f p d

dτ
(Fetr

n ) (43)

and its inverse from the relation
d

dτ
(F e

nF
e−1

n ) = 0, as

d

dτ
(F e−1

n ) = −F e−1

n

d

dτ
(F e

n)F
e−1

n (44)

IV. REVIEW OF THE MESH-FREE METHOD

The theory of the mesh-free method was developed recently to remove or
reduce the mesh dependence of the conventional finite-element method. Few
references concerning the mesh-free method can be found in literature [13, 17–
23]. The shape function is not a function of the reference domain, but a function
of the material points, and the order of shape function can be changed easily.
Insensitivity to the mesh distortion is a very important feature in nonlinear anal-
ysis and shape optimization. Higher accuracy can be achieved by simply adding
more nodes to the structure without remodeling the total structure. However, the
difficulty in imposing the essential boundary condition and relatively high cost
of analysis are weaknesses in spite of the aforementioned advantages. The mesh-
free method is chosen as an analysis tool for this paper.

Consider an approximation of a scalar displacement z(x) using an integral
transformation with a kernel function φa(y − x) as

z
S(x) = ∫

∞

−∞ φa(y − x)z(y)dy (45)

If the kernel function φa(y − x) has the Dirac delta property, the kernel estimate
zS(x) exactly represents displacement z(x). However, the approximation in Eq.
45 in the finite domain shows errors around boundary and amplitude and phase
errors in the domain.

Liu et al. [20] developed the reproducing kernel particle method (RKPM)
by introducing a modified kernel function that is constructed based on the en-
forcement of reproducing conditions such that the kernel estimate of displace-
ment exactly reproduces polynomials. In RKPM, a displacement function z(x)
is approximated using a modified kernel estimate

z
R(x) = ∫Ω φ̃a(s − y)z(y)dy (46)

where zR(x) is the reproduced displacement function of z(x) and φ̃a(s − x) is the
modified kernel function with a support measure of a to satisfy the completeness
condition.
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To develop a shape function for discrete approximation, Eq. 46 is discret-
ized. Suppose that the domain 0Ω is discretized by a set of nodes [x1, . . . xI, . . . ,
xNP], where xI is the location of node I, and NP is the total number of nodes.
Using a simple trapezoidal rule, Eq. 46 is discretized into

z
R(x) = ∑

NP

I=1

ΦI(x)dI (47)

where ΦI(x) is interpreted as the mesh-free shape function of node I, and dI is
the associated coefficient of approximation, often called the generalized dis-
placement. The shape function ΦI(xJ) depends on the current coordinate xJ,
whereas the shape function of the finite-element method depends only on a
coordinate of reference geometry. It should also be noted that, in general, the
shape function does not bear the Kronecker delta properties, that is, ΦI(xJ) ≠ δIJ.
Therefore, for a general function z(x) that is not a polynomial, dI in Eq. 47 is
not the nodal value of z(x). The domain is discretized by nonoverlapping regions
(integration zone), and standard Gauss integration is used to evaluate the domain
integral (Fig. 1). This domain partitioning is independent of the nodal locations,
and nodes are not interconnected by elements. The response variables (for exam-
ple, displacements) are defined at the nodes independent of the integration
zones.

V. DESIGN OPTIMIZATION

A vehicle bumper is installed to protect the body from impact and to
absorb the impact energy through the plastic deformation. Vehicle design regu-

Figure 1. Domain discretization and mesh-free shape function.
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lations require that the bumper be safe up to a 5 mph impact. In this section,
design optimization of a vehicle bumper structure is performed to reduce the
plastic deformation. The design optimization problem based on a quasi-static
assumption was presented by Kim et al. [8]. However, an actual impact happens
in a very short time period even in a 5 mph impact situation. The same problem
is solved with a transient dynamic assumption in this article.

The cross section of the metal bumper is approximated using 144 mesh-
free particles and 71 integration zones (Fig. 2). The upper and lower parts of
the bumper are attached to the vehicle. The elastoplastic material constants are
Young’s modulus E = 206.9 GPa, the Poisson ratio ν = 0.29, plastic hardening
modulus H = 1.1 GPa, and initial yield stress σy = 0.5 GPa. Linear isotropic
hardening is considered when the plastic consistency condition can be solved
explicitly without iteration. The Newmark implicit time integration method is
used with parameters β = 0.26 and γ = 0.5 and the density ρ = 7800 kg/m3. Re-
sponse analysis is carried out up to 0.01 s. Since the problem includes impact
with a rigid surface, the following linear system of the equation is solved instead
of Eq. 17:

d(∆z k+1
,tt ,z̄) + β∆t 2[a*(z k;∆z k+1

,tt ,z̄) + b*(z k;∆z k+1
,tt ,z̄)]= R(z̄) − a(z k,z̄)

− b(z k,z̄) − d(z k
,tt,z̄), ∀ z̄ ∈Z (48)

Figure 2. Bumper cross-section geometry and shape design parameterization.
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where b(z,z) and b*(z;∆z,z) are the frictional contact variational form and its
linearization, respectively. Figure 3 shows the contour plots of the effective
plastic strain and von Mises stress at the final time, respectively. The vertical
coordinate of the lower contact point remains almost constant for the quasi-
static case because of frictional effects, whereas in the transient dynamic case,
the contact point moves up since no friction is applied during the oscillating
period between a contact and noncontact situation. Most of the contact forces
are retained by two end points. The concentration of the plastic strain appears
at the upper part of the bumper, and the stress concentration magnitude is similar
at the upper and lower parts. Figure 4 shows the time history of the displace-
ment, velocity, and acceleration of the upper contact point. A very high fre-
quency response is observed for acceleration.

The boundary of the bumper is represented by a cubic spline curve, and

Figure 3. Plastic strain and von Mises stress distributions.
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Figure 4. Time history of displacement, velocity, and acceleration.

each particle point on the boundary has a unique parametric representation. The
locations of the control points of each boundary curve are the shape design
parameters. The design velocity vector corresponding to the particle point can
be computed using parametric representation. Since the bumper is usually manu-
factured by a sheet metal stamping process, it is inappropriate to change the
thickness at each section. To maintain the constant thickness of 0.5 cm, design
parameters are linked in the thickness directions corresponding to the inner/
outer control points. The 16 shape design parameters are chosen as shown in
Fig. 2. After choosing the design parameters, the design velocity field is ob-
tained by perturbing the boundary curve in the direction of each design param-
eter.

Using the design velocity information, DSA is carried out. Since the prob-
lem includes impact with a rigid surface, the following linear system of the
sensitivity equation is solved instead of Eq. 40:

d(ż,tt,z̄) + β∆t 2[a*(z;ż,tt,z̄) + b*(z;ż,tt,z̄)] = RV′ (z̄) − aV′ (z,z̄) − bV′ (z,z̄)

− dV′ (z,tt,z̄) − a*(z;ż pr,z̄) − b*(z;żpr,z̄), ∀ z̄ ∈Z (49)

where bV′ (z,z) is the contact fictitious load derived by Kim et al. [12]. The linear
system of Eq. 49 is solved using the factorized tangent stiffness matrix from
response analysis with the fictitious load. No iteration is required to solve the
sensitivity equation, but Eq. 49 is solved for the number of design parameters.
This procedure is quite efficient compared to iterative response analysis. The
sensitivity coefficients of the performance measures are computed after solving



366 KIM AND CHOI

the design sensitivity equation at the final converged load step. Possible perfor-
mance measures are the displacement, stress tensor, internal plastic variables,
reaction force, contact force, and normal gap distance.

To show the efficiency of the proposed method, the computation times of
response analysis and DSA are compared. The response analysis requires 1599
s, whereas DSA requires 853 s for 16 design parameters, which is less then
3.3% of the response analysis time per design parameter. This ratio is quite
efficient compared to the finite difference method. This efficiency is because
the sensitivity equation is solved without iteration, and the factorized tangent
stiffness matrix from response analysis is used. Table 1 shows the sensitivity
coefficients and comparison of sensitivity results with the finite difference re-
sults. Very accurate sensitivity results are obtained even for the highly nonlinear
behavior of the problem. In Table 1, the second column ∆Ψ denotes the first-

Table 1. Comparison of Sensitivity Results

Design ψ ∆ψ ψ′ (∆ψ/ψ′) × 100

u2 ep
15 −0.754098E − 7 −0.754105E − 7 100.00

ep
65 0.313715E − 7 0.313668E − 7 100.02

ep
29 0.441192E − 7 0.441162E − 7 100.01

zx39 0.790973E − 5 0.791092E − 5 99.98
FCx100 −0.657499E − 6 −0.657074E − 6 100.06

u 4 ep
15 0.268699E − 6 0.268712E − 6 100.00

ep
65 −0.843101E − 9 −0.863924E − 9 97.59

ep
29 0.123988E − 6 0.123993E − 6 100.00

zx39 −0.847749E − 5 −0.847586E − 5 100.02
FCx100 0.410724E − 7 0.407515E − 7 100.79

u 6 ep
15 −0.317362E − 6 −0.317349E − 6 100.00

ep
65 −0.640031E − 7 −0.640159E − 7 99.98

ep
29 −0.163051E − 6 −0.163051E − 6 100.00

zx39 −0.190521E − 5 −0.190392E − 5 100.07
FCx100 0.473040E − 6 0.472876E − 6 100.03

u 8 ep
15 0.888094E − 8 0.890589E − 8 99.72

ep
65 0.355128E − 7 0.354794E − 7 100.09

ep
29 −0.981276E − 8 −0.981572E − 8 99.97

zx39 −0.239706E − 5 −0.239333E − 5 100.16
FCx100 −0.184457E − 6 −0.183954E − 6 100.27

u 10 ep
15 −0.642594E − 8 −0.643542E − 8 99.85

ep
65 −0.151580E − 7 −0.151527E − 7 100.03

ep
29 0.172663E − 7 0.172698E − 7 99.98

zx39 −0.154011E − 5 −0.154125E − 5 99.93
FCx100 −0.134372E − 6 −0.134701E − 6 99.76
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(a) (b) (c)

Figure 5. Analysis results at optimum design: (a) optimum geometry; (b) plastic strain;
(c) von Mises stress.

order sensitivity results from the forward finite difference method using a pertur-
bation of τ = 10−6, and the third column represents the sensitivity computation
results of the proposed method. In the first column, z, ep, and FC are such perfor-
mance measures as the displacement, effective plastic strain, and contact force,
respectively. For example, ep

15 denotes the effective plastic strain at integration
zone 15, and FCx100 denotes the x-directional contact forces at the slave node 100.

Since the bumper is mass-produced, any small reduction in weight can
provide significant cost savings. The safety of the bumper, however, is an im-
portant criterion to the performance. Thus, a design optimization problem can
be formulated such that the area of the bumper cross section is minimized with
reduced effective plastic strains and the same contact force as the initial design.

Table 2. Structural Performance Measures

Type Initial Design Optimum Design

ep
max 0.0769 0.0392

Area 24.27 23.90
FC 2.009 2.056
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Figure 6. Design optimization history.

The following equation shows a design optimization problem with 15 con-
straints for the effective plastic strains and 1 for the normal contact force in the
x direction:

Minimize Area

Subject to ep
max ≤ 0.04

FCx(2.0) ≥ 2.0

−1.0 ≤ uj ≤ 1.0 (50)

The design optimization is carried out using the sequential quadratic pro-
gramming method in DOT [24]. The performance values are provided to DOT
from nonlinear mesh-free analysis, and the sensitivity coefficients are provided
using the proposed method. The optimization problem is converged after 12
iterations, and all the constraints are satisfied. Figure 5 shows the optimized
design and the response analysis results. In the optimum design, u5 and u15 are
increased, yielding larger approach angles for both upper and lower parts such
that, after impact, the point contacts of the initial design (Fig. 3) are changed to
a line contact as shown in Fig. 5b. Table 2 compares the maximum of the
effective plastic strain and contact force of the initial and optimum designs.
Most of the design iteration is used to correct constraint violations in the effec-
tive plastic strains while maintaining the contact force.

Figure 6 shows the design history of the cost function and constraints.
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After iteration number 5, no significant changes in cost and constraints are ob-
served. However, design parameters continue to change during these iterations
to find the optimum design. At the optimum design, six constraints for the
effective plastic strains and the normal contact force are active.

VI. CONCLUSION

An accurate and efficient shape DSA and optimization of structural tran-
sient dynamics are proposed for finite deformation elastoplastic materials, in-
cluding impact with a rigid surface. It is shown that the design sensitivity equa-
tion is solved at each converged time step using the same tangent stiffness
matrix as response analysis without iteration. It is noted that the sensitivity
equation is more efficient for the implicit time integration method than for the
explicit method compared to the cost of response analysis.
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