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ABSTRACT
In the post-silicon stage, timing information can be extracted from
two sources: (1) on-chip monitors and (2) delay testing. In the past,
delay test data has been overlooked in the correlation study. In this
paper, we take path delay testing as an example to illustrate how
test data can be incorporated in the overall design-silicon correla-
tion effort. We describe a path-based methodology that correlates
measured path delays from the good chips, to the path delays pre-
dicted by timing analysis. We discuss how statistical data mining
can be employed for extracting information and show experimental
results to demonstrate the potential of the proposed methodology.
Categories and Subject Descriptors: B.8.2 [Hardware]: Perfor-
mance and reliability

General Terms: Algorithms, Performance and Reliability

Keywords: Statistical Timing, Learning, Correlation, Timing, Test

1. INTRODUCTION
As feature sizes of device and interconnect continues to shrink,

design behavior becomes more sensitive to process and environmen-
tal variations and uncertainties. Consequently, pre-silicon modeling
and simulation alone may not be sufficient to answer all design-
related questions. For some questions left unanswered, a common
practice is to analyze the behavior of first-silicon chip samples. For
example, it is difficult to predict the actual speed-limiting paths in
a high-performance processor. Hence, speed-path identification is
usually done by analyzing silicon samples. These paths are often
different from the critical paths estimated by a timing analyzer [1].

During a design process, there can be many effects not modeled
and simulated accurately. Each effect may or may not significantly
impact silicon behavior. One commonly-asked question is among
those effects which ones cannot be ignored. The answer to a ques-
tion of such can be design dependent, design methodology depen-
dent, and process technology dependent.

In the past, the magnitude of mismatch between simulated behav-
ior and actual behavior is relatively small. Unless our design goal is
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to push for extremely high performance, the miscorrelation is often
not analyzed in detail. A common practice is to classify a chip as
defective if its behavior is far from the norm. Then, we utilize vari-
ous diagnosis methods to pin-point the potential locations that may
cause the unexpected behavior, followed by a rather tedious silicon
debug process to uncover the root cause(s). Historically, unexpected
chip behavior is assumed to be mostly due to manufacturing defects.
Hence, diagnosis and silicon debug methods are optimized to look
for defects. These methods analyze chips individually and the anal-
ysis is carried out on (suspected) failing chips only.

Diagnosis and silicon debug [2] [3] [4] [5] can be seen as the
traditional ways to extract information from silicon. If our goal is to
extract design-related information, a typical approach is to look for
systematic failures. For example, a weak gate may cause a collection
of chips to fail timing in a similar way. Diagnosis and debug on a
few of these chips individually may uncover the location(s) of the
weak gate and consequently help to improve the current design.

For helping design, analyzing failure data makes sense if (1) we
have a collection of failing chips that fail in systematic ways and
(2) we can afford to fix the current design. From this perspective,
diagnosis and silicon debug can be used to recover significant yield
loss due to systematic design errors. This is feasible if we can afford
the cost associated with (1) silicon debug that is usually a tedious
process involving the use of expensive equipment and (2) design re-
spin that can be overly expensive in some cases.
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Figure 1: Three categories of chips to analyze

For studying design-silicon correlation, failure data should not be
the only place to look for information. Figure 1 illustrates three cat-
egories of chips that may be analyzed. When analyzing a collection
of supposedly good (and marginal) chips, the data can be inherently
statistical due to process and environmental variations and uncer-
tainties. Moreover, the number of chips to be analyzed can be large
and it would be more effective to analyze their behavior collectively
rather than individually. In this case, traditional diagnosis and debug
methods can be ineffective.

When analyzing failing chips, the objective is clear, that is to iden-
tify the cause(s) of the failures. When analyzing good and marginal
chips, the objective can vary. For example, the goal can be to vali-
date certain assumptions in a timing model. One common approach
is to place on-chip monitors in various locations of a die. For exam-
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ple, process monitors are for checking certain low-level parameters
such as ���� , ���. On-chip voltage monitors can be used to check
IR drop. Test structures, such as ring oscillators, have been used to
monitor integrated circuit performance for many years [6, 7]. Test
structures are primarily designed to provide a measure of perfor-
mance, power and variability of the current design process. The data
measured from test structures relates these measures to the proper-
ties of low level device parameters, in particular to MOSFETs and
to parasitic delay elements [8, 9].

Ring oscillators have several beneficial features. They take up
minimal area and can be placed in small open spaces in a design.
They can be directly measurable by a test probe to minimize test
measurement error. Because ring oscillators are simple circuitry,
there are aspects of design that cannot be studied by the method-
ology. For example, margins are often added at various stages of a
timing analysis flow. The impact of these decisions on silicon timing
usually cannot be measured by using only on-chip monitors.

In addition to on-chip monitors, delay testing can also be used to
study silicon timing behavior. For studying silicon behavior, a sep-
arate testing methodology is often required in order to support the
collection of test data that contain the required information for the
analysis. This delay testing methodology is different from the one
used in production testing. As illustrated in Figure 2, this methodol-
ogy is to test for information. Tests are usually more comprehensive
and provide higher resolution. In contrast, a production delay test-
ing methodology is often optimized for cost and for defect-screening
capability. The size of the test pattern set is an important considera-
tion. The number of test clocks may be strictly limited.

Design Manufacturing

Volume 
production 

testing

Informative
testing

Good chips
Bad chips

Data for
further 
analysis

Sample chips

Figure 2: Informative testing is different from production testing

For example, consider production delay testing where a test clock
is pre-determined. A chip is defective if its delay on any test pat-
tern exceeds this clock. In testing for information, test clock can
be a programmable value. The goal can be to estimate the failing
frequency of each test pattern targeting a specific critical path.
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Figure 3: Three types of correlation analysis

Figure 3 gives an overall picture of design-silicon timing corre-
lation that includes three types of correlation analysis. At the low-
level, a methodology can be based on on-chip monitors. The targets
of the analysis can be the within-die variations of device parame-
ters, voltage, and temperature. These variations are usually large
and considered as important factors to impact timing.

At the high-level, the methodology is based on delay testing. This
type of correlation analysis has been overlooked in the past primarily
due to the fact that delay testing traditionally is optimized for cost
and for defect screening. Because using it for correlation analysis is
rather new, the rest of the paper will focus on this type of analysis.
In particular, the analysis will be based on the differences between
predicted path delays from a timing analysis tool and measured path
delays on a set of silicon samples. We focus on such a path-based

analysis approach to avoid the complication of dealing with noises
such as cross-coupling effects. Therefore, for a path to be included
in the analysis, we require a test pattern that sensitizes only the path.

Figure 3 shows a third type of correlation analysis that tries to
correlate the results between the high-level analysis and the low-
level analysis. The development of this type of methodology needs
to wait until the high-level and low-level methodologies are fully
developed. However, in this paper when we discuss the high-level
analysis, we will also show that the effectiveness of the analysis can
be independent of the low-level parameter shifts.

2. AN INDUSTRIAL EXPERIMENT
This section describes an industrial experiment that studied the

correlation between structural path delay testing (PDT) and a nom-
inal static timing analyzer (STA). The STA is capable of producing
a critical path report. This is a list of paths that the tool has de-
termined having the least amount of timing slack with respect to a
timing requirement. For late-mode analysis, the timing requirement
is usually a setup-time constraint. From the critical path report, the
individual cell delays, net delays, clock skew, setup-time and slack
for the listed critical paths can be determined. Each path can be
expressed as an equation:

�������� �
�

�� �
�

�	 � ����	 � �
���� ���� �
��� (1)

�� are the cell delays (including the launch flip-flop’s delay) , �	
are the net delays, ����� is the clock period, and ���	 is the clock
skew. Structural path delay tests are generated to target paths from
the STA’s critical path report. The tester is programmed to search
for an individual path delay test’s maximum passing frequency. This
measured path delay can be expressed as another equation:

�������� �
�

��� �
�

��	 � �����	 � ��������� ���� (2)

In the above equation, the variables with hats are the actual de-
lays that cannot be directly measured. What we measured from the
tester was, 
������ the minimum passing period (reciprocal of
the maximum passing frequency). Note there is no slack variable,
because at the minimum passing period, we assume the slack is zero.

Although we cannot directly measure some of these delay vari-
ables, in order to explain the difference ��������� � ���������
on all paths, we make some simple assumptions.

�
 �
�

�� �
�

��� �� �
�

�� �
�

��� (3)

�� � ����� � ����� ���	 � ����	

Essentially, for each chip we assume three constants �
� ��� ��
that can be thought as the correction factors for the lumped cell,
lumped net and setup delays. These coefficients give a sense of
where the mismatch between pre-silicon and post-silicon timing lies
individually on each chip. In particular, �
 tracks the mismatch of
cell characterization, �� tracks the mismatch of the interconnect ex-
traction and �� tracks the pessimism of the setup time constraint of
the flip flop. Due to the resolution of the testing, we decided not to
have a correction factor on the skew.

We solve for the coefficients individually for each chip. This
is an over-constrained system of equations as the number of paths
is greater than the number of mismatch coefficients. This over-
constrained system of equations can be solved in a least-square man-
ner using Singular Value Decomposition to find the best fit.

2.1 Results on 240 microprocessor chips
The experiment was done based on 495 critical paths. These

are latch-to-latch paths without passing through embedded memo-
ries. Results were collected on 240 packaged chips belonging to
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two wafer lots manufactured several months apart. These chips are
industrial high-performance microprocessors.
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Figure 4: Histograms of mismatch coefficients �
 , ��

Figure 4 presents the distributions of �
 and �� from the two
lots. �� distributions are similar to �
 distributions and hence, are
not shown. The �
 and �� results clearly show that STA are overly
pessimistic, i.e. all coefficients are less than one. This may be par-
tially because the chips were manufactured at a later point of the
process, and the cell characterizations were done at an earlier point.

Unlike Figure 4-(a), the two distributions in Figure 4-(b) are sep-
arated apart. This indicates that net delays are more sensitive to the
lot shift. The analysis is inconclusive because without proper tools
and methodologies, we couldn’t perform more detailed study. We
note that equation 3 lumps all the effects into three parameters and
these parameters are estimated on each chip individually. This is a
very rough analysis. We would need a more sophisticated method to
study the data further.

3. MODEL-BASED LEARNING
Simulated

data
Measured 

data

Model
M( p1,p2,…,pn)

difference
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Figure 5: Model-based learning

If we have some idea on the major causes for the difference be-
havior, we may utilize a model-based learning approach to validate
the idea. A model ����,��, � � �, ��� based on a set of � parameters
is assumed in the learning. The goal of learning is to quantify the
values of these parameters based on the difference data.

For example, in [10] the authors assume that the difference be-
tween predicted path delays and measured path delays is mainly due
to un-modeled effect from within-die delay variation. A grid-based
model was used and the unknown parameters to estimate became
spatial delay correlations (within grid and across grids) [12]. The
authors proposed a Bayesian based inference technique to quantify
these parameters [13].

Because the model and the number of parameters are fixed in ad-
vance, model-based learning can be seen as a way of parametric
learning [11]. The advantage is that we can begin by assuming a
model that has a link to some physical interpretation. The limita-
tions are twofold. First, there are aspects in the behavior difference
that may not be explainable through a clearly defined model. Sec-
ond, if a model is too complex, we may not have enough test data to
quantify the values of all parameters with high confidence.

The limitations motivate us to take a non-parametric learning ap-
proach where no fixed model is assumed in advance. In this case,
the goal is no longer to estimate the values of certain parameters. In
the following, we will formulate a new goal.

4. IMPORTANCE RANKING
Suppose we have a timing model made up of � delay entities

where each entity consists of a number of delay elements. Suppose

in total there are � delay elements. To clarify, a delay entity is an
abstract term that can be flexibly defined by a user. Figure 6 illus-
trates the difference between a delay entity and a delay element. For
example, an entity can be a standard cell (i.e. Nand, Nor, etc.). In a
timing model, a standard cell consists of multiple pin-to-pin delays.
These delays are delay elements in the entity. An entity can also be
a group of routing patterns for nets. For example, after delay calcu-
lation, the delay of each net is added into the model. Then, each net
delay becomes a delay element of the entity.

Delay Entity Delay Element
Cells

Groups of Nets

Pin to Pin Delay

ei

ei

Individual Wire Delay

Figure 6: Delay entity Vs. delay element

Suppose we are given a set � of � delay elements, ���� � � � � ���
and a set of 
 critical paths ���� � � � � ��, that are made up of those
delay elements. In simulation, the delay of each path �� is a func-
tion �����. In our case, �� is the estimated timing produced by a
timing analysis tool. Let � � ������� � � � � ����� In test, suppose
that 
 path delays are measured on � sample chips. The result is
a � �
 matrix � � � ���� � � � � ���. Each ��� is a column vector
����� � � � � ���

� . Each �	� is the delay of path � on chip �.
Assume we have fully characterized each entity to the best we

could. Also assume that on silicon there is a systematic deviation in
the delays of each entity. Our goal is to analyze ��, � , �� and rank
delay entities in terms of their deviations.

4.1 Feature ranking in binary classification
To rank delay entities, we propose a methodology consisting of

the following steps: (1) We convert the dataset into a binary clas-
sification problem. (2) We apply a learning algorithm for binary
classification on the dataset to build a learned model. (3) From the
learned model, we obtain the importance of each feature as a value.
Here, a feature in the learned model refers to a delay entity. (4) We
use the feature importance values to rank entities.

To simplify the discussion, assume that we are using a nominal
static timing analysis tool. Therefore, � is a vector of 
 estimated
path delays. Let ����� ���� � � � � �� be the average path delays
measured on � chips based on the data matrix �. The difference is
a vector ��� ����� ����, � � �, ��. Each path �� consists of a set
of � delay elements ���� , � � �, ����. Recall that these elements come
from � delay entities. Let � � � ���� � � � � ���. Each �	 is the sum of
all delays in ���� � � � � � ���� where these delays come from the entity
�. �	 � � if no delays come from the entity. In this way, each path
is represented as a vector of � delays. The input dataset becomes
	���� �� ���, � � �, �� � ���.
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Figure 7: Converting to a binary classification problem

The first step in our methodology is to convert the dataset into
a binary classification problem. Given a threshold �!��!���, we
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define ��� � �� if �� 
 �!��!��� and otherwise ��� � ��. This
produces a new dataset ������ �� ����, � � �, �� � ����, as shown in
Figure 7 for �!��!��� � �.

4.2 Support vector classifier
Given ��, we then apply a learning algorithm to build a binary

classifier. Then, we analyze the structure of this classifier to quan-
tify the importance of each entity. There are some classifiers whose
structures allow the importance of variables to be evaluated easily
and others that do not. This work examines one classifier that be-
longs to the former, the Support Vector Machine (SVM) classifier.

Given �� � � �" � �� �, SVM implements a family of algorithms
that can work with a variety of kernel functions [14]. We only use
the linear kernel #�� �� � 	� � �� � � � 	� which is simply the dot
product of the two vectors. With a linear kernel, the SVM classifier
is a hyperplane �	 �� �$. If the two-class data are linearly separable,
�	� $ can be obtained from solving the optimization problem:
minimize��	 � �	�subject to ������	 �� ��� $�  �� � � �� � � � �
 (4)

This is a hard-margin algorithm that finds the maximum-margin
hyperplane. The margin from the resulting hyperplane �	� � � � $ to

its nearest point is �%
�
� �	� � �	��, where �	� is the optimal solution

to equation (4). The optimization problem can be solved in its dual
form using Lagrange method [14]:

maximize
�

��� �� �
�

�

�

���

�

	�� ���	���	�� � � � 	�

subject to �
�
���

����� � � and ��  � (5)

where ��� �	 are Lagrange multipliers. Solving the problem re-
sults in optimal solution ���. The solution to the primal becomes
�	� �
�

��� ���
�

� � �. The value $ is then decided based on the opti-
mal primal solution �	�. Figure 8 illustrate the relation between ���

and �	�. We notice that each � is associated with a path and each 	
is associated with a delay entity.
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Figure 8: Illustration of ��� and ��

If �� is not linearly separable, in the primal formulation, we can
introduce slack variables &�, � � �� � � � �
 and the minimization
objective becomes ��	 � �	� � '

�
����&��

�. ' constrains the La-
grange multiplier, i.e. '  ��  �. This becomes a soft-margin
algorithm [14] and the approach to solve it is similar to the linearly
separable case describe above.

It is interesting to note that in the optimal solution ��� � ���� , � � �,
���, some ��� � �. If ��� � �, then essentially � � (path �) has no
impact on the construction of the classifier. Hence, �	� depends only
on the paths whose � values are not zero. In our methodology, we
therefore use 	�

	 to rank cell �	 .

4.3 Intuition behind using 	�

	

We observe that 	�

	 does not directly measure the delay devia-
tion of entity �. Note that the value of the Lagrange multiplier ���
measures the importance of the vector � � (of path �) in construct-
ing the classifier. A large ��� indicates that the vector � � is a strong
constraint for the resulting hyperplane.

 �	 is the amount of estimated delay contributed from cell �	 to
path ��. Hence,  �	 ( � and ��� ( �. In addition, �� � ���� ��.
�� � �� means that STA under-estimates the path delay. �� � �
means that STA over-estimates. Hence, the sign of each �����  �	 is
decided by the sign of ��. Therefore, each �����  �	 is a measure of
the importance of cell �	 in contributing to the over-estimation or
under-estimation. 	�

	 is the sum of this importance over all paths
and hence, is a measure of the overall importance of cell �� in con-
tributing to the over-estimation or under-estimation.

5. EXPERIMENTS
In this section we discuss the experiments to validate the effec-

tiveness of the above importance ranking methodology. Recall that
our objective is to rank delay entities based on their deviations from
the modeled delay values. It is important to note that the ranking
methodology above does not measure these deviations directly. In
this section, we will describe a linear uncertainty model for the de-
lay deviations. Then, we will compare the importance ranking to the
assumed true ranking based on this uncertainty model.

5.1 The linear uncertainty model
To simplify the discussion, we assume for now that a delay entity

is a standard cell and delay elements are pin-to-pin delays in the cell.
Later in Section 5.5, we will show that our framework can be easily
extended to include analysis on net delays.

Assume that the � delay elements come from � standard cells,
���� � � � � ���. We also assume that the actual delay of ��, (of a stan-
dard cell �	 ) on the silicon can be represented as:

��� � ������ �����
���	 �����
���
� ������ ����


���
	 ����

���
� ��� (6)

where 
����� is the estimated mean delay, ����� is a Gaussian ran-
dom variable with mean zero, which represents the estimated stan-
dard deviation. 
���
���	 represents the mean delay deviation for
every pin-to-pin delay of the cell. 
������� represents the addi-
tional mean delay deviation for �� only. ���
���	 and ������� are the
deviations on the standard deviation, which both are Gaussian vari-
ables with mean zero. Notice that ���
���	 and ������� can be used
to result in reduced delay variation. )� is a zero-mean Gaussian
variable which can be used to model noise such as measurement
error. We assume that in the timing model, �� is characterized only
as �� � 
����� ������ . Because ���
���	 , ������� , and )� are assumed
to be Gaussian with mean zero, we can also refer them as the stan-
dard deviation values. Given a cell �	 , we have two types of uncer-
tainty, *��������	� � 
���
���	 and *��������	� � ���
���	 .
In the experiments, we randomly select the values for 
���
���	 ,

������� , ���
���	 , ������� , and )� to perturb the statistical delay li-
brary. Then, we perform Monte Carlo simulation based on the per-
turbed library to produce the results of � samples. We use the results
as if they come from measurement on � sample chips.

From the perturbed library, we can obtain the assumed true rank-
ing based on the actual deviation values used to perturb the library.
In the following we discuss results based on 
���
���	 . Results on
���
���	 are omitted because they show similar trends.

5.2 Experimental setup
We took a cell library of 130 cells characterized based on a 90nm

technology. The characterization gives each pin-to-pin delay ��, a
mean delay value 
����� and a standard deviation ����� . In this
baseline study, we select 
�� 	���� random paths. Each path con-
sists of 20 to 25 delay elements. These paths are analyzed through
a statistical static timing analysis (SSTA) tool [15] to obtain a mean
and standard deviation for each path delay. The cell library is then
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perturbed using the linear uncertainty model. Then, we perform
Monte-Carlo simulation to produce � � ���� samples.

If our objective is to rank cells based on 
���
���	 , then the ini-
tial dataset is converted into measured mean path delays. If the ob-
jective is to rank cells based on ���
���	 , standard deviation of each
path delay is calculated based on � samples. In both cases, we
use the method described before to produce the difference dataset
	���� �� ���, � � �, �� � ���. Then, a value �!��!��� is selected
to convert 	 into a binary classification dataset ��. The dataset
�� is analyzed using SVM and the weight vector �	� is calculated.
From the values of 	�

	 , we obtain a ranking. This rankings is then
compared to the true ranking that is based on either 
���
���	 (or
�
���
���	 �) or ���
���	 (or ����
���	 �).

5.3 Correlation between 	� and 
���
���	


���
���	 is sampled from a Gaussian distribution+�,� -��where
, � � and - � ���

�
� �	 where �	 is the average of all mean de-

lays in the cell. Hence, we want 
���
���	 to be roughly between
�
�� of �	 . In a similar way, individually we add 
������� to
the pin-to-pin delay �, which is roughly between ���� of 
����� .
The ���
���	 , ������� , )� have no impact because we focus ranking on

���
���	 . Therefore, their numbers are arbitrarily assigned. For ex-
ample, we let ���
���	 be a random variable whose ��- is �
�� of
�	 , ������� be a random variable whose ��- is �
�� of 
������� ,
and )� be a random variable whose ��- is �	� of �	 .
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Figure 9: ����
���	 and path delay differences

Figure 9-(a) shows the histogram of 
���
���	 , � � � � � � ���,
in terms of their actual values in picoseconds. Figure 9-(b) shows
the histogram of path delay differences, i.e. ��� � � � � ����� . We first
select �!��!��� � � to split the distribution in the middle so that
��� � �� if ��  � and otherwise ��� � ��. The new dataset is then
given to SVM to calculate �	�.
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Figure 10: Correlation on normalized � and ����
���

Next, we normalize the values of 
���
���	 and 	�

	 into the same
range ��� ��. Then, we do an X-Y scatter plot for every point using
the normalized 
���
���	 as the Y value and normalized 	�

	 as the
X value. Figure 10 shows the scatter plot. It is interesting to notice
in Figure 10 that on the top right there is one outlier cell and then
a gap followed by three cells clustering. When we compare this
figure to figure 9-(a), we can see that on the right (positive) side of
the histogram there is one high 
���
���	 and then there is a gap
followed by three cells with very similar 
���
���	 . If we compare

the (bottom) lefts of both figures, the cells are grouped very closely
together in both figures and there is no cell as a clear outlier.

x = y line

Cells with largest 
negative uncertainty

T
ru

e 
R

an
ki

n
g

Ranking based on svm w*
j

Cells with largest 
positive uncertainty

Figure 11: SVM �

	 ranking vs. true ranking

For each cell �	 , we obtain its SVM ranking based on 	�

	 and true
ranking based on 
���
���	 . Let them be ���	 and ���	 . We
then do an X-Y scatter plot for every point ����	 � ���	�. Fig-
ure 11-(a) shows the ranking correlation result. We observe good
correlation between the two rankings, especially on those cells with
the largest uncertainties. Notice that there are two highly correlated
ends. The cells with smaller ���	 and ���	 (bottom left) have
large negative uncertainties and the cells with larger ���	 and
���	 (top right) have large positive uncertainties.

5.4 Impact of systematic ���� shift
In this section, our goal is to show that a systematic process shift

on a low-level parameter such as ���� would not degrade the effec-
tiveness of the proposed ranking method. This is a desired feature
because our methodology analyze design-silicon correlation at the
high level of Figure 3. As explained before, one can also utilize on-
chip monitors to study the correlation at the low level, i.e. SPICE
parameter level. Therefore, we desire our methodology to be appli-
cable independently of a low-level correlation methodology.

We simulate the effect of a ��� systematic shift in ���� and ob-
serve its impact on the ranking accuracy. Recall that we use a stan-
dard cell library that was characterized with 90nm technology. We
re-characterized the library with 99nm technology and then injected
the same amount of the deviations as that in the baseline study. This
new and perturbed library is then used in Monte Carlo simulation
to produce the measured path delays. Note that the predicted delays
are still based on the original 90nm statistical timing library.

Figure 12-(a) shows the path delay distributions from the pre-
dicted SSTA results based on the 90nm library and the measured
path delay results based on the perturbed 99nm library A clear shift
is visible. Figure 12-(b) shows the correlation between 
���
���	

and 	�

	 . Because of the shift, we see that the y-axis in Figure 12-(b)
shifts left. Compared the result to that shown in Figure 10, we see
that except for the shift of the axis, the low-level parameter does not
degrade the effectiveness of the method.
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Figure 12: Impact of ���� on the proposed method

5.5 Including net delays in the ranking
As described in Section 4, the definition of a delay entity is artifi-

cial. Once this definition is given, the proposed methodology ranks

388

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 21, 2009 at 15:01 from IEEE Xplore.  Restrictions apply. 



entities according to their importance. In the above experiments, we
simply let an entity be a cell in a library. We can easily extend the
definition of entity to include net delays.

As shown in Figure 6, a net entity should include a set of nets
whose routing patterns can be deemed as similar. For example, a
group of patterns can be defined as similar if their lithographic ef-
fects are similar. As far as our methodology concerns, the definition
of this similarity is given by the user. In the experiment described
below, we take the liberty to group nets into 100 entities. The as-
sumption is that there is a systematic timing uncertainty on every
net that belong to the same entity. Then, we would like to rank both
cell and net entities together.

For this experiment we need modify equation 6. In addition to

���
��� and 
������ for a cell entity, we include 
������ and

������, where ��� stands for a systematic shift on the net delays
within the net entity and ��� stands for individual shift on each net
delay. Note that 130 cell entities and 100 net entities together give us
230 entities to rank. Again, we use �
�� on the systematic shifts
and ���� on the individual shifts as before. In the following, we
use 
���� to indicate 
���
��� and 
������ together.
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In Figure 13-(a), we see two clear gaps at both ends on the
����	
histogram. It is interesting to observe that in Figure 13-(b), we also
observe the same two gaps at the two ends. This shows again that in
the SVM ranking, the most uncertain entities stand out as outliers.
We also see that the impact of going from 130 entities to 230 on
ranking accuracy is relatively small.

6. SUMMARY AND DISCUSSION
Design-silicon timing correlation can mean different things in dif-

ferent applications. When the focus of analysis is on failing samples,
diagnosis and silicon debug aim to uncover the root causes for the
failures. When the focus of analysis is on good and marginal chips,
on-chip monitors aim to measure the effects on low-level parameters
from process, voltage, and temperature variations. When these two
approaches are not applicable, the third option is to analyze delay
test data. While the first two approaches have been employed in the
industry for years, this paper discusses a path-based methodology
for correlating test data to timing analysis.

Delay testing has traditionally been optimized for cost and for
capturing defects. Changes need to be made to the tools, method-
ologies and ATEs if we want to utilize delay testing for extract-
ing design-related information. On the ATPG side, a more flexible
model is required for guiding test pattern generation. This model
should be easily adjustable by a user to target specific design aspects
of interest. On the methodology side, a separate methodology spe-
cific for design information gathering needs to be developed. This
methodology may need to integrate with the existing design tools.
On the ATE side, a tester should allow related data to be gathered
more easily. In the past few years, we have observed changes to the
tools, methodologies and ATEs to the directions described above,
although they are not necessary for the purpose of extracting design-

related information as discussed in this paper.
Even with delay testing, it is impossible to test for all design con-

cerns left unaddressed in the pre-silicon design process. Take the
path-based methodology as an example. There are limited num-
ber of paths we can test at the post-silicon stage. However, there
are enormous number of cells and wires in a design. It is virtually
impossible to utilize the proposed method to evaluate the timing de-
viations for all of them. This raises an important question for the
proposed path-based methodology. That is, how to select paths?
Without proper path selection, analyzing path delay data may not
help to address the key concerns.

In summary, an effective design-silicon correlation framework
needs to address three important aspects of the problem: (1) infor-
mation content, (2) information decoding, and (3) application of the
information. Silicon data should contain the required information
for analyzing the design aspects of interest. Containment can be
thought as if given unlimited computational resource, the required
information can be decoded from the data. Then, efficient methods
should be developed to decode the information as much as possible.
This information should be in the form that can be easily applica-
ble. This paper only discusses the second aspect and hence, the
path-based methodology is only the first step for developing a more
comprehensive correlation framework. This framework should also
be integrated with the on-chip monitor based correlation analysis as
described in Figure 3.
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