
Design Space Exploration and Optimization of Path
Oblivious RAM in Secure Processors

Ling Ren, Xiangyao Yu, Christopher W. Fletcher ∗, Marten van Dijk and Srinivas Devadas
MIT CSAIL, Cambridge, MA, USA

{renling, yxy, cwfletch, marten, devadas}@mit.edu

ABSTRACT

Keeping user data private is a huge problem both in cloud
computing and computation outsourcing. One paradigm to
achieve data privacy is to use tamper-resistant processors,
inside which users’ private data is decrypted and computed
upon. These processors need to interact with untrusted ex-
ternal memory. Even if we encrypt all data that leaves the
trusted processor, however, the address sequence that goes
off-chip may still leak information. To prevent this address
leakage, the security community has proposed ORAM (Obliv-
ious RAM). ORAM has mainly been explored in server/file
settings which assume a vastly different computation model
than secure processors. Not surprisingly, näıvely applying
ORAM to a secure processor setting incurs large performance
overheads.
In this paper, a recent proposal called Path ORAM is

studied. We demonstrate techniques to make Path ORAM
practical in a secure processor setting. We introduce back-
ground eviction schemes to prevent Path ORAM failure and
allow for a performance-driven design space exploration. We
propose a concept called super blocks to further improve Path
ORAM’s performance, and also show an efficient integrity
verification scheme for Path ORAM. With our optimizations,
Path ORAM overhead drops by 41.8%, and SPEC bench-
mark execution time improves by 52.4% in relation to a
baseline configuration. Our work can be used to improve the
security level of previous secure processors.

∗Christopher Fletcher was supported by a National Sci-
ence Foundation Graduate Research Fellowship, Grant No.
1122374, and a DoD National Defense Science and Engi-
neering Graduate Fellowship. This research was partially
supported by the DARPA Clean-slate design of Resilient,
Adaptive, Secure Hosts (CRASH) program under contract
N66001-10-2-4089. The opinions in this paper don’t neces-
sarily represent DARPA or official US policy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

1. INTRODUCTION

1.1 Motivation
Security of private data when outsourcing computation

to an untrusted server is a huge security problem. When
an untrusted server receives private data from a user, the
typical setup places the private/encrypted data along with
the program in a tamper-proof environment (e.g., secure pro-
cessor or coprocessor attached to the server), at which point
the data is decrypted and the program is run [13, 23]. Secure
coprocessors such as Aegis [23] and XOM [13] or Trusted
Platform Module (TPM) based systems generally assume
the program being run is trusted–that is, not intentionally
malicious and believed to be free of bugs that could leak
information about the private data, through pin traffic for
example.
Having a trusted program is a lofty and sometimes im-

practical assumption; the program’s source code may be
complex or even hidden and therefore not certified by the
user. For example, the user may request that a program
(e.g., medical diagnosis software) be run on the data, but
not know the details of the software. The server itself may
be honest-but-curious or even malicious. Security is bro-
ken when the server can learn something about the private
data by applying the client program or some other curious
program to the encrypted data and monitoring the secure
processor’s side channels such as external pin traffic.

We note that some efforts to limit leakage through memory
access patterns (e.g., HIDE [30]) have applied random shuf-
fling to small chunks of memory. While HIDE and related
techniques are quite efficient, obfuscation over small chunks
does not achieve security when the untrusted server specifies
the client program (see Section 6.2).

Completely stopping information leakage through memory
access patterns requires the use of Oblivious RAMs (ORAMs)
[7, 15, 8]. ORAMs make the sequence of memory locations
accessed indistinguishable from a random sequence of ac-
cesses, from a cryptographic standpoint. There has been
significant follow-up work that has resulted in more efficient
ORAM schemes [19, 21]. But till recently, ORAM has been
assumed to be too expensive to integrate into a processor
from a performance overhead standpoint.

Our focus in this paper is on Path ORAM, a recent ORAM
construction introduced in [20]. A recently-proposed secure
processor architecture called Ascend performs encrypted
computation assuming untrusted programs and furthermore
uses Path ORAM to obfuscate memory access patterns [3,
4]. We use the Path ORAM configuration in [3] as a baseline

in this paper. Our focus here is on optimizing the Path
ORAM primitive in a secure processor setting, so it can be
more efficiently integrated into all types of secure processors,
including Ascend.

1.2 Our Contribution
We believe ORAM is a useful cryptographic primitive in

many secure architecture settings, but it has not received
much attention from the architecture community thus far.
In this paper, we make the following contributions:

1. We present optimizations to Path ORAM to make it
more suitable for implementation in a secure processor
setting;

2. We give a provably-secure background eviction scheme
that prevents so-called Path ORAM failure (defined in
Section 2) and enables more efficient ORAM configura-
tions;

3. We shrink the dimensions of failure probability and
performance overhead to a single dimension, allowing
for easy design space exploration;

4. We propose the notion of super blocks, further improv-
ing Path ORAM performance;

5. We show how to efficiently implement Path ORAM on
commodity DRAM;

6. We show that combining all of our optimizations results
in a 41.8% reduction in Path ORAM overhead and a
52.4% improvement on SPEC benchmarks execution
time in relation to a baseline Path ORAM configuration;
and

7. We propose an efficient integrity verification layer for
Path ORAM.

Integrity verification [6] and encryption [13] [23] of mem-
ory contents were initially considered difficult to do without
serious performance degradation prior to architectural re-
search (e.g., [22], [28], [26], [10]) that addressed processor
performance bottlenecks. We take a similar first step for
Oblivious RAM in this paper.

1.3 Paper Organization
We give background on ORAM and describe Path ORAM

in Section 2. Our improvements to Path ORAM are described
in Section 3, and evaluation results are provided in Section 4.
Section 5 introduces a efficient integrity verification scheme
for Path ORAM. Related work is described in Section 6, and
we conclude the paper in Section 7.

2. OBLIVIOUS RAM
Suppose we are given program P with input M and any

other program P ′ with input M ′ and compare the first T
memory requests made by each (denoted transcriptT (P (M))
and transcriptT (P

′(M ′))). A transcript is a list of requests:
each request is composed of an address, operation (read
or write) and data (if the operation is a write). Oblivi-
ous RAM (ORAM) guarantees that transcriptT (P (M)) and
transcriptT (P

′(M ′)) are computationally indistinguishable.
Crucially, this is saying that the access pattern is independent
of the program and data being run.

A simple ORAM scheme that satisfies the above property
is to read/write the entire contents of the program memory
to perform every load/store. To hide whether a particular
block was needed in the memory scan (and if it was, whether
the operation was a read or a write), every block must be
encrypted using randomized encryption (e.g., AES in CTR

mode), which means that with overwhelming probability
the bitstring making up each block in memory will change.
With this scheme, the access pattern is independent of the
program or its data but clearly it will have unacceptable
overheads (on order the size of the memory). Modern ORAM
schemes achieve the same level of security through being
probabilistic. In this work, we focus on a recent proposal
called Path ORAM [20] because of its practical performance
and simplicity.

ORAM assumes that the adversary sees transcriptT (P (M))
as opposed to other program state for P (M). A trusted
ORAM client algorithm, which we refer to as the ORAM
interface, translates program memory requests into random-
looking requests that will be sent to an untrusted external
memory where data is actually stored. (In our secure proces-
sor setting, the ORAM interface is analogous to a memory
controller.) Note that the ORAM interface’s job is only to
protect against leakage through transcriptT (P (M)), given a
T fixed across all transcripts. If the adversary compares two
transcripts of different length, clearly the adversary can tell
them apart. Furthermore, when each access in the transcript
is made can leak information. Ascend [3, 4] deals with these
leakage channels by forcing periodic requests of ORAM and
predetermined program running time. However, this paper
will focus only on making the ORAM primitive as efficient
as possible since it is a least-common-denominator in any
scheme.

2.1 Basic Path ORAM
In Path ORAM, the external memory is structured as a

balanced binary tree, where each node is a bucket that can
hold up to Z blocks. The root is referred to as level 0, and the
leaves as level L. This gives a tree with L+ 1 levels, holding
up to N = Z(2L+1 − 1) data blocks (which are analogous to
processor cache lines in our setting). The remaining space
is filled with dummy blocks that can be replaced with real
blocks as needed. As with data blocks in the näıve memory
scan scheme, each block in the ORAM tree is encrypted with
randomized encryption.

The ORAM interface for Path ORAM is composed of two
main structures, a stash1 and a position map, and associated
control logic. The position map is an N -entry lookup table
that associates the program address of each data block with
a leaf in the ORAM tree. The stash is a memory that stores
up to a small number, C, of data blocks from the ORAM
tree at a time. Now we describe how Path ORAM works.
Readers can refer to [20] for a more detailed description.
At any time, each data block stored in the ORAM is

mapped (at random) to one of the 2L leaves in the ORAM
tree via the position map (i.e., ∀ leaves l and blocks b,
Prob(b is mapped to l) = 1/2L). Path ORAM’s invariant
(Figure 1) is: If l is the leaf currently assigned to some block
b, then b is stored (a) in some bucket on the path from the
root of the ORAM tree to leaf l, or (b) in the stash within
the ORAM interface. The path from the root to leaf l is also
referred to as path l.
Initially, the ORAM is empty and the position map asso-

ciates each program address with a random leaf. Suppose a
program wants to access some block b with program address
u. It makes the request through the ORAM interface via
accessORAM(u, op, b′):

1This is the local cache in [20]. We changed the term to
distinguish it from a processor’s on-chip cache.

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8Leaf l = 6
L

Stash

External memory

ORAM interface

Path to leaf l

Stash stores up to C blocks

Z = 4 blocks

Figure 1: A Path ORAM of L = 3 levels. At any
time, blocks mapped to leaf l = 6 can be located in
any of the shaded structures (i.e., on path 6 or in
the stash).

1. Look up the position map with u, yielding leaf label l.
2. Read and decrypt all the blocks along path l. Add all

the real blocks to the stash. Path ORAM’s invariant
guarantees that if block b exists, it must be in the stash
at this point.

3. If op = read, return b if it exists; otherwise return nil.
If op = write, replace b with b′ if it exists; otherwise
add a new block b′ to the stash.

4. Replace l with a new randomly-selected label l′.
5. Evict and encrypt as many blocks from the updated

stash into path l in the ORAM tree. If there is space
in any of the buckets along the path that cannot be
filled with data blocks, fill that space with encryptions
of dummy blocks.

We will refer to steps 2-5 as accessPath(u, l, l′, op, b′) later in
the paper.
On a path read, all the blocks (including dummy blocks)

are read and decrypted, but only real blocks are stored into
the stash. For example in Figure 2, the dummy block in leaf
3 is not put into the stash. Address u = 0 is reserved for
dummy blocks.
Step 4 is the key to Path ORAM’s security: whenever

a block is accessed, that block is randomly remapped to a
new leaf in the ORAM tree (see Figure 2 for an example).
accessORAM() leaks no information on the address accessed,
because a randomly selected path is read and written on every
access regardless of the program memory address sequence.
Furthermore, since data/dummy blocks are put through
randomized encryption, the attacker will not be able to tell
which block (if any) along the path is actually needed.

Step 5 is the ORAM ‘shuffle’ operation from the litera-
ture [8]. The idea is that as blocks are read into the stash,
in order to keep the stash size small, step 5 tries to write as
many blocks to the tree as possible, and tries to put each
block as close to the leaves as possible. In the top right box
(# 3) in Figure 2: (b, 1) can only go to the root bucket since
it only shares the root bucket in common with the path 3;
(c, 2) can no longer be written back to the tree at all since it
only shares the root bucket with path 3, and the root bucket
is now full; (d, 4) can be mapped back to the bucket between
the leaf and the root; no block goes to leaf 3, so that bucket
needs to be filled up with the encryption of a dummy block.
After all of the above computation is done, the ORAM inter-
face writes back the path in a data-independent order (e.g.,
from the root to the leaf).

2.2 Randomized Encryption for Path ORAM
The Path ORAM tree and stash have to store a (leaf,

program address, data) triplet for each data block. Let B be
the data block size in bits. Each leaf is labeled by L bits and
the program address is stored in U = ⌈log2 N⌉ bits. Then
each bucket contains Z(L + U + B) bits of plaintext. As
mentioned, the protocol requires randomized encryption over
each block (including dummy blocks) in external memory,
adding extra storage to each bucket. We first introduce a
strawman randomized encryption scheme, and then propose
a counter-based randomized encryption scheme to reduce the
bucket size.

2.2.1 Strawman scheme

A strawman scheme to fully encrypt a bucket (used in
[3]) is based on AES-128: On a per-bucket basis, apply the
following operation to each block in the bucket:

1. Generate a random 128-bit key K′ and encrypt K′

using the processor’s secret key K (i.e., AESK(K′)).
2. Break up the B plaintext bits into 128-bit chunks (for

AES) and apply a one-time-pad (OTP) to each chunk
that is generated through K′ (i.e., to encrypt chunki,
we form the ciphertext AESK′(i)⊕ chunki).

The encrypted block is the concatenation of AESK(K′) and
the OTP chunks, and the encrypted bucket is the concate-
nation of all of the Z encrypted blocks. Thus, this scheme
gives a bucket size of M = Z(128 + L+ U +B) bits where
Z(L+U +B) is the number of plaintext bits per bucket from
the previous section. Note that since we are using OTPs,
each triplet of (L+ U +B) bits does not have to be padded
to a multiple of 128 bits.

2.2.2 Counter-based scheme

The downside to the strawman scheme is the extra 128 bits
of overhead per block that is used to store AESK(K′). We
can reduce this overhead by a factor of 2 · Z by introducing
a 64-bit counter per bucket (referred to as BucketCounter).
To encrypt a bucket:

1. BucketCounter ← BucketCounter + 1.
2. Break up the plaintext bits that make up the bucket into

128-bit chunks. To encrypt chunki, apply the following
OTP: AESK(BucketID||BucketCounter||i) ⊕ chunki,
where BucketID is a unique identifier for each bucket
in the ORAM tree.

The encrypted bucket is the concatenation of each
chunk along with the BucketCounter value in the clear.
BucketCounter is set to 64 bits so that the counter will not
roll over. BucketCounter does not need to be initialized; it
can start with any value.
This scheme works due to the insight that buckets are

always read/written atomically. Seeding the OTP with
BucketID is important: it ensures that two distinct buckets
in the ORAM tree will not have the same OTP. A new ran-
dom key K is picked each time a program starts, so that the
OTPs used across different runs will be different to defend re-
play attacks. With this scheme, M = Z(L+U +B)+64 bits
which we assume for the rest of the paper.

2.3 Hierarchical Path ORAM
The N · L-bit position map is usually too large, especially

for a secure processor’s on-chip storage. For example, a 4 GB
Path ORAM with a block size of 128 bytes and Z = 4 has
a position map of 93 MB. The hierarchical Path ORAM

1

Leaf 1 Leaf 2 Leaf 3 Leaf 4

b, 3

c, 2

f, 1 a, 4

d, 4Stash 2

Leaf 1 Leaf 2 Leaf 3 Leaf 4

f, 1

b, 1c, 2d, 4 3

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

b, 1

f, 1 a, 4

c, 2

e, 1 e, 1 e, 1

Read path 3 into stash
Remap block B to

 a new random leaf
Write back path 3

4

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

b, 1

f, 1 a, 4

c, 2

e, 1

5

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

a, 4

f, 1e, 1c, 2b’, 4

Read path 1 into stash

6

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

c, 2

f, 1 a, 4

b’, 4

e, 1

Remap block B and

replace data with B’
Write back path 1

Figure 2: An example Path ORAM operation (Z = 1 and C = 4) for reading block b and then updating b to
be b′. Each block has the format: ‘block identifier’,‘leaf label’ (e.g., (b, 3)). If the program address for b is u,
steps 1-3 correspond to accessORAM(u, read,−) and steps 4-6 are accessORAM(u,write, b′) from Section 2.1. An
adversary only sees the ORAM interface read/write two random paths (in this case path 3 and path 1).

addresses this problem by storing the position map in an
additional ORAM (this idea was first mentioned in [21]).
We will refer to the first ORAM in a hierarchy as the

data (Path) ORAM or ORAM1. ORAM1’s position map
will now be stored in a second ORAM ORAM2. If ORAM2’s
position map is still too large, we can repeat the pro-
cess with an ORAM3 or with however many ORAMs are
needed. ORAMi, (i ≥ 1) are referred to as position map
ORAMs. To perform an access to the data ORAM in
a hierarchy of H ORAMs, we first look up the on-chip
position map for ORAMH , then perform an access to
ORAMH , ORAMH−1, . . . , ORAM1. Each ORAM lookup
yields the path to access in the next ORAM.

To be concrete, we give an example with a 2-level hier-
archical Path ORAM. Let Nh, Lh, Bh, Mh, Ch, and Zh

be the parameters for ORAMh (h = 1, 2, variable names
are analogous to Section 2.1). Since the position map of
ORAM1 has N1 entries and each block in ORAM2 is able
to store k2 = ⌊B2/L1⌋ labels, ORAM2’s capacity must be at
least N2 = ⌈N1/k2⌉ ≈ N1 · L1/B2. The number of levels in
ORAM2 is L2 = ⌈log2 N2⌉ − 1.
The invariant is, if some data block b1 in ORAM1 has

program address u1, then
1. there exists a block b2 in ORAM2 with program address

u2 = ⌊u1/k2⌋+12; the i = u1 − (u2 − 1)k2-th leaf label
stored in b2 equals l1.

2. For h = 1, 2, bh is mapped to a uniformly random leaf
lh ∈ {1, . . . , 2

Lh} in ORAMh’s tree; bh is either in some
bucket along path lh in ORAMh’s tree, or in ORAMh’s
stash (the Path ORAM invariant holds for each ORAM
in the hierarchy).

Given the above invariants, accessHORAM(u1, op, b
′

1) be-
low describes a complete 2-level hierarchical ORAM access:

1. Generate random leaf labels l′1 and l′2. Determine i and
u2 as described in the invariant.

2. Lookup ORAM2’s position map with u2, yielding l2.
3. Perform accessPath(u2, l2, l

′

2, write, b′2) on ORAM2,
yielding block b2 (as described in the invariant). Record
l1, the ith leaf label in b2. Replace l1 with l′1 to get b′2.

2The +1 offset is because address u2 = 0 is reserved for
dummy blocks in ORAM2.

4. Perform accessPath(u1, l1, l
′

1, op, b
′

1) on ORAM1. This
completes the operation.

accessPath() is defined in Section 2.1.
A hierarchical Path ORAM requires an additional state ma-

chine to decide which ORAM is being accessed and requires
additional storage for each ORAM’s stash.

2.4 Path ORAM Storage & Access Overhead
To store up to N ·B data bits, the Path ORAM tree uses

(2L+1− 1) ·M bits, where M = Z(L+U +B)+64 as defined
in Section 2.2.2. In practice, the Path ORAM tree would be
stored in DRAM. In that case M should be rounded up to
a multiple of DRAM access granularity (e.g. 64 bytes). For
a hierarchical ORAM with H ORAMs, the on-chip storage
includes the stash for each ORAM,

∑H

i=1
Ci(Li + Ui +Bi)

bits in total, and the NH ·LH -bit position map for ORAMH .
We define Path ORAM Access Overhead as the ratio

between the amount of data moved and the amount of useful
data per ORAM access. In order to access B bits (one
data block) in Path ORAM, (L+ 1)M bits (an entire path)
have to be read and written, giving Access Overhead =
2(L+ 1)M

B
. The access overhead of hierarchical Path ORAM

is similarly defined as

∑H

i=1
2(Li + 1)Mi

B1

. The denominator

is B1 because only the block in data ORAM is needed by
the processor.

2.5 Limitations of Path ORAM for Secure
Processors

As mentioned, Path ORAM was not originally designed
for secure processors. Below we list the limiting factors for
Path ORAM in a secure processor setting, and briefly talk
about how we will address them.

2.5.1 Stash overflow

Path ORAM fails when its stash overflows. Despite the
write-back operation, blocks can still accumulate in Path
ORAM’s stash. When a block is remapped on an access, the
probability that it can be written back to the same path is
low. This may cause the total number of blocks in the stash
to increase by one after an access.

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1 10 100 1000

P
(b

lo
ck

s
in

 s
ta

sh
 >

=
 m

)

m

Z=1 Z=2

Z=3 Z=4

Figure 3: The probability that the number of blocks
in the stash exceeds a certain threshold for different
Z, in a 4 GB Path ORAM with 2 GB working set
and an infinitely large stash.

Figure 3 gives the cumulative distribution of stash oc-
cupancy for a 4 GB Path ORAM with 2 GB working set
and different Z, assuming an infinitely large stash. In this
experiment, we take a data point after every access and
show the histogram. In particular, Figure 3 shows the prob-
ability that the number of blocks in the stash exceeds a
certain threshold C, which is equivalent to the failure prob-
ability with a stash of size C. Even with a stash size of
1000 blocks, Path ORAM with Z ≤ 2 always fails and Path
ORAM with Z = 3 fails with ∼ 10−5 probability. This
problem can be alleviated by making Z ≥ 4. However, a
larger Z increases Access Overhead (Section 2.4). We will
introduce background eviction—a scheme to empty the stash
when it fills—to eliminate Path ORAM failure probability
in Section 3.1.

2.5.2 Access latency

To access a data block/cache line, a normal processor will
initiate a fast page or burst command to a DRAM to access
specifically the cache line of interest (B bits). By contrast,
Path ORAM moves hundreds of times more data (given by
Access Overhead) than a normal processor does per access,
significantly increasing the memory access latency.3

Decreasing Z can proportionally decrease Path ORAM’s
access overhead. However, such configurations are precluded
because they significantly increase the failure probability
(Figure 3). In Section 4.1 we will use our background eviction
technique to make these higher performance configurations
possible in a secure processor setting.

2.5.3 Low DRAM utilization

In the original Path ORAM paper [20], the authors suggest
setting the maximum number of data blocks in the ORAM
to the number of buckets, which means only 1/Z of blocks
contain valid data (the rest is made up of dummy blocks). As
with trying to reduce latency, increasing the number of valid
blocks in the ORAM, while keeping the ORAM capacity and
Z fixed, leads to a larger failure probability. In Section 4.1.3
we show DRAM utilization can be improved.

3. PATH ORAM OPTIMIZATION
We now describe techniques to improve Path ORAM in a

secure processor context.

3In fact, Path ORAM latency accounts for most of the per-
formance overhead in the Ascend secure processor [3, 4].

3.1 Background Eviction

3.1.1 Proposed background eviction scheme

To be usable, a background eviction scheme must (a) not
change the ORAM’s security guarantees, (b) make the prob-
ability of stash overflow negligible and (c) introduce as little
additional overhead to the ORAM’s normal operation as
possible. For instance, a strawman scheme could be to
read/write every bucket in the ORAM tree when stash oc-
cupancy reaches a threshold—clearly not acceptable from a
performance standpoint.
Unfortunately, the strawman scheme is also not secure.

We make a key observation that if background evictions
occur when stash occupancy reaches a threshold, the fact
that background evictions occurred can leak privacy because
some access patterns fill up the stash faster than others. For
example, if a program keeps accessing the same block over
and over again, the requested block is likely to be already in
the stash—not increasing the number of blocks in the stash.
In contrast, a program that scans the memory (i.e., accesses
all the blocks one by one) fills up the stash much faster. If an
attacker realizes that background evictions happen frequently,
the attacker can infer that the access pattern of the program
is similar to a memory scan and can possibly learn something
about private data based on the access pattern.
One way to prevent attacks based on when background

evictions take place is to make background evictions indis-
tinguishable from regular ORAM accesses. Our proposed
background eviction scheme prevents Path ORAM stash over-
flow using dummy load/stores. To prevent stash overflow,
we stop serving real memory requests and issue dummy re-
quests whenever the number of blocks in the stash exceeds
C −Z(L+1). (Since there can be up to Z(L+1) real blocks
on a path, the next access has a chance to overflow the stash
at this point.) A dummy access reads and decrypts a random
path and writes back (after re-encryption) as many blocks
from the path and stash as possible. A dummy access will at
least not add blocks to the stash because all the blocks on
that path can at least go back to their original places (note
that no block is remapped on a dummy access). Furthermore,
there is a possibility that some blocks in the stash will find
places on this path. Thus, the stash cannot overflow and
Path ORAM cannot fail, by the definition of ORAM fail-
ure we have presented so far, with our background eviction
scheme. We keep issuing dummy accesses until the number
of blocks in the stash drops below the C−Z(L+1) threshold,
at which point the ORAM can resume serving real requests
again.

Our background eviction scheme can be easily extended to
a hierarchical Path ORAM. If the stash of any of the ORAMs
in the hierarchy exceeds the threshold, we issue a dummy
request to each of the path ORAMs in the same order as a
normal access, i.e., the smallest Path ORAM first and the
data ORAM last.

Livelock. Our proposed background eviction scheme does
have an extremely low probability of livelock. Livelock occurs
when no finite number of background evictions is able to
reduce the stash occupancy to below C−Z(L+1) blocks. For
example, all blocks along a path may be mapped to the same
leaf l and every block in the (full) stash might also map to
leaf l. In that case no blocks in the stash can be evicted, and
dummy accesses are continually performed (this is similar
to a program hanging). However, the possibility of such a

scenario is similar to that of randomly throwing 32 million
balls (blocks) to 16 million bins (leafs) with more than 200
balls (stash size) landing into the same bin—astronomically
small (on the 10−100 scale). Therefore, we do not try to detect
or deal with this type of livelock. We note that livelock does
not compromise security.

3.1.2 Security of the proposed background eviction

Our background eviction scheme does not leak any informa-
tion. Recall that the original Path ORAM (with an infinite
stash and no background eviction) is secure because, inde-
pendent of the memory requests, an observer sees a sequence
of random paths being accessed, denoted as

P = {p1, p2, . . . , pk, . . . } ,

where pk is the path that is accessed on kth memory ac-
cess. Each pk, (k = 1, 2, . . .) follows a uniformly random
distribution and is independent of any other pj in the se-
quence. Background eviction interleaves another sequence of
random paths qm caused by dummy accesses, producing a
new sequence

Q = {p1, p2, . . . , pk1
, q1, . . . , pk2

, q2, . . . } .

Since qm follows the same uniformly random distribution
with pk, and qm is independent of any pk and any qn(n 6=
m), Q also consists of randomly selected paths, and thus
is indistinguishable from P . This shows the security of the
proposed background eviction.

3.1.3 Examples of insecure eviction schemes

We point out that attempts to eliminate livelock (Sec-
tion 3.1.1) are likely to break security. We examine the
following potentially insecure eviction scheme: When the
number of blocks in the stash reaches the threshold, we
randomly access a block that is in the stash (referred to as
the block remapping scheme). This scheme will not livelock
because the blocks in the stash will gradually get remapped
and ‘escape’ the congested path. Unfortunately, this is also
why security breaks.

We first define CPL(p, p′), the Common Path Length of
path p and p′, which is the number of buckets shared by
the two paths. Given arbitrary p and p′, CPL(p, p′) may
be between 1 and L+ 1 (two paths at least share the root
bucket, and there are L + 1 levels in total). Using Figure
1 as an example, CPL(1, 2) = 3 and CPL(3, 8) = 1. Given
an ORAM tree of L+ 1 levels, if p and p′ are drawn from a
uniform distribution, then

P
(

CPL(p, p′) = l
)

=

1

2l
, 1 ≤ l ≤ L

1

2L
, l = L+ 1

,

E
[

CPL(p, p′)
]

= 2−
1

2L
.

For the proposed secure background eviction scheme, the
average CPL should be very close to the expectation. How-
ever, for the sequence Q with the block remapping eviction
scheme, each qm (an access for eviction) is the leaf label of
block um that is in the stash at that point. Note that a block
mapped to path p is less likely to be evicted to the ORAM
tree if the accessed path p′ shares a shorter common path
with p. Therefore, the fact that block um is in the stash
suggests that the access prior to it, which is pkm

, is not in

1.6

1.7

1.8

1.9

2

2.1

2.2

0 20 40 60 80 100

A
v

e
ra

g
e

 C
P

L
b

e
tw

e
e

n

co
n

se
cu

ti
v

e
 a

cc
e

ss
e

s

Experiment

Insecure eviction Proposed Background Eviction

Figure 4: Average Common Path Length between
consecutively-accessed paths with the insecure evic-
tion scheme and the proposed background eviction
scheme. This attack compromises the insecure evic-
tion scheme.

favor of the eviction of um. So if this eviction scheme is
used, the average CPL between consecutive paths in Q will
be significantly smaller than the expected value 2− 1

2L
. We

mount this attack 100 times on a Path ORAM with L = 5,
Z = 1 and C −Z(L+1) = 2. Figure 4 shows that our attack
can detect the insecure evictions. The average CPL of our
proposed background eviction scheme is 1.979, very close to
the expected value 2− 1

25
≈ 1.969, while the average CPL of

the insecure eviction scheme is 1.79.
There are other eviction schemes that are harder to break.

For example, an eviction scheme can randomly remap one
of the blocks in the stash and access a random path. This
scheme creates no dependency between consecutive accesses
and thus can defeat the above attack. However, it still tends
to remap blocks from congested paths to less congested paths,
and hence may be broken through more sophiscated attacks.
We do not discuss these schemes and the corresponding
attacks since they are tangential to the main topic of this
paper.

3.1.4 Impact on performance

We modify the definition of access overhead defined in
Section 2.4, taking into account dummy accesses introduced
by background eviction,

Access Overhead =
RA+DA

RA

2(L+ 1)M

B
(1)

where RA is the number of real accesses and DA is the num-
ber of dummy accesses. The access overhead of hierarchical
Path ORAM is defined similarly as

Access Overhead =
RA+DA

RA

∑H

i=1
2(Li + 1)Mi

B1

. (2)

Though dummy accesses waste some cycles, background
eviction now allows more efficient parameter settings that
were previously prohibited due to high failure probability.
We will show that background eviction improves the overall
performance in Section 4.1.

3.2 Super Blocks
So far, we have tried to reduce the amount of data moved

per ORAM access through background eviction and design
space exploration. Another way to improve Path ORAM’s
efficiency is to increase the amount of useful data per ORAM
access, by loading multiple useful blocks on an ORAM ac-
cess. However, this is almost impossible in the original Path

ORAM, since blocks are randomly dispersed to all the leaves
and are unlikely to reside on the same path.
To load a group of blocks on a single access, these blocks

have to be intentionally mapped to the same leaf in the
ORAM tree. We call such a group of blocks a super block. It
is important to note that the blocks within a super block S
do not have to reside in the same bucket. Rather, they only
have to be along the same path so that an access to any of
them can load all the blocks in S.
When a block b ∈ S is evicted from on-chip cache, it is

put back into the ORAM stash without waiting for other
blocks in S. At this point it can find its way to the ORAM
tree alone. When other blocks in S get evicted from on-chip
cache at a later time, they will be assigned and evicted to the
same path as b. We remark that this is the reason why super
blocks are not equivalent to having larger blocks (cache lines):
a cache line is either entirely in on-chip cache, or entirely in
main memory.

3.2.1 Merging scheme

Super blocks create other design spaces for Path ORAM,
such as super block size, which blocks to merge, etc. In
this paper, we only merge adjacent blocks in the address
space into super blocks. We believe this can exploit most
of the spatial locality in an application, while keeping the
implementation simple. We use the following simple scheme.

Static merging scheme: only merge adjacent blocks
(cache lines) into super blocks of a fixed size. The super
block size is determined and specified to the ORAM interface
before the program starts. At initialization stage, data blocks
are initially written to ORAM, and the ORAM interface
simply assigns the same leaf label to the blocks from the
same super block. The additional hardware required is small.
We believe dynamically splitting/merging super blocks

based on temporal locality would yield better performance.
We leave such schemes to future work.

3.2.2 Security of super blocks

For the same reasons as background eviction, an access to
a super block must be indistinguishable from an access to
a normal block for security reasons. In our scheme, a super
block is always mapped to a random leaf in the ORAM tree
in the same way as a normal block. If any block in the super
block is accessed, all the blocks are moved from ORAM to
on-chip cache and also remapped to a new random leaf. A
super block access also reads and writes a path, which is
randomly selected at the previous access to this super block.
This is exactly the Path ORAM operation. Splitting/merging
super blocks is performed on-chip and is not revealed to an
observer.

3.2.3 Impact on performance

The super block scheme improves the access overhead by
a factor of |S| (the super block size in terms of blocks), if the
|S| blocks returned to the processor on a single access do have
locality. In this case, performance is improved by reducing
on-chip cache miss rate. The overhead of super blocks is
more dummy accesses. For example, statically merging super
blocks of size |S| has similar effects as reducing the Z by a
factor of |S|. We investigate the potential performance gain
of super blocks in Section 4.3.

H
H-1

…
1

…

(a)

ORAM

read writeD E
read writeD E

read writeD E

H
H-1

…
1

…

(b)

read writeD E
writeE

writeE

read D

read D
…

return
data

finish
access

return
data

finish
access

read read path write write path D decrypt E encrypt

Figure 5: The access order in (b) hides encryption
latency and can return data earlier than (a).

3.3 Other Optimizations

3.3.1 Exclusive ORAM

When connected to a processor, we design ORAM to be
exclusive, i.e., any block in on-chip cache is not in ORAM.
When a block (cache line) in ORAM is requested, the ORAM
interface returns the block to on-chip cache and removes the
block from ORAM. If the target block belongs to a super
block, then the entire super block is removed from ORAM
and put into on-chip cache. This guarantees that ORAM
never has a stale copy of a block. So when a dirty cache
line is evicted from on-chip cache, it can be directly put
into the Path ORAM’s stash without accessing any path. In
contrast, if the ORAM is inclusive, it may contain a stale
copy of the evicted block (if the block has been modified by
the processor). Then the ORAM interface needs to make an
access to update the stale copy in the ORAM.

Let us consider the scenario that most favors an inclusive
ORAM: a program that scans memory and never modifies
any block (all blocks are read-only). In this case, all the
blocks evicted from the last-level cache are clean. In the
inclusive ORAM, each last-level cache miss randomly remaps
the requested block. In the exclusive ORAM, the requested
block is removed after being read into the stash. Another
block, which is mapped to a random leaf, is evicted from
the last-level cache and put into the stash to make space for
the requested block. So the inclusive ORAM and exclusive
ORAM still add the same number of blocks to the stash, per
access. Note that an exclusive ORAM should perform better
when there are dirty cache lines evicted from on-chip cache.

It is also worth pointing out that in a conventional proces-
sor, a DRAM access is required if a dirty block needs to be
written back to main memory. In that case, the access over-
head of Path ORAM would be lower than what we defined
in Equations 1 and 2.

3.3.2 Hierarchical ORAM access order

For a hierarchical ORAM {ORAM1, ORAM2, . . . ,
ORAMH} (ORAM1 is the data ORAM and ORAMH is
the smallest position map ORAM), instead of perform-
ing accessHORAM() as described in Section 2.3 where each
ORAM is read and written one by one, we propose the
following more efficient access order, shown in Figure 5.
We first read a path from each ORAM, starting from

ORAMH to ORAM1. While reading ORAMh, the ORAM
interface re-encrypts blocks in ORAMh+1’s stash and pre-
pares those blocks to be written back. When ORAM1 is
read, the program data of interest is forwarded to the proces-

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8
L

Figure 6: Illustration of subtree locality.

sor. Finally, the ORAM interface performs path writeback
operations for each ORAM.

This strategy is better than a read/write each ORAM one
by one strategy in the following two aspects. First, it hides
the encryption latency by postponing the path writes, leaving
the ORAM interface enough time to re-encrypt the blocks to
evict. Second, the ORAM interface can return the requested
data block after decrypting ORAM1 so that the processor
can start making forward progress earlier. Note that ORAM
throughput does not change: the writeback operations must
occur before the next set of reads.

3.3.3 Block size for position map ORAMs

Although we set the block size of data ORAM to be 128
bytes to utilize spatial locality in the programs, all the posi-
tion map ORAMs should use a smaller block size, since all
we need from a position map ORAM on an access is a leaf
label, which is typically smaller than 4 bytes. The trade-off
of a smaller block size is that as block size decreases, the
number of blocks increases and hence the new position map
grows, and thus more ORAMs may be needed to reduce the
final position map to fit in on-chip storage.

The block size for position map ORAMs should not be too
small because in that case: (1) other storage in a bucket (the
addresses, the leaf labels and the 64-bit counter) dominate;
and (2) adding an ORAM into the hierarchy introduces one
decryption latency and one DRAM row buffer miss latency
as discussed in Section 3.3.2.

3.3.4 Building Path ORAM on DRAM

Previous work on ORAM (and this paper so far) only
focused on ORAM’s theoretical overhead, the amount of
extra data moved per access or similar metrics. ORAM has
to be eventually implemented on commodity DRAM in order
to be used in secure processors. However, if not properly
done, Path ORAM can incur significantly larger overhead
than the theoretical results when actually built on DRAM.
For example, DRAM latency is much higher on a row buffer
miss than on a row buffer hit. When näıvely storing the
Path ORAM tree into an array, two consecutive buckets
along the same path hardly have any locality, and it can be
expected that row buffer hit rate would be low. We propose
an efficient memory placement strategy to improve Path
ORAM’s performance on DRAM.
We pack each subtree with k levels together, and treat

them as the nodes of a new tree, a 2k-ary tree with
⌈

L+1

k

⌉

levels. Figure 6 is an example with k = 2. We adopt the
address mapping scheme in which adjacent addresses first
differ in channels, then columns, then banks, and lastly rows.
We set the node size of the new tree to be the row buffer
size times the number of channels, which together with the
original bucket size determines k.

0

2

4

6

8

10

12

100 200 400 800

D
u

m
m

y
/R

e
a

l
R

a
ti

o

Stash Size

Z=1 Z=2 Z=3

Figure 7: Dummy Accesses / Real Accesses vs.
Stash Size (in blocks) in a 4 GB Path ORAM with
2 GB working set.

0

100

200

300

400

500

600

2% 5% 12.5% 25% 50% 67% 75% 80%

A
c
c
e

s
s
 O

v
e

r
h

e
a

d

Utilization

Z=1 Z=2 Z=3 Z=4 Z=8

802 921

Figure 8: Access overhead of different ORAM sizes
for 2 GB working set (e.g., 25% utilization corre-
sponds to 8 GB ORAM).

4. EVALUATION

4.1 Path ORAM Design Space Exploration
We first explore the design space of Path ORAM to find

configurations that minimize access overhead in Equations 1
and 2. Background eviction plays an important role: since
it eliminates stash overflow, we can perform design space
exploration with a single metric without worrying about Path
ORAM failure probability.

4.1.1 Methodology

In all experiments, we use a 128-byte cache line size (= the
block size for the data ORAM), the counter-based random-
ized encryption in Section 2.2.2, and assume that each bucket
is padded to a multiple of 64 bytes. In each experiment, 10·N
(N is the number of blocks in the ORAM) random accesses
are simulated, excluding dummy accesses by background
eviction.

4.1.2 Stash size

Figure 7 shows that for Z ≥ 2, the percentage of dummy
accesses is low to start, and only drops slightly as the stash
size increases from 100 blocks to 800 blocks. The percentage
of dummy accesses for Z = 1 is high—making Z = 1 a bad
design point. We set stash size C = 200 for the rest of the
evaluation.

4.1.3 Utilization

In Figure 8 we fix the working set (amount of valid data
blocks) to be 2 GB and explore how other parameters impact
access overhead. ORAM utilization is defined as the number
of valid data blocks out of the N total blocks in the ORAM.
This metric is directly related to DRAM utilization from
Section 2.5.3.

0

50

100

150

200

250

300

1M 4M 16M 64M 256M 1G 2G 4G 16G

A
cc

e
ss

 O
v

e
rh

e
a

d

Working Set

Z=1 Z=2

Z=3 Z=4

371 519 698 802 908

Figure 9: Access overhead of different ORAM sizes
at 50% Utilization.

The best performance occurs at Z = 3 with 50% utilization.
Access overhead increases slightly when utilization is too low
because the path gets longer. But it is not very sensitive to
low utilization since doubling the ORAM size only increases
the path length by one. Access overhead also increases when
utilization is too high because high utilization results in lots
of dummy accesses. Smaller Z configurations (e.g., Z = 1, 2)
are more sensitive to high utilization: their performance
deteriorates more rapidly as utilization goes up. In fact, we
do not have the results for Z = 1 at utilization ≥ 67% or
Z = 2 at utilization ≥ 75% because these configurations are
so inefficient that we cannot finish 10 ·N accesses for them.
Z = 3 at 67% utilization and Z = 4 at 75% utilization

still have reasonable performance. This shows that the 1/Z
utilization suggested in [21] was too pessimistic.

4.1.4 ORAM capacity

Figure 9 sweeps ORAM capacity with utilization fixed at
50%. For ORAMs larger than 256 MB, Z = 3 achieves the
best performance. As the ORAM shrinks in size, the amount
of dummy accesses decreases, and the benefit of smaller Z
begins to show. For ORAMs between 1 MB to 64 MB, Z = 2
has the lowest overhead. This suggests that smaller Path
ORAMs should use smaller Z. Figure 9 also shows that Path
ORAM has good scalability; latency increases linearly as
capacity increases exponentially.

4.1.5 Position map ORAM block size

Figure 10 shows the benefits of a small block size for
position map ORAMs. We vary the block size of position
map ORAMs and give the overhead breakdown. For each
configuration, the number of ORAMs is chosen to get a final
position map less than 200 KB. In the figure, DZ3Pb12 means
the data ORAM uses Z = 3 and position map ORAMs have
12-byte blocks. We show results with both Z = 3 and 4
for the data ORAM because static super blocks may need
Z = 4 to reduce dummy accesses. We fix block size to be 128
bytes for data ORAMs and Z = 3 for position map ORAMs
(except baseORAM). baseORAM is the configuration used in
[3]: a 3-level hierarchical Path ORAM where all the three
ORAMs use 128 byte blocks, assume Z = 4, and use the
strawman encryption scheme (Section 2.2.1).
Note that buckets are padded to a multiple of 64 bytes.

This is why a 16-byte block size does not achieve good
performance: both 16-byte and 32-byte block sizes result in a
bucket size of 128 bytes. The optimal block size for position
map ORAMs seems to be 12 bytes, followed by 32 bytes.
However, Section 4.2 will show that the 12-byte design turns
out to have larger overhead when actually implemented since
it requires two more levels of ORAMs in the hierarchy than

0

100

200

300

400

500

600

A
c
c
e

s
s
 O

v
e

r
h

e
a

d
 ORAM 1 ORAM 2 ORAM 3 ORAM 4 ORAM 5 ORAM 6

Figure 10: Overhead breakdown for 8 GB hierarchi-
cal ORAMs with 4 GB working set. DZ3Pb12 means
data ORAM uses Z=3 and position map ORAMs
have 12-byte block. The final position map is smaller
than 200 KB.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

La
te

n
cy

 i
n

 D
R

A
M

 C
y

cl
e

s naïve subtree theoretical

 1 channel 2 channels 4 channels

Figure 11: Hierarchical ORAM latency in DRAM
cycles assuming 1/2/4 channel(s). Same notations
as with Figure 10.

the 32-byte one. 32-byte position map ORAM block size
with Z = 3, 4 reduces access overhead by 41.8% and 35.0%
compared with the baseline.

4.2 Path ORAM on DRAM
We use DRAMSim2 [17] to simulate ORAM performance

on commodity DRAM. We assume the data ORAM is 8 GB
with 50% utilization (resulting in 4 GB working set); position
map ORAMs combined are less than 1 GB. So we assume a
16 GB DRAM. We use DRAMSim2’s default DDR3 micron
configuration with 16-bit device width, 1024 columns per
row in 8 banks, and 16384 rows per DRAM-chip. So the size
of a node in our 2k-ary tree (Section 3.3.4) is ch× 128× 64
bytes, where ch is the number of independent channels. We
evaluate the four best configurations in Figure 10, i.e., data
ORAM Z = 3 and 4, and 12-byte/32-byte position map
ORAM blocks.

Figure 11 shows the data latency (not counting decryption
latency) of hierarchical Path ORAMs using the näıve memory
placement and our subtree strategy, and compares these with
the theoretical value, which assumes DRAM always works
at its peak bandwidth. The figure shows that ORAM can
benefit from multiple independent channels, because each
ORAM access is turned into hundreds of DRAM accesses.
But this also brings the challenge of how to keep all the
independent channels busy. On average, the näıve scheme’s
performance becomes 20% worse than the theoretical result
when there are two independent channels and 60% worse
when we have four. Our subtree memory placement strategy
is only 6% worse than the theoretical value with two channels
and 13% worse with four. The remaining overhead comes
from the few row buffer misses and DRAM refresh.

Table 1: System configuration for the baseline and
secure processor. On a cache miss, the processor
incurs the cache hit plus miss latency.

Core model: in order, single issue
Cycle latency per Arith/Mult/Div instr 1/4/12
Cycle latency per FP Arith/Mult/Div instr 2/4/10

Cache

L1 exclusive I/D Cache 32 KB, 4-way
L1 I/D Cache hit+miss latencies 1+0/2+1
L2 exclusive Cache 1 MB, 16-way
L2 hit+miss latencies 10+4
Cache block size 128 bytes

Table 2: Path ORAM latency and on-chip storage
of the configurations evaluated in Section 4.3. All
cycle counts refer to CPU cycles.

ORAM config. baseORAM DZ3Pb32 DZ4Pb32

return data (cycles) 4868 1892 2084
finish access (cycles) 6280 3132 3512

stash size (KB) 77 47 47
position map size (KB) 25 37 37

Even though a 12-byte position map ORAM block size
has lower theoretical overheads, it is worse than the 32-byte
design.

We remark that it is hard to define Path ORAM’s slowdown
over DRAM. On one hand, DDR3 imposes a minimum ∼ 26
(DRAM) cycles per access, making Path ORAM’s latency
∼ 30× over DRAM assuming 4 channels. On the other hand,
our Path ORAM consumes almost the entire bandwidth of
all channels. Its effective throughput is hundreds of times
lower than DRAM’s peak bandwidth (≈ access overhead).
But the actual bandwidth of DRAM in real systems varies
greatly and depends heavily on the applications, making the
comparison harder.

4.3 Path ORAM in Secure Processors
We connect Path ORAM to a processor and evaluate our

optimizations over a subset of the SPEC06-int benchmarks.
The processors are modeled with a cycle-level simulator based
on the public domain SESC [16] simulator that uses the MIPS
ISA. Instruction/memory address traces are first generated
through SESC’s rabbit (fast forward) mode and then fed
into a timing model that represents a processor chip with the
parameters given in Table 1. Each experiment uses SPEC
reference inputs, fast-forwards 1 billion instructions to get
out of initialization code and then monitors performance for
3 billion instructions.

Table 2 lists the parameters for configurations DZ3Pb32,
DZ4Pb32 and baseORAM, including the latency (in CPU
cycles) to return data and finish access, as well as the on-
chip storage requirement for the stash and position map.
Assuming CPU frequency is 4× of DDR3 frequency,

latencyCPU = 4× latencyDRAM +H × latencydecryption.

We also compare against a conventional processor that uses
DRAM. Path ORAMs and DRAMs are both simulated using
DRAMSim2.
Figure 12 shows the SPEC benchmark running time us-

ing different Path ORAM configurations and super blocks,
normalized to the insecure processor with DRAM. DZ3Pb32

0

2

4

6

8

10

S
lo

w
d

o
w

n
 X

baseORAM
DZ3Pb32
DZ3Pb32 + super block
DZ4Pb32 + super block

14.5 10.2 13.1

Figure 12: SPEC benchmark performance with op-
timized Path ORAM.

reduces the average execution time by 43.9% compared with
the baseline ORAM. As expected, the performance improve-
ment is most significant on memory bound benchmarks (mcf,
bzip2 and libquantum).
In this experiment, we only statically form super blocks

of size two (consisting of two blocks). On average, DZ4Pb32
with super blocks outperforms DZ3Pb32 without super blocks
(the best configuration without super blocks) by 5.9%, and
is 52.4% better than the baseline ORAM. There is a sub-
stantial performance gain on applications with good spatial
locality (e.g., mcf) where the prefetched block is likely to
be accessed subsequently. Using static super blocks with
DZ3Pb32 slightly improves the performance on most bench-
marks, but has worse performance on certain benchmarks
because it requires too many dummy accesses, canceling the
performance gain on average.

5. INTEGRITY VERIFICATION
Orthogonal to performance optimizations, we can build

an integrity verification layer on top of Path ORAM so
that a secure processor can verify that the retrieved blocks
from Path ORAM are authentic, i.e., they were produced by
the secure processor, and fresh, i.e., a block in the ORAM
corresponds to the latest version that the processor wrote.

A strawman approach to implementing the integrity layer
is to store a Merkle tree in external memory. Each leaf of
the Merkle tree stores a 128-bit hash of a data block in the
ORAM. We note that this scheme would work with any kind
of ORAM, and similar ideas are used in [14]. To verify a
block, a processor needs to load its corresponding path and
siblings in the Merkle tree and check the consistency of all
the hash equations. This scheme has large overheads for
Path ORAM, because all the Z(L+1) data blocks on a path
have to be verified on each ORAM access. So Z(L+1) paths
through the Merkle tree must be checked per ORAM access,
which contain Z(L+ 1)2 hashes in total. (Z and L are given
in Section 2.1.)
To implement integrity verification with negligible over-

head, we exploit the fact that the basic operation of both the
Merkle tree and Path ORAM is reading paths through their
tree structures. In particular, we create an authentication
tree that has exactly the same structure with Path ORAM
(shown mirrored in Figure 13). (We describe ideas and give
an example here; additional details can be found in [4].)
To avoid having to initialize the authentication tree at

program start time,4 we add two bits to each bucket—labeled

4We assume that at start-up time, the authentication and
ORAM trees consist of random bits corresponding to the
uninitialized DRAM state.

B3 B4 B6Level 2

Level 1

Level 0

B5

B0

Level 0

Level 1

Level 2 h5 = H(B5) h6 = H(B6)h3 = H(B3) h4 = H(B4)

A
u

th
e

n
ti

c
a

ti
o

n
 T

r
e

e

Stash

(h0 stored inside processor)

depends on h1, h2, B0, f , f

Reads

Writes

P
a

th
 O

R
A

M

O
R

A
M

In
te

r
fa

c
e

Processor pins

Leaf 1 Leaf 2 Leaf 3 Leaf 4

h0 ,f , f0
0

1
0

B1 ,f , f0
1

1
1 B2 ,f , f0

2
1
2

h1 depends on h3, h4, B1, f , f 0
1

1
1 h2 depends on h5, h6, B2, f , f 0

2
1
2

0
0

1
0

Figure 13: Integrity verification of Path ORAM.

f i
0 and f i

1 for bucket i and stored in external memory along
with bucket i—that are conceptually valid bits for bucket i’s
children. We say bucket i is reachable from the root bucket
if all valid bits on the path, from the root bucket to bucket
i, equal 1. We define reachable(Bi) = 1 if Bi was reachable
at the start of a particular ORAM access and = 0 otherwise.
We maintain the invariant that all reachable buckets from the
root bucket have been written to through ORAM operations
at some point in the past.
Each intermediate node in the authentication tree now

stores the hash of the concatenation of (a) child bucket
valid flags, (b) the corresponding bucket in the Path ORAM
tree, and (c) the sibling hashes for that intermediate node.
Authentication works as follows: Suppose the root bucket
is labeled B0 and the root hash/child valid flags (stored
inside the ORAM interface) are h0/f

0
0 /f

1
0 respectively. We

initialize h0 = H(0) and f0
0 = f0

1 = 0 at program start time.
Following the figure: to perform an ORAM access to block
B5 mapped to leaf l = 3, the ORAM interface performs the
following operations:

1. ORAM path read: read B0, B2 and B5 and child valid
flags f2

0 , f
2
1 .

2. Read sibling hashes for the path (h1 and h6).
3. Compute h′

5 = H(B5), h′

2 = H(f2
0 ||f

2
1 ||(f

2
0 ∨ f2

1) ∧
B2||f

2
0 ∧h

′

5||f
2
1 ∧h6), h

′

0 = H(f0
0 ||f

0
1 ||(f

0
0 ∨f

0
1)∧B0||f

0
0 ∧

h1||f
0
1 ∧ h′

2), where ‘∨’ and ‘∧’ are logical OR/AND
operators.5

4. If h0 = h′

0, the path is authentic and fresh!
5. Update child valid flags: f0

0
′ = f0

0 , f
0
1
′ = f2

0
′ = 1 and

f2
1
′ = f2

1 ∧ reachable(B2). Update the root bucket child
valid flags (inside the ORAM interface) to f0

0
′,f0

1
′.

6. ORAM path writeback: evict as many blocks as possi-
ble from the stash to the path 3 (forming B′

0, B
′

2 and
B′

5). Write f2
0
′,f2

1
′ as the new child valid flags for B′

2.
7. Re-compute h5, h2 and h0; write back h5 and h2.

All data touched in external memory is shaded in Figure 13.
Note that only the sibling hashes need to be read in from

the authentication tree. The hashes on the path of interest
are computed by the processor, by hashing the buckets read

5Note that (f i
0 ∨ f i

1) ∧ Bi = Bi if reachable(Bi) = 1 and
is only needed to get the correct value for h′

0 before the
first access is made. This OR-AND operation is applied to
other non-leaf buckets for the sake of consistency, but is not
required.

via the Path ORAM operation concatenated to the sibling
hashes. We point out that since hashes are computed from
the leaves to the root, only the reachable portion of the path
in the authentication tree needs to be read per access. That
is, if the path to B5 is being accessed (see above) and f0

0 =
f0
1 = 0 at the time of the access, h′

0 = H(0||0||0||0||0) = H(0),
which is independent of any values in the authentication tree.
Conceptually, the child valid flags indicate a frontier in the
ORAM/authentication trees that has been touched at an
earlier time.
In summary, on each ORAM access at most L ≪ (L +

1)2Z (sibling) hashes need to be read into the processor
and L hashes (along the path) need to be written back to
the external authentication tree. This operation causes low
performance overhead beyond accessing ORAM.

6. RELATED WORK

6.1 Secure Hardware
The TPM [25, 1, 18] is a small chip soldered onto a mother-

board capable of performing a limited set of secure operations;
the TPM assumes trust in the OS, RAM, Disk, connecting
bus and the user application. The TPM, and user systems
such as Intel’s TPM+TXT [9], do not consider address bus
leakage in their threat model and therefore ORAM can be
used in conjunction with them to achieve higher security.
Aegis [23, 24] is a single-chip processor and the first to pro-
vide memory integrity verification and encryption, which
allows memory to not be trusted, but assumes trust in the
OS kernel and user application. eXecute Only Memory
(XOM) [11, 12, 13] trusts only the user application and the
processor chip but needs to be protected against replay at-
tacks. Aegis and XOM need additional functionality to be
protected against attacks based on memory access patterns
of badly-written programs or programs with bugs, and our
work in this paper can be used to guarantee security in these
scenarios.
The Trusted Execution Module TEM [2] is a secure co-

processor capable of securely executing partially-encrypted
procedures/closures expressing arbitrary computations which
fit inside the TEM. ORAM would enable TEM to use external
memory without sacrificing security.

Ascend [3] (followed up in the more comprehensive [4]) uses
Path ORAM to perform encrypted computation assuming
untrusted programs. We have compared our ORAM configu-
rations and associated architectural optimizations to those
used in a preliminary publication on Ascend [3] and shown
significant improvements. We note again that Ascend per-
forms ORAM accesses strictly periodically which increases
overhead slightly; our focus here is on the efficiency of the
ORAM primitive as opposed to a specific usage scenario,
and therefore we have not assumed periodic accesses for the
Ascend baseline or for our ORAMs.

6.2 Memory Access Pattern Leakage
HIDE [30] (and follow-on work [5], [27]) has architectural

support to obfuscate memory access patterns through the
idea of randomly shuffling memory locations between consec-
utive accesses (similar to ORAM). However, to have small
performance overheads, HIDE only applies this technique
within small chunks of memory (usually 8 KB to 64 KB).
In our threat model, obfuscation over small chunks breaks
security because the server can engineer a data placement for

a client program, or engineer a curious program to perform
inter-chunk accesses based on private data, and decipher all
the encrypted data. If HIDE were to apply shuffling over
4 GB memory, the on-chip storage requirements would cor-
respond to an untenable amount of cache memory on-chip.
Therefore, to achieve cryptographic-grade security, it is much
better to use our optimized Path ORAM.

7. CONCLUSIONS
Traffic from processor chip pins to DRAM memory is a

side channel that can be easily monitored by software, and
is hard to enclose in a tamper-resistant package. Therefore,
it is important to thwart attackers who try to exploit this
side channel to discover private data. Oblivious RAM can
guarantee security by blocking this side channel; this requires
that an ORAM interface be built into the chip, which in-
creases the amount of off-chip traffic logarithmically in the
worst case.

”Default” configurations of Path ORAM can result in over
10× performance degradation for benchmarks such as SPEC
if all data is considered private. Through novel architectural
mechanisms such as background eviction and super blocks,
as well as comprehensive design space exploration, we have
shown that this overhead can be significantly reduced. On-
going improvements include using different kinds of ORAMs
for streaming data [29] and optimizing benchmarks with high
locality using dynamic super block schemes.

8. REFERENCES
[1] W. Arbaugh, D. Farber, and J. Smith, “A Secure and Reliable

Bootstrap Architecture,” in Proceedings of the 1997 IEEE
Symposium on Security and Privacy, May 1997, pp. 65–71.
[Online]. Available: citeseer.nj.nec.com/arbaugh97secure.html

[2] V. Costan, L. F. G. Sarmenta, M. van Dijk, and S. Devadas,
“The trusted execution module: Commodity general-purpose
trusted computing,” in CARDIS, 2008.

[3] C. Fletcher, M. van Dijk, and S. Devadas, “Secure Processor
Architecture for Encrypted Computation on Untrusted
Programs,” in Proceedings of the 7th ACM CCS Workshop on
Scalable Trusted Computing, Oct. 2012, pp. 3–8.

[4] C. W. Fletcher, “Ascend: An architecture for performing secure
computation on encrypted data,” in MIT CSAIL CSG
Technical Memo 508, April 2013. [Online]. Available: http:
//csg.csail.mit.edu/pubs/memos/Memo-508/Memo-508.pdf

[5] L. Gao, J. Yang, M. Chrobak, Y. Zhang, S. Nguyen, and
H.-H. S. Lee, “A low-cost memory remapping scheme for
address bus protection,” in Proceedings of the 15th PACT, ser.
PACT ’06. ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1152154.1152169

[6] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas,
“Caches and Merkle Trees for Efficient Memory Integrity
Verification,” in Proceedings of Ninth International
Symposium on High Performance Computer Architecture.
New-York: IEEE, February 2003.

[7] O. Goldreich, “Towards a theory of software protection and
simulation on oblivious rams,” in STOC, 1987.

[8] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious rams,” in J. ACM, 1996.

[9] D. Grawrock, The Intel Safer Computing Initiative: Building
Blocks for Trusted Computing. Intel Press, 2006.

[10] R. Huang and G. E. Suh, “Ivec: off-chip memory integrity
protection for both security and reliability,” in Proceedings of
the 37th annual international symposium on Computer
architecture, ser. ISCA ’10, 2010, pp. 395–406.

[11] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz, “Specifying
and verifying hardware for tamper-resistant software,” in
Proceedings of the IEEE Symposium on Security and Privacy,
2003.

[12] D. Lie, C. Thekkath, and M. Horowitz, “Implementing an
untrusted operating system on trusted hardware,” in

Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, 2003, pp. 178–192.

[13] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz, “Architectural Support for Copy
and Tamper Resistant Software,” in Proceedings of the 9th

Int’l Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), November
2000, pp. 168–177.

[14] J. R. Lorch, J. W. Mickens, B. Parno, M. Raykova, and
J. Schiffman, “Toward practical private access to data centers
via parallel oram.” IACR Cryptology ePrint Archive, vol. 2012,
p. 133, 2012, informal publication. [Online]. Available:
http://dblp.uni-trier.de/db/journals/iacr/iacr2012.html#
LorchMPRS12

[15] R. Ostrovsky, “Efficient computation on oblivious rams,” in
STOC, 1990.

[16] J. Renau, “Sesc: Superescalar simulator,” university of illinois
urbana-champaign ECE department, Tech. Rep., 2002. [Online].
Available: http://sesc.sourceforge.net/index.html

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A
cycle accurate memory system simulator,” Computer
Architecture Letters, vol. 10, no. 1, pp. 16 –19, jan.-june 2011.

[18] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes,
and S. Devadas, “Virtual Monotonic Counters and
Count-Limited Objects using a TPM without a Trusted OS,” in
Proceedings of the 1st ACM CCS Workshop on Scalable
Trusted Computing (STC’06), Nov. 2006.

[19] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram
with o((logn)3) worst-case cost,” in Asiacrypt, 2011, pp.
197–214.

[20] E. Stefanov and E. Shi, “Path O-RAM: An Extremely Simple
Oblivious RAM Protocol,” Cornell University Library,
arXiv:1202.5150v1, 2012, arxiv.org/abs/1202.5150.

[21] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious
ram,” in NDSS, 2012.

[22] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Efficient Memory Integrity Verification and Encryption for
Secure Processors,” in Proceedings of the 36th Int’l Symposium
on Microarchitecture, Dec 2003, pp. 339–350.

[23] ——, “ aegis: Architecture for Tamper-Evident and

Tamper-Resistant Processing,” in Proceedings of the 17th Int’l
Conference on Supercomputing (MIT-CSAIL-CSG-Memo-474
is an updated version). New-York: ACM, June 2003. [Online].
Available: http://csg.csail.mit.edu/pubs/memos/Memo-474/
Memo-474.pdf(revisedone)

[24] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas,
“Design and Implementation of the aegis Single-Chip Secure
Processor Using Physical Random Functions,” in Proceedings of
the 32nd Annual International Symposium on Computer
Architecture. New-York: ACM, June 2005. [Online]. Available:
http:
//csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf

[25] Trusted Computing Group, “TCG Specification Architecture

Overview Revision 1.2,”
http://www.trustedcomputinggroup.com/home, 2004.

[26] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory
encryption and authentication,” in Proceedings of the 33rd
annual international symposium on Computer Architecture,
ser. ISCA ’06, 2006, pp. 179–190.

[27] J. Yang, L. Gao, Y. Zhang, M. Chrobak, and H. Lee, “A
low-cost memory remapping scheme for address bus protection,”
Journal of Parallel and Distributed Computing, vol. 70, no. 5,
pp. 443–457, 2010.

[28] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for
inhibiting software piracy and tampering,” in Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM
International Symposium on, dec. 2003, pp. 351 – 360.

[29] X. Yu, C. Fletcher, L. Ren, M. van Dijk, and S. Devadas,
“Efficient private information retrieval using secure hardware,”
in MIT CSAIL CSG Technical Memo 509, April 2013. [Online].
Available: http:
//csg.csail.mit.edu/pubs/memos/Memo-509/Memo-509.pdf

[30] X. Zhuang, T. Zhang, and S. Pande, “HIDE: an infrastructure
for efficiently protecting information leakage on the address
bus,” in ASPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming
languages and operating systems. New York, NY, USA: ACM
Press, 2004, pp. 72–84.

citeseer.nj.nec.com/arbaugh97secure.html
http://csg.csail.mit.edu/pubs/memos/Memo-508/Memo-508.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-508/Memo-508.pdf
http://doi.acm.org/10.1145/1152154.1152169
http://dblp.uni-trier.de/db/journals/iacr/iacr2012.html#LorchMPRS12
http://dblp.uni-trier.de/db/journals/iacr/iacr2012.html#LorchMPRS12
http://sesc.sourceforge.net/index.html
http://csg.csail.mit.edu/pubs/memos/Memo-474/Memo-474.pdf (revised one)
http://csg.csail.mit.edu/pubs/memos/Memo-474/Memo-474.pdf (revised one)
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-509/Memo-509.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-509/Memo-509.pdf

	Introduction
	Motivation
	Our Contribution
	Paper Organization

	Oblivious RAM
	Basic Path ORAM
	Randomized Encryption for Path ORAM
	Strawman scheme
	Counter-based scheme

	Hierarchical Path ORAM
	Path ORAM Storage & Access Overhead
	Limitations of Path ORAM for Secure Processors
	Stash overflow
	Access latency
	Low DRAM utilization

	Path ORAM Optimization
	Background Eviction
	Proposed background eviction scheme
	Security of the proposed background eviction
	Examples of insecure eviction schemes
	Impact on performance

	Super Blocks
	Merging scheme
	Security of super blocks
	Impact on performance

	Other Optimizations
	Exclusive ORAM
	Hierarchical ORAM access order
	Block size for position map ORAMs
	Building Path ORAM on DRAM

	Evaluation
	Path ORAM Design Space Exploration
	Methodology
	Stash size
	Utilization
	ORAM capacity
	Position map ORAM block size

	Path ORAM on DRAM
	Path ORAM in Secure Processors

	Integrity Verification
	Related Work
	Secure Hardware
	Memory Access Pattern Leakage

	Conclusions
	References

